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Idea for defining the projective plane P2

points of projective plane P2
> “Points at infinity” are points like any

other.

>

lines through origin in RS

“lines of sight” through “eye point”

Formalises the intuitive idea of projection: > We “see” equally in all directions.
» Point = other point on same line.




Formal definition of projective space P"
P" is the set of equivalence classes

[P)n = (Rn+1 _ {0})/ _

Rn+1

of points in — {0} under the equivalence relation

X~y < X=Ay for some non-zero A e R

(0,-1,1) ~(0,-1.5,1.5)




Notation for elements of P"

The ~-equivalence class of x = (xg,X1,...,Xn) € R"*"— {0} is denoted
PxeP" or (Xo:X1:...:Xp)€P" (“homogenous coordinates”)
Note:

Pyx = Px (Axo : Axq:..iMXn) = (X0 i X1 ... Xn) Po¢P" (0:0:...:0) ¢ P"

1) =(0:-1.5:1.5)




P2 objects — R3 objects

P2 object R3 object (before ~-collapsing)

point A = P, line Aa

line AB plane span(a,b)



Parallel lines have the same point at infinity: in terms of coordinates

Non-parallel lines have different “points at
infinity”:

> (1:t:1)t:m9
(1:0.2+t:2t)

t—oo

> (1:t:0)"= > (1:02+t:2t)" =



Parallel lines have the same point at infinity: in terms of planes

Generally, any line can be “homogenised”
to the corresponding plane by multiplying
constant terms by xg:

> Parametrically: (1:t:1) line axq + bx, = ¢ in ground plane xg =1
In the “ground plane” xg =1: @
“Homogenised” eq. for plane: @ -

» Parametrically: (1:t:0)
In the “ground plane” xo =1: @ plane ax; + bxy = cxo
“Homogenised” eq. for plane: @

> Parametrically: (1: 0.2+t :2t) This plane goes through 0 and has the
In the “ground plane” xg =1: correct line of intersection with ground
X2/2=x1—0.2 plane xg = 1.

“Homogenised” eq. for plane:
X2/2 =X1— O.2XO



Subspaces of P"
Projective subspaces  P" are ~-collapsed versions of linear subspaces c R

P(U) :={Py:ueU—{0}} where Uis a linear subspace < R"""
subspace cP"

dimP(U) :=dim(U) —1

P(U) U

point : line \.,
el

line plane

? {0}



P" objects — R"*1 objects

P2 object R3 object (before ~-collapsing)
point ’ line T
&
line plane
P" object R+ object (before ~-collapsing)
projective subspace of dim m linear subspace of dim m +1
hyperplane := {sols. to coxg+---+cnxn, =0} hyperplane: {sols. to coxg+:--+cnxy =0}
—
not all coefficients O not all coefficients O
dim(hyperplane)=n-1 dim(hyperplane)=n

@ Same equation, different dimension! Paradox?



© What shape is the horizon?

A pair of parallels (in a plane, “the ground”) intersect in a “point at infinity.” The set of all
such points is called the “line at infinity.”

@ Shouldn’t it be “circle at infinity”? Since it “goes all the way around”?

© What happens if we remove the restriction that the parallels were in a (“ground”)
plane? Do the set of all intersections of parallels in space form a “plane at infinity”?



P2 can be seen as A2uhorizon (ordinary plane U intersections of parallels)

P2 object R3 object (before ~-collapsing)

», «

“points at infinity”; “the horizon” horizontal plane through eye point (0,0, 0)

={(x0:X1:X2)€P%:x9=0
{( )

“the rest” = P2— “points at infinity”  every point not in red plane ~ point in blue plane

={(x0:x1:x0) €P? : xg =1} = A?



P" as extended A"

Pn

P" object

=i(X01X1Z~'

Xn) €P™Mixo =1 U{(Xo X1+ 1 xn

)EP”2X0=O};

=An “hyperplane at infinity”

S S

A" object

E projective subspace

projective hyperplane H

CoXpt+CiX1+---
projective hyperplane containing F

—dxo+cixq+---

+CnXn = 0

+CnXn = 0

«>

intersect with “ground”
—
fill in xo=1
—_
“homogenise”
pled

multiply constant by xo

En A" affine subspace
affine hyperplane Hn A"
Xy ++++CpXn = —Co
affine hyperplane F

C‘|X‘|+"'+Can:d



© What is the “point at infinity” of y =1+ x?

y=1+x

~~ affine line:

{(1:x1:x2) i x2 =1+x}
(no points at infinity yet)

X1

~ full projective line:
{(x0 :x1:X2) : X2 = X0 + X1}
(homogenised eq.)

(includes points at infinity)

Points at infinity occur when xg = 0:

{(0:x1:x2) i xg=x1} ={(0:1:1)}
© What is another line with the same point at infinity?

z.

X2



Intersection at infinity of two parallel planes in P3
affine coord. affine eq. homogenous eq. projective coord.
(“all points (“all points
(1:x1:x2:x3) (X0 :X1:X2:X3)
suchthat...”)  suchthat...”)

(1:0:%:%) x1=0 x1=0 (%:0:%:%)
(1:1:% %) x1=1 X1=X0 (% :XQ 1% %)
Visualisation of affine part only: X3

(Cannot draw two intersecting
3-dimensional spaces in R*1)

X1 X2

Points at infinity occur when xg = O:
{(0:x1:x2:x3) :x1 =0}n{(0:x1:Xx2:X3) i X1 =Xx0} =(0:0:%:%)N(0:0: % :%)=(0:0:%: %)

© (0:0: : ) is a [@point/@line/@plane/@R* hyperplane]. Picture it in the figure!



Finding the full projective curve (homogenous eq.) from an affine curve

Let v be a curve in the ground plane given  first does not, namely
by a polynomial equation in xq,x2 such as
x13—5x1x2+3x2—8=0. (0:9:09)

X1 X2 (corresponding to an asymptote of ).
T © Which step introduced the point(s) at
P
\ X5 < |nﬁn|ty.
@ Instead of going through the above
(x0,X1,X2) ~pEY calculations, what is the quick recipe
(corresponding to the name

“homogenous equation”) for going
from things like

3
e
X0 X0/ \Xo X0 Xy —5X1x2 +3x2 —8 =0

3 2 3 _
X7 — 5XoX1X2 + 3xgXx2 —8x5 =0 to things like

These steps can’t all be < s, because the

3 2 3 _
last eq. includes point(s) at infinity and the Xy — 5XoX1X2 + 3XpX2 — 8x = 07



P" span — R"*1 span

(Pa,Pp, Pc, ...) =projective span
:=smallest P" subspace containing P,, Py, P, ...
=P(U) for some subspace U c R that:
e contains a,b,c,...
e is the smallest such U
=P(span(a,b,c,...))

Example:

<(1 . 1 . 0), (1 . 1 . 3)> = <P(1,1,O)’P(1,1,3)>

=P(span((1,1,0),(1,1,3)))
=((1:1:0),(0:0:1)) =P (span((1,1,0),(0,0,1)))



subspace N subspace = subspace

Recall: P(U) :={Py:ueU-{0}} whereUisa linear subspace c RN
~——
subspace cP"
So: P(U)NP(V) = {Px:x€ U—{0}} N {Px XV — {0}
={Px:XxeUnV—{0O}}
=P( UnV )= subspace cP" [J
~——r

subspace cRn+!

Example (recall the parallel planes):
aff. coord. aff.eq. hom.eq. proj. coord. R3+1 subspace = span of
(1,0,0,0)
(1:0:%:%) x=0 x=0 (x:0:x:%)  U=(%,0,%,%) (0,010)
(0,0,0,1)
(1,1,0,0)
(0,0,1,0)
(0,0,0,1)

(1T:1:x:%)  xp=1 x1=xo (x:ixp:i®:i%) V=(%xg,% %)

0,0,1,0 O .-
Unv=span({00t))=(0,0,%,%)  B(UNV)=(0:0:x:%)




Dimension theorem for P"

dimP(U)nP(V)+dim(P(U),P(V)) = dimP(U) + dimP(V)
—_——— —_— — ——
=P(UnV) P(span(UuV)) :=dim(U)-1 :=dim(V)-1

::dim(BnV)—1 ::dimspavn(UuV)—1

Dimension theorem for R"*1

dim(UnV)+dimspan(UuV) =dimU+dimV



Applications of dimension theorem

Simplest types of subspaces of P":

u dimU P(U dimP(U
) ::dinEU)—1 \ 3=

{0} 0 ¢ ~1 Al lines in B2 1  reflected i
span(a) 1 Pa 0 A |ne's in P“ intersect” reflected in
span(a,b) 2 (Pa,Py) 1 dimension theorem:

dim#1n ¥y =dimf1+dim¥ly—dim{fqu ly)
More “intrinsic” interpretation of last line
by dimension theorem: 141 {1 if(1=0, {1 if (4=109

2 otherwise |0 otherwise

dim(A,B) = dim{A} + dim{B} — dim{A} n {B}
~—~—
A#B

=0+0-(-1)=1 © In P2, what are the possible dim ¢1n ¢5?



Application of dimension theorem

If projective space is decomposed into its “ground” and “horizon” parts

P"={(xo:x1:--:xn) EP" i xg =1 U{(Xp : X1:---:xn) €P" : X0 = O}

~

=An :=H (“hyperplane at infinity”)

then lines ¢ € P" that “touch the ground” (contain points with xg # 0; £ N A" # @) have
precisely 1 point “at infinity”:

dim¢nH=dim¢+dimH-dim(H,¢)=1+(n-1)-n=0

since
(H,¢) 2P [span|{(0,x1,...,%n) :X; €R}UR ( X0 ,X1,...,%n) =P[R =p"
N ~— ——
incl. (0,1,0,...,0), #0
.,(0,0,0,...,1)



(In)dependence in P"

Points c P are independent if “every point
is outside the span of the previous ones”:

Pxo»Pxi» ---» Px, independent in P"

def.
& dim(Pxy, Pxy» -, Px) =k
(maximal dimension)

< X0, X1, ..., X independent in R"*"
Determinant condition for dependence:

Pxo»Pxq»---» Px, Proj. dependent
< X0, X1,...,Xg linearly dependent

< det(xg,X1,...,X,) =0

Determinant expression for line:

line(Pa, Pp) < P2
=Py € P?: Pa, Py, Px proj. dep.}

I 1 xo
={(x0:x1:x2)€P?:]a b x|=0
I X2

Example: Line through (1:1:0) and
(1:1:1):

x

T xo
1 X1{=0 = Xx2—-X1—X2+X0=0
1

1
1
0 2

x

= X0 =X1



The “naive” way to define coordinates with respect to a spanning set in P"

is ill-defined

Given a set of independent points that span
|]:|>n
(Pxo»Pxy» -, Px,) = P"
. _m2
Ex.: (P(1,0,0)P(0,2,0)P(0,02)) =P

the “naive” way to define coordinates of
any P, € P" with respect to this “basis”
would be

Pa=(aop:ay:---:an)

where (ag,dy, ...,an) are the coordinates of
a with respect to the basis xg, X1,...,Xn in
R, Ex.:

(1,2,4)=1-(1,0,0)+1-(0,2,0)+2-(0,0,2)

— P(1,2)4) = (1 o 2)

But these coordinates are ill-defined since
they are dependent on the choice of
representative (the definition “doesn’t
respect” ~). For example:

P(0,2,0) = P(0,1,0)
so the same basis also gives
(1,2,4)=1-(1,0,0) +2-(0,1,0) +2-(0,0,2)

— P(1,2,4)=(1:2:2)¢(1:132)

The problem comes from the freedom to
scale each “basis vector” independently.



Solution: add one more point as a “scaling lock”

Given a set of n+ 2 mutually independent Ex: a basis of P2 is

points each n+ 1 of which span P"

P(1,0,0)P(0,20):P(0,0,2):P(1,2,2)

PXO»PX1r---,PanPXn+1

The condition of the “scaling lock” point
define the coordinates of any P € P" in the P(1,2,2) Means that the basis vectors can

“naive” way only be scaled together:
Pa=(dg:aq:---:an) (2,0,0) ~ (1,0,0)
(0,4,0) ~ (0,2,0)

where (ag,dy, ...,an) are the coordinates of (0,0,4)
a with respect to the basis xg, X1,...,Xp in
RN*1, except with the additional demand
that the representatives xg, X1,...,Xn are

chosen so that

n
Z Xj ~ Xn+1
i=0

(1,0,0) ~
(0,4,0) ~
(0,0,2) ~

~(0,0,2)

(1,0,0)
(0,2,0)
(0,0,2)

+(0,0,2)
)

(2,0,0)
(0 4, O)
+(0 0,4)
(2 4, 4) ~ (1,2,2)
(1,0,0)
(0,4,0)

(1,4,2 #(1,2,2)



Ex.: with a “scaling lock” point, coordinates are well-defined
P1,0,0)P(0,20)P(0,0,2):P(1,2,2)

(1,2,4)=1-(1,0,0) +1-(0,2,0) +2-(0,0,2)
= P(1,2,4) = (1:1:2) legitimate since
(1,0,0) ~ (1,0,0) (1,0,0)
(0,2,0) ~(0,2,0) (0,2,0)
(0,0,2)~(0,0,2)  +(0,0,2)
(1,2,2) ~(1,2,2)

1 1
(1,2,4)= 5-(2,O,O)+5-(0,4,O)+1-(O,0,4)

1 1
= P(1,2,4) = (2 : > : 1) legitimate since

(1,2,4):1-(1,0,0)+2-(o,1,o)+2-(o,o,2) (2,0,0)~(1,0,0) (2,0,0)

P(1,2,4) = (1:2:2) not legitimate since Egg 2; : Eggg; +Eg g 23
(1,0,0)~(1,0,0) (1,0,0) T (2,4,4) ~(1,2,2)
(0,1,0) ~ (0,2,0) (0,1,0)

(0,0,2) ~(0,0,2) +(0,0,2) All legitimate choices of representatives

(1,1,2) #(1,2,2) give ~-equivalent results.



Projective transformations

A projective transformation P" — P" is an

invertible matrix M transformation
Rn+1 . Rn+1:

Px — Pmx Al

Check that well-defined:

» Independent of the choice of
representative:

Px = Pyx = Pmix = Pamx = Pmx

> Always lands in P": 0 € R"* is the only
x for which Py ¢ P", but this is not hit
by — since Mx=0 = x=0 = Py
not among the inputs P".




P! — P! “dilation”: make lengths bigger by bringing plane closer to the eye




P! — P! “translation”




P! — P! “reflection”: put “ground” and “canvas” on opposite sides of the

eye

\\\\\\\\

\\\\\\\\




P! — P': distances shrinking when approaching horizon point

~
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SN————




P! — P! “permutation” of point order (points moved “past the horizon”
“come back on the other side”)

~
pE—
— —

I
o ~

(03]
D




P2 — P2: horizon preserved «— affine transformation in ground plane
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preserved by ...

Euclidean transf.

affine transf.
projective transf.



P2 — P2: parabola = circle with one point on the horizon

1/vV2 1/V2 0

1/v2 -1/v2 0
0 0o 1

Ground point sent to infinity:

1/vV2 -1/v2 0
1/v2 1/v2 0
0 0o 1

HlH



P2 — P2: hyperbola = circle with two points on the horizon



Newton’s classification “by shadows” of cubic curves into five “species”

\ Zg J0.

G

sz. 3.

G
za 48.
A /

F




Newton’s classification “by shadows” of cubic curves into five “species”

G
G !

. Tig.53.
Fig 48. N .0, \ rig.51.

[

Which one is y = x3?



Projective equivalence of y = x3 and y? = x

x
NN
1
x
- W
—_—
- 0O
o -0
o o
N ——

3

X2 =X

W



In P!, any 3 points can be mapped to any

P! version: Given A,B,Ce ¢=P" and

A/ B/, C' € ¢'= P, there is a way to place
these lines in P2 so that A’B'C’ is the
perspective view of ABC from O.

Possible strategy: Put A’ on top of A. Draw
BB’ and CC’, and let their intersection be

the projection point O.

B'C!

3 points

—
A B C B/ A/cl
»
7/
7/
< L,
<. ,
c \O//,”"
Al -7~
--7A B Cc~_
7/
7
B
7/
7/
—
A B C A B
c c
\ i
\ 1
\ I
~ B,\ II
N \
\\ 2 I
A \
A




In P!, any 3 points can be mapped to any * 3 points

R2 version (before ~-collapsing): Given
a,b,c,a’,b’,c/ € R2, 3 a 2 x 2-matrix M such
that Ma ~a’, Mb ~ b’, Mc ~ c’. Proof:
» 32 x 2-matrix M such that Ma=2a/,
Mb=b’.
» Express c using a, b as a basis:
c=caa+cpb.

M

» Moc has the same coordinates in the
new basis:

Mc = cagMa+cpyMb =caa’ +¢pb’.

» Since x ~ Ax, it would have been the
same projective transformation if we
had taken Ma = A4a’, Mb = A,b’, in
which case Mc = caa’ +cplob’.

» So by choosing A1, A, we can ensure
that Mc = ¢/ without disturbing
Ma~a',Mb~b'. O




In P2, any 4 points can be mapped to any 4 points

P2 version R3 version (before ~-collapsing)

Any quadrilateral can be Given a,b,c,d,a’,b’,c/,d’ € R®, 3 a 3 x 3-
mapped to any quadrilat- matrix M such that Ma ~ a’, Mb ~ b’, Mc ~
eral. ¢, Md~d.

(No 3 of ABCD, no 3 of A’B'C’'D’ collinear.)

Intuitive in terms of paintings:

(No3ofa,b,c,d,no3ofa’,b’,c’,d’ coplanar.)

» The 3 x 3 entries of the matrix are
enough degrees of freedom to send 3
vectors to 3 vectors, say a,b,c to
}\/aa,, xbbl,xcc,.

» The three scaling degrees of freedom

Aa» My, Ac are enough to then also send
dtod'.



Cross-ratio

3 points on a line can be mapped to any 3, but that determines where any fourth point
goes. The cross-ratio (ABCD) is a projective invariant that expresses the condition on the

fourth point.

P" version R+ version (before ~-collapsing)
4 collinear points ABCD. 4 coplanar vectors a, b, c,d.
(ABCD) = 55 BB (signed lengths). (ABCD) = Cb da

where cb,ca,da,db are the coordinates of ¢
and d in the basis a, b.

Check that these two expressions for (ABCD)
are equivalent (in the generic case of P! with
no points at infinity):

Check that definition does not depend on
choice of representatives. If a is replaced by
Aa:

Ch da/?\.
ABCD) =
=(1a) b=(1b) c=(1) d=(1d) (ABCD) = /A dy
c-b a-c d—b a—d [fcisreplaced by Ac:
— c¢c=——a+—b d=——a+—>b
a-b a-b a-b a-b ( . 7~dea
ABCD
— (ABCD) = da_a-cd-b_ACED (si gned) Aca di,

cad, c—ba-d BCAD



@ Application of the cross-ratio: How far from the intersection is the car?

car 2 km sign 7

3cm

4 km sign ]

aerial
photograph




The cross-ratio is invariant under projective transformations

The coordinates of c and d in the basis a, b are also the coordinates of ¢’ := Mc and
d’ :=Md in the basis a’ := Ma, b’ := Mb. Hence

/ !

cp d ¢, d /
(ABCD)= 22 - B & _(ApcD) O
ca dp Cyr db,

L o

@ Why doesn't the same reasoning prove that g—: is invariant?



Cross-ratio in simplified configuration
We can use “any 3 — any 3” to choose a simplified (equivalent) configuration:

P! version R3 version (before ~-collapsing)

G _ b= (0,1
2 = (ABCD) 0 (0,1)
A D C B

o

= (Ca,Cp)

a=(10) d=(11) (1,2)~c

Ca

Cpd a1 ¢
(ABCD) =22 - "B _ b
Ca db Ca1 Ca

The “length form” of the cross-ratio also works if we allow “common-sensical” rules for

calculating with oo:
ACBD AC —o0
(ABCD) = — — = — —— = AC
BCAD —-o0 1



Cross-ratio is invariant under P"-internal projection from a point

lines are perspectively related “within the
painting” (as in the above figure) then they
are also projections of each other as seen
“from without”:

(ABCD) = (A'B'C'D’)

We already know that (ABCD) is preserved
by projective transformations P — P". So
in other words we need to show: If two




Cross-ratio is invariant under P"-internal projection from a point

proof that:
» Generalises to any P".

» Works only with the R"*"
representation of P, and hence
applies equally to cases involving
points at infinity, such as:

P P
e i
EEE R m
Y4 L S - [N

i | 1 1 TR

| 1 1 1 ;o\
1 1 1 o ‘\

1 1

| B 1 A G

! ! C ! (AN

1 1 [ D I o

. | | 1 T i Vo \
> I | | | 1 [ \
1 1 1 1 I L \
[l 1 1 1 I LN

1 1 / ! o

I C/ D 1 \ \ \
B’ 5 \

!

A A B D'

Intuitive in the case of P2, but we will give a



Simplification of projective configuration in R3

In R3, the P2 configuration on the previous slide Ma=(0,1,0) & T Ma’'=(0,0,1)
becomes:

» In this basis, ¢ isxo =0 and ¢’ is x; = 0.

» This still holds if we change the scaling to
Ma =14(0,1,0) and Mb = A,(0,0,1).

» By choosing A4, ., we can make Mp go
anywhere in the plane span(Ma, Ma’).
(Same principle as in “any 3 — any 3”

Goal: Simplify the configuration by applying

suitable matrices*. Since matrices™ preserve proof.)

collinearity and cross-ratios, any matrix* sends > Hence altogether we can choose M so

this configuration to another configuration with that:

the same cross-ratios and the same collinearity

and intersection relationships. (* invertible) Mi=(1,0,0) Ma=(0,\4,0) Ma'=(0,0,4;)

» 33 x 3 matrix that sends i,a,a’ to the .
standard basis Mp=(0,-1,1) £¢:xp=0 ¢':x1=0



Projection ¢ — ¢’ from P in simplified coordinate system

We obtained the simplified configuration:
Mi=(1,0,0) Ma=(0,A,0) Ma'=(0,0,1;)
Mp=(0,-1,1) £¢:xo=0 ¢ :x=0

, .
a a p

4 0
In this simplified configuration, the projection
of ¢ — ¢' from P takes a simple algebraic form.

> Apoint L€ ¢ is represented in R® by
|= (L1,L2,O).

The line PL = P2 corresponds to the plane

span(p,l) =span((0,-1,1),(Ly,L2,0)) =
R3.

We need to find L’ := PLn ¢’ which in R3
corresponds to {span(p,1)} N {x; = 0}.

» Lop+1=(Ly,0,Ly) is in this intersection, so

it is a representative of L.

So the projection T: P, — Py can be
represented in coordinates by
(L1! L2! O) e (L1v0» L2)

This is realised by the projective
transformation T : P2 — P2

1.0 O
T=({0 0 1
0 10

and is hence cross-ratio-preserving.



Ratio invariance in A"

Since affine space permits fewer transformations than projective space (leaves points at
infinity), it has a simpler invariant than the cross-ratio (special case of one point at
infinity) for 3 collinear points ABC:

c
(ABC) = —C—b (“coordinates” of ¢ = caa + cpb as linear combination of a, b)
a

< CA=(ABC)CB

© Why is (ABC) invariant under affine transformations?




Example
Recall: (ABC) is defined by

c
(ABC) = —C—b (“coordinates” of ¢ = caa + cpb as linear combination of a, b)
a
or
CA = (ABC)CB

Determine (ABC) in the case where C is the midpoint of AB:

a b
© (ABC) =
© Express the meaning of (ABC) in words when C is not the midpoint of AB.
1-1=025% ¢ P‘:O'B

A O B



Overview of invariants
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preserved by ...

Euclidean transf.

affine transf.
projective transf.



