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0 What is history?

Consider this quotation from Isaac Newton, in which I have left out the subject of the sentence:

is to me so great an absurdity that I believe no man who has in philosophical matters a competent faculty of
thinking can ever fall into it.

What do you think he is talking about? Astrology perhaps, or some such pseudoscience? No, what goes in the blank is “that one
body may act upon another at a distance through a vacuum without the mediation of any thing else.” In other words, the “great
absurdity” that Newton is referring to is his own theory of gravity. And isn’t he right? Isn’t it absurd that one planet can pull at
another through thousands of miles of empty space? And that as I move my hand I move the moon? Is this any crazier than
alchemy, astrology, or witchcraft? Hardly.

In the history of science, things that make sense happen before things that don’t. That is why Newton’s absurd theory didn’t
see the light of day until 1687, thousands of years after people had started speculating about the heavens along the much more
natural lines of numerology and astrology. The question we ask ourselves as historians is not “when did people get it right?” but
rather “why did people do it this other way, and why did it make sense to them?”

Modern schoolteachers demand that you disregard thousands of years of common sense and swallow Newton as a dogma, and,
more generally, that you embrace anything you are told regardless of whether it serves any credible purpose for you at that time.
If you were ever dissatisfied with this state of affairs then history is on your side. What Alfred North Whitehead said of education
is in effect a description of history:

Whatever interest attaches to your subject-matter must be evoked here and now; whatever powers you are strength-
ening in the pupil, must be exercised here and now; whatever possibilities of mental life your teaching should impart,
must be exhibited here and now. That is the golden rule of education, and a very difficult rule to follow.

History works this way because it cannot “look ahead” and see what will become useful later, as the curriculum planner does.
Historically, ideas occur when they serve a purpose, and not a day sooner. Thus we see what Ernst Mach meant when he wrote:

The historical investigation of the development of a science is most needful, lest the principles treasured up in it
become a system of half-understood prescripts, or worse, a system of prejudices.
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Or as Descartes put it:

To converse with those of other centuries is almost the same thing as to travel. It is good to know something of the
customs of different peoples in order to judge more sanely of our own, and not to think that everything of a fashion
not ours is absurd and contrary to reason, as do those who have seen nothing.

Or Poincaré:

By going very far away in space or very far away in time, we may find our usual rules entirely overturned, and these
grand overturnings aid us the better to see or the better to understand the little changes which may happen nearer
to us, in the little corner of the world where we are called to live and act. We shall better know this corner for having
traveled in distant countries with which we have nothing to do.

1 Astrology

Where does mathematical and scientific inquiry begin? Imagine a primitive man standing in the middle of a field. Looking at the
world around him, what will spark his interest and give him reason for reflection? Will he look at a falling apple and ask himself
what equations describe its velocity and acceleration? No, why would he? He cannot fail to notice, however, that half the time
the sky goes black and a beautiful spectacle of sparkling lights is displayed as if only for him. Surely it would be an insult to the
creator of the universe not to observe this play written in the sky.

The idea soon suggests itself that the heavens control earthly affairs. They obviously determine day and night, and the seasons,
and the connection between the moon and tidal waters will be unmistakable to anyone living in a costal area. Likewise the
female menstrual cycle follows the moon’s periods. The stars too play their role: in the days before calendars people used them
to tell the time of the year. Thus one finds in ancient texts such sound advice as “when strong Orion begins to set, then remember
to plough” and “fifty days after the solstice is the right time for men to go sailing.”

Once you start thinking like this you will soon begin to see the periodicity of the heavens mirrored in the cycle of life, the rise
and fall of empires, and so on. Heavens are also the paradigm of self-motion. Most motion is derived from them: we already
mentioned the tides, and likewise wind, rain, and rivers are all caused by differential heating from the sun. In fact, the only things
that move out of their own power are heavenly bodies and things that have a soul. Is it not a straightforward conclusion, then,
that the soul is a piece of “stardust” inhabiting an earthly form? The fundamental tenet of personal astrology is a most natural
corollary: the soul, on its way down through the planetary spheres at the moment of birth, acquires its particular character
depending on the positions of the planets at that moment.

1.1. Criticise the arguments against astrology put forth by Carl Sagan in the readings.

Sagan’s remarks embody a common attitude toward historical thought: closed-minded judgement in light of modern views. This
is precisely the kind of attitude that we must leave behind if we hope to ever understand anything of history. I chose to start my
lectures with the subject of astrology since it is a great subject for bringing this issue to the fore in an emphatic way.

Astrology made a lot of sense once upon a time and was still practiced in earnest by some of the best scientists of the early 17th

century. Kepler did lots of astrology, of which we shall see a few indications later. “The belief in the effect of the constellations
derives in the first place from experience, which is so convincing that it can be denied only by people who have not examined
it,” he said. Galileo also did astrology, and evidently not only to make money judging by the fact that he cast horoscopes for his
own children. Soon thereafter astrology fell out of favour, probably largely due to the rise of the mechanical philosophy that we
shall hear more about later.

1.2. Explain how the ancient conceptions of the “personalities” of the heavenly bodies (quoted in the Beck reading) all have a
certain amount of rationale in terms of the astronomical properties of these bodies.

Much sophisticated mathematics originated in a context such as this. For example, van der Waerden suggested in his book
Geometry and Algebra in Ancient Civilizations, p. 32, that the original motivation for the discovery of the Pythagorean Theorem
might have been the following problem.

1.3. Find the duration of a lunar eclipse as a function of the moon’s deviation from its mean path. You need to use the facts
that the moon’s speed is known and that the earth’s shadow as cast on the moon has about twice the radius of the moon.
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Today we teach the Pythagorean Theorem as if it had applications to measuring lengths of various kinds. But why would anyone
use this theorem to measure the distances between between various locations or the sizes of fields, etc.? In most such cases you
can just measure the sought length directly, so no one would ever have any need for the theorem even if he knew it, let alone
have reason to discover it in the first place.

1.4. Discuss some other standard applications of Pythagoras’ Theorem and whether they serve any practical purpose that
cannot equally well be accomplished by direct measurement and simple trial-and-error methods.

The eclipse problem is very different. Here there is no possibility of a direct measurement. In fact, in this context there is no
possibility of discovering Pythagoras’ Theorem by trial and error (e.g., based on noticing regularities in measurements of lots of
triangles). So in fact it suggests a reason to discover not only the theorem but also its proof. Perhaps something along those lines
is how deductive mathematics began.

1.5. The ancient Babylonians didn’t have telescopes or calculators or Wikipedia or anything beyond middle school mathemat-
ics, and yet they were able to determine the lunar period (the average time between one new moon and the next) to an
accuracy of within one second. How did they do this? One trick would be to measure the time between full moons many
years apart and divide by the number of full moons that have passed in between. It is difficult, however, to pinpoint the
precise moment when the moon is exactly full.

(a) Suppose you can pinpoint the moment of full moon with an error of at most 12 hours. Then how many years of
observation are needed to ensure a final accuracy of one second?

Instead of counting the time from full moon to full moon you might count from lunar eclipse to lunar eclipse.

(b) Would there still be an integer number of months between two lunar eclipses?

A lunar eclipse is easier to pinpoint in time since it is a very distinctive occurrence that only lasts for a short while.

(c) Suppose you can pinpoint the moment of full moon with an error of at most half an hour. Then how many years of
observation are needed to ensure the final accuracy of one second?

2 Numerology

Another thing you notice when studying the sky is that there are precisely seven heavenly bodies moving with respect to the
stars: the sun, the moon, Mercury, Venus, Mars, Jupiter, Saturn. (Figure 1.) So Nature has chosen the number seven. This made
a great impression on early man, so much so that he put sevens in all kinds of places, such as the seven days of creation (and
hence in a week) and the seven notes in a musical scale.
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Figure 1: Astronomers studying the seven heavenly bodies.

“All is number,” said the Pythagoreans, and they had good reason to. For they discovered that musical harmony is determined
by simple integer ratios such as 2:1, 3:2, 4:3, etc. See figure 2. If you put a

p
2 bell in there it sounds like crap.

Figure 2: Pythagorean discovery that musical harmony is determined by integer relationships.

Later Newton put seven colours in the rainbow because he imagined a parallel with music in which pleasant colour combina-
tions are harmonious “visual chords,” so to speak.

Another special number is five, because there are precisely five regular polyhedra (figure 3).
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Figure 3: The five regular polyhedra.

Figure 4: Regular polyhedra as corresponding to the elements: earth, water, air, fire, and “the universe.”

2.1. Prove this by enumeration of cases (as Euclid does in the last book of the Elements).

Plato proposed that the regular polyhedra correspond to the elements, as we see in the readings. Many centuries later Kepler
was enticed by this theory and drew the illustration in figure 4.

The two special numbers five and seven are built into man, for we have five fingers, five senses (sight, touch, taste, smell, hear-
ing), and seven “windows of the head” (eye, eye, ear, ear, nose, nose, mouth). The Creator must truly consider us the crown of
his achievement.

The Greeks often thought of the factors of a number as its “parts.” Thus for example the number 4 represented justice since it is
the smallest number made up of two equals, 4 = 2×2. The number 7 is special from this point of view also, as Aristotle explains
(fragment 203):

Since the number 7 neither generates [in the sense of multiplication] nor is generated by any of the numbers in the
decad [i.e., the first ten numbers], they identified it with Athene. For the number 2 generates 4, 3 generates 9, and 6,
4 generates 8, and 5 generates 10, and 4, 6, 8, 9, and 10 are also themselves generated, but 7 neither generates any
number nor is generated from any; and so too Athene was motherless and ever-virgin.

When the factors of a number are considered its parts it becomes natural to ask whether all numbers are the sum of its parts. In
fact this is not so; very few numbers are “perfect” enough to have this pleasant property, as Nicomachus (c. 100) explains:

When a number, comparing with itself the sum and combination of all the factors whose presence it will admit, it
neither exceeds them in multitude nor is exceeded by them, then such a number is properly said to be perfect, as
one which is equal to its own parts. Such numbers are 6 and 28; for 6 has the factors 3, 2, and 1, and these added
together make 6 and are equal to the original number, and neither more nor less. 28 has the factors 14, 7, 4, 2, and
1; these added together make 28, and so neither are the parts greater than the whole nor the whole greater than the
parts, but their comparison is in equality, which is the peculiar quality of the perfect number.

It comes about that even as fair and excellent things are few and easily enumerated, while ugly and evil ones are
widespread, so also are the superabundant and deficient numbers found in great multitude and irregularly placed,
but the perfect numbers are easily enumerated and arranged with suitable order; for only one is found among the
units, 6, only one among the tens, 28, and a third in the ranks of the hundreds, , and a fourth within the limits
of the thousands, 8128.

Euclid proved that if p is a prime and 2p −1 is also prime then 2p−1(2p −1) is perfect. This is the grand finale of Euclid’s number
theory (Elements IX.36). The theorem amounts to a recipe for finding perfect numbers: in a column list the prime numbers; in a
second column the values 2p −1; cross out all rows in which the second column is not a prime number; for the remaining rows,
place 2p−1(2p −1) in the third column. Then the numbers in the third column are perfect numbers.

2.2. Find the perfect number omitted in the Nicomachus quote above using Euclid’s recipe. What prime p did you need to
use?

The following is essentially Euclid’s proof of the theorem. If 2p −1 is prime, it is clear that the proper divisors of 2p−1(2p −1) are
1,2,22, . . . ,2p−1 and (2p −1),2(2p −1),22(2p −1), . . . ,2p−2(2p −1). So these are the numbers we need to add up to see if their sum
equals the number itself.

2.3. (a) Show that 1+2+22 + . . .+2p−1 = 2p −1 by adding 1 at the very left and gradually simplify the series from that end.
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(b) Use a similar trick for the remaining sum, and thus conclude the proof.

3 Origins of geometry

Figure 5: Egyptian geometers, or “rope-stretchers” as they were called, delineating a field by means of a stretched rope.

“Geometry” means “earth-measurement,” and indeed the subject began as such, according to ancient sources such as Proclus
and Herodotus, as we see in the readings. This was necessitated by the yearly overflowing of the Nile in Egypt: the flooding made
the banks of the river fertile in an otherwise desert land, but it also wiped away boundaries between plots, so a geometer, or
“earth-measurer,” had to be called upon to redraw a fair division of the precious farmable land. In fact the division was perhaps
not always so fair, as Proclus also suggests, for one can fool those not knowledgable in mathematics into accepting a smaller plot
by letting them believe that the value of a plot is determined by the number of paces around it.

3.1. Prove that a square has greater area than any rectangle of the same perimeter.

3.2. Discuss what general point about history we can learn from the following paraphrase of Proclus’s remark in Heath’s His-
tory of Greek Mathematics (1921): “[Proclus] mentions also certain members of communistic societies in his own time
who cheated their fellow-members by giving them land of greater perimeter but less area than the plots which they took
themselves, so that, while they got a reputation for greater honesty, they in fact took more than their share of the produce.”
(206–207)

Among the first things one would discover in such a practical context would be how to draw straight lines and circles. In fact you
need nothing but a piece of string to do this.

3.3. Explain how.

3.4. Problem 3.1 shows that it is important to be able to construct squares. How would do this with your piece of string?

3.5. In the Rhind Papyrys (c. −1650) the area of a circular field is calculated as follows: “Example of a round field of a diameter 9
khet. What is its area? Take away 1

9 of the diameter, namely 1; the remainder is 8. Multiply 8 times 8; it makes 64. Therefore
it contains 64 setat of land.” What is the value of π according to the Rhind Papyrys?

People soon recognised the austere beauty of geometrical constructions and began using it for decorative and especially religious
purposes. Indeed, Egyptian temples are very geometrical in their design; the famous pyramids are but the most notable cases.
One of the first decorative shapes one discovers how to draw when playing around with a piece of string is the regular hexagon.

3.6. Show how this is done.

The hexagon has great decorative potential since it can be used to tile the plane. Hexagonal tiling patterns occur in
Mesopotamian mosaics from as early as about -700.

3.7. Show that the hexagon contains even more area than a square of the same perimeter. As Pappus explains in the readings,
bees seem to know this.

The step from this kind of decorative and ritualistic pattern-making to deductive geometry need not be very great. In fact,
two of the most ancient theorems of geometry could quite plausibly have been discovered is such a context. Take for instance
the Pythagorean Theorem. Its algebraic form “a2 + b2 = c2” seems to be the only thing some people remember from school
mathematics, but classically speaking the theorem is not about some letters in a formula but actual squares:
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2 1 The Theorem of Pythagoras

1.1 Arithmetic and Geometry

If there is one theorem that is known to all mathematically educated people,
it is surely the theorem of Pythagoras. It will be recalled as a property of
right-angled triangles: the square of the hypotenuse equals the sum of the
squares of the other two sides (Figure 1.1). The “sum” is of course the sum
of areas and the area of a square of side l is l2, which is why we call it “l
squared.” Thus the Pythagorean theorem can also be expressed by

a2 + b2 = c2, (1)

where a, b, c are the lengths shown in Figure 1.1.

a

b

c

Figure 1.1: The Pythagorean theorem

Conversely, a solution of (1) by positive numbers a, b, c can be re-
alized by a right-angled triangle with sides a, b and hypotenuse c. It is
clear that we can draw perpendicular sides a, b for any given positive num-
bers a, b, and then the hypotenuse c must be a solution of (1) to satisfy
the Pythagorean theorem. This converse view of the theorem becomes
interesting when we notice that (1) has some very simple solutions. For
example,

(a, b, c) = (3, 4, 5), (32 + 42 = 9 + 16 = 25 = 52),
(a, b, c) = (5, 12, 13), (52 + 122 = 25 + 144 = 169 = 132).

It is thought that in ancient times such solutions may have been used for
the construction of right angles. For example, by stretching a closed rope
with 12 equally spaced knots one can obtain a (3, 4, 5) triangle with right
angle between the sides 3, 4, as seen in Figure 1.2.

The simplest case of the theorem, when the two legs are equal (a = b), is very easy to see when looking at a tiled floor, as we see in
the reading from Plato’s Meno. Inspired by this striking result, ancient man might have gone on to consider the case of a slanted
square, and then discovered that with some easy puzzling the theorem is easily generalised to this case as well:

10 1 The Theorem of Pythagoras

on certain geometric assumptions. It is in fact possible to transcend geo-
metric assumptions by using numbers as the foundation for geometry, and
the Pythagorean theorem then becomes true almost by definition, as an
immediate consequence of the definition of distance (see Section 1.6).

Figure 1.7: Proof of the Pythagorean theorem

To the Greeks, however, it did not seem possible to build geometry on
the basis of numbers, due to a conflict between their notions of number and
length. In the next section we shall see how this conflict arose.

Exercises

A way to see the Pythagorean theorem in a tiled floor was suggested by Mag-
nus (1974), p. 159, and it is shown in Figure 1.8. (The dotted squares are not tiles;
they are a hint.)

Figure 1.8: Pythagorean theorem in a tiled floor

1.4.1 What has this figure to do with the Pythagorean theorem?
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To the Greeks, however, it did not seem possible to build geometry on
the basis of numbers, due to a conflict between their notions of number and
length. In the next section we shall see how this conflict arose.

Exercises

A way to see the Pythagorean theorem in a tiled floor was suggested by Mag-
nus (1974), p. 159, and it is shown in Figure 1.8. (The dotted squares are not tiles;
they are a hint.)

Figure 1.8: Pythagorean theorem in a tiled floor

1.4.1 What has this figure to do with the Pythagorean theorem?

3.8. Explain how this proves the theorem.

The Greek tradition has it that Thales (c. −600) was the first to introduce deductive reasoning in geometry. One of the theorems
he supposedly dealt with was “Thales’ Theorem” that the triangles raised on the diameter of a circle all have a right angle:

3.9. Explain how Thales’ Theorem can very easily be discovered when playing around with making rectangles and circles. Hint:
Construct a rectangle; draw its diagonals; draw the circumscribed circle.

Thus we see a fairly plausible train of thought leading from the birth of geometry in practical necessity, to an appreciation for its
artistic potential, to the discovery of the notions of theorem and proof.

Another indication of the use of constructions is the engineering problem of digging a tunnel through a mountain. Digging
through a mountain with manual labour is of course very time-consuming. It is therefore desirable to dig from both ends simul-
taneously. But how can we make sure that the diggers starting at either end meet in the middle instead of digging past each other
and making two tunnels?

3.10. Solve this problem using a rope. (You may assume that the land is flat except for the mountain.)

Such methods were used in ancient times. On the Greek island of Samos, for example, a tunnel over one kilometer in length was
dug around year −530, for the purpose of transporting fresh water to the capital. It was indeed dug from both ends.
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4 Babylonia

Figure 6: Early mathematical activity coincides with favourable agricultural conditions.

Mathematics arose in the Nile area since the river made the soil fertile and allowed sufficiently rich harvests for some people to
concern themselves with intellectual pursuits going beyond daily needs. The same conditions produced mathematics in ancient
Babylonia, and indeed their mathematics too can be seen as arising quite naturally from land-surveying. This is illustrated in
the following two examples, taken from clay tablets written around −1800, give or take a century or two.

The tablet in figure 7 has to do with the diagonal of a square. The numbers are given in sexagesimal (base 60) form, a Babylonian
invention that still lives in our systems for measuring time and angles. Why did they use base 60?

4.1. Argue that 60 has favourable divisibility properties. In which context might this have been important? Hint: in which
contexts do people count in “dozens”?

4.2. Explain how you can count to 60 on your fingers in a natural way. Hint: curl your fingers.

4.3. Argue that in the reader there are passages that can be seen as supporting each of these factors as explanations for the
origin of the base-60 system.

Base 60 means that, for example, 42,25,35 = 42+ 25
60 + 35

602 .
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Tablet in the Yale Babylonian Collection, showing a square with its diagonals. (Yale

Babylonian Collection, Yale University.)

rectangles having areas of 60 square cubits and diagonals of 13 and 15 cubits. One is
required to find the lengths of their sides. Writing, say, the first of the problems in modern
notation, we have the system of equations

x2 + y2 = 169, xy = 60.

The scribe’s method of solution amounts to adding and subtracting 2xy = 120 from the
equation x2 + y2 = 169, to get

(x + y)2 = 289, (x − y)2 = 49;

or equivalently,

x + y = 17, x − y = 7.

From this it is found that 2y = 10, or y = 5, and as a result x = 17 − 5 = 12.
The second problem,

x2 + y2 = 225, xy = 60,

is similar, except that the square roots of 345 and 105 are to be found. There were several
methods for approximating the square root of a number that was not a perfect square. In this
case, the scribe used a formula generally attributed to Archimedes (287–212 B.C.), which is

Figure 7: Clay tablet YBC 7289 from the Yale Babylonian Collection.

4.4. (a) Explain the meaning of the numbers on the tablet above. Hint: there are three numbers and one of them is ≈
p

2.

(b) Convert the tablet’s value for
p

2 into decimal form.

(c) If you use this value to compute the diagonal of a square of side 100 meters (i.e., roughly the size of a football field),
how big is the error? Draw this length.

The Babylonians were very good at solving problems that in our terms correspond to quadratic equations. Such problems are
related to areas of fields, though the problems solved on the tablets ask contrived questions that go beyond any practical need
and seem to serve no other purpose than posing challenges or showing off one’s skills. So one can easily imagine that this
mathematical tradition stemmed from practical land-measurements which eventually produced a specialised class of experts
who started taking an interest in mathematics for its own sake.

The following is an example of such a problem. I give here the translation of Høyrup; in the reading from his book you will find
some further discussion of its context and significance.

“The surface and my confrontation I have accumulated: 45’ it is.” It is to be understood that “the surface” means the area
of a square, and the “confrontation” its side. So the problem is x2 + x=45’. Again the numbers are sexagesimal, so 45’ means
45/60=3/4.

“1, the projection, you posit.” This step gives a concrete geometrical interpretation of the expression x2 + x. We draw a square
and suppose its side to be x. Then we make a rectangle of base 1 protrude from one of its sides. This rectangle has the area 1 · x,
so the whole figure has the area x2 +x, which is the quantity known.

“The moiety of 1 you break, 30’ and 30’ you make hold.” We break the rectangle in half and attach the half we cut off to an
adjacent side of the square. We have now turned our area of 45’ into an L-shaped figure.

“15’ to 45’ you append: 1.” We fill in the hole in the L. This hole is a square of side 30’, so its area is 15’. So when we fill in the hole
the total area is 45’+15’=1.

“1 is equalside.” The side of the big square is 1.

“30’ which you have made hold in the inside of 1 you tear out: 30’ is the confrontation.” The side of the big square is x+30’ by
construction, and we have just seen that it is also 1. Therefore x must be 1-30’=30’, and we have solved the problem.

4.5. Illustrate the steps of the solution with figures.

4.6. Give a modern algebraic solution to x2 +x = 3/4 which corresponds to the above step by step.
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5 Euclid

Whatever the beginnings of Greek geometry, the written record available to us only begins with Euclid’s Elements (c. −300). As
mathematicians we adore it as a truly masterful synthesis of the mathematical canon, but as historians we also regret that its
polished refinement no doubt erases many intricacies of the three centuries of development following Thales.

Euclid’s Elements was the paradigm of mathematics for millennia. It embodies the “axiomatic-deductive” method, i.e., the
method of starting with a small number of explicitly stated (and preferably obvious) assumptions and definitions and then
deducing everything from there in a logical fashion, thereby compelling anyone who believed in the original assumptions to
also believe in all subsequent theorems. Some selections from the definitions of Euclid’s Elements are the following:

Definition 1. A point is that which has no part.

Definition 2. A line is breadthless length.

Definition 4. A straight line is a line which lies evenly with the points on itself.

Definition 10. When a straight line standing on a straight line makes the adjacent angles equal to one another, each
of the equal angles is right.

Definition 15. A circle is a plane figure contained by one line such that all the straight lines falling upon it from one
point among those lying within the figure equal one another.

Definition 23. Parallel straight lines are straight lines which, being in the same plane and being produced indefinitely
in both directions, do not meet one another in either direction.

The following are all the geometrical assumptions admitted by Euclid:

Postulate 1. To draw a straight line from any point to any point.

Postulate 2. To produce a finite straight line continuously in a straight line.

Postulate 3. To describe a circle with any center and radius.

Postulate 4. That all right angles equal one another.

Postulate 5. That, if a straight line falling on two straight lines makes the interior angles on the same side less than
two right angles, the two straight lines, if produced indefinitely, meet on that side on which are the angles less than
the two right angles.

The first two postulates can be seen as saying roughly that one has a ruler (or rather an unmarked ruler, or “straightedge”).
Similarly the third postulate basically grants the existence of compasses. In this sense we are still not so far from the banks of the
Nile, as it were. And in fact this is true also geographically, for Euclid’s Elements was written in Alexandria.

The fifth postulate is the most profound one, and was the source of much puzzlement for thousands of years following Euclid.
We shall now look at some of Euclid’s theorems in which this postulate is crucial in the hopes of better understanding both this
postulate and the axiomatic-deductive method generally.

Euclid’s very first proposition is the construction of an equilateral triangle from a given line segment.

5.1. (a) Explain how to do this with ruler and compasses.

(b) Find a hidden assumption in this argument that is not supported by the postulates and definitions.

Suppose you wanted to construct a line parallel to a given line through a given point. It may seem that this would be very easy
by essentially just constructing two equilateral triangles next to each other.

5.2. Explain how you might do this.

So you might say: since this is such a simple extension of Euclid’s first proposition, he might as well have placed it as his second
proposition. But the matter is not so simple. You need to prove that the line you constructed is parallel to the given line using
nothing but Euclid’s definitions and postulates. Perhaps you found it “obvious” the line you constructed was parallel to the first,
but the whole point of the Euclidean way of doing things is to never take anything for granted except what you can strictly infer
from the axioms.

5.3. When we feel that the above construction “obviously” gives a parallel, we may, strictly speaking, be thinking of a differ-
ent notion of parallel than the one of Euclid’s definition, namely what alternative definition of parallels? Of course in a
stringent logical treatise you have to pick a definition and stick with it; ambiguity has no place in such a work.
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It is clear, then, that any proof about parallels must ultimately trace back to the parallel postulate. But this postulate says: To
check if two lines are parallel, draw a third line across and add up the two “interior” angles it makes with these lines on, say, its
right hand side. If those angles are less than two right angles (180◦) then the lines will meet at that side. It follows that if the
angles are greater than two right angles then the lines will meet on the other side. Note that the postulate doesn’t say when lines
are parallel, only when they are not. The postulate rules out any situation when the sum of the angles is not two right angles, so
for parallels to exist at all this must happen in the case when the sum of the angles is precisely two right angles. Indeed this is
precisely what happens, of course, but Euclid hasn’t put this in the postulate because he can prove it as a theorem (proposition
27). We shall not follow Euclid’s specific approach in detail, but the following line of reasoning captures his spirit and will help
us appreciate the fundamental importance of the parallel postulate.

5.4. Consider the two right angles case and suppose the two lines meet on one side. Argue that they should then meet on the
other side also, and that this is a contradiction.

5.5. Explain how to construct a parallel to a given line through a given point based on this knowledge.

The following is an important application of the theory of parallels.

5.6. Consider an arbitrary triangle and draw the parallel to one of the sides through the third vertex. Use the resulting figure to
prove that the angle sum of a triangle is two right angles.

Note that the story we have told about parallels could also have been traced backwards: starting with the angle sum theorem
of a triangle, and trying to reduce it to simpler and simpler facts, we could have asked ourselves what the ultimate assumptions
are that one needs to make in order to prove this theorem. This is indeed one of the great strengths of Euclid: he not only
demonstrates his theorems in the sense that he convinces the reader that they are true; he also shows what, precisely, are the
fundamental assumptions on which the entire logical edifice of geometry rests. The latter is no easy task; as we saw in problem
5.2 it is easy to fool yourself about what logical assumptions you are really making when you are reasoning about “obvious”
things (though admittedly problem 5.1b shows that Euclid himself was not perfect in this regard either).

This kind of logical reduction of geometry to its ultimate building blocks serves no practical purpose; it is of concern only to those
who take a philosophical interest in the nature and foundations of mathematical knowledge. But there were good reasons for
people to see a philosophical puzzle here. What indeed is the nature of mathematics and its relation to the world? It seems that
I can sit in a dark cave and prove mathematical theorems, for example that the angle sum of a triangle is two right angles, which
then turn out to be true when tested on actual triangles in the real world. How can this be? In addition to this epistemological
puzzle, there were paradoxes such as Zeno’s rather geometrical proofs that motion is impossible and the discovery, discussed in
§2, that

p
2 is in a sense “not a number.”

Against this backdrop we can perhaps understand why the time was ripe for someone like Euclid to write a rigorous treatise
systematising all of geometry. Euclid’s Elements was not of interest for the store of theorems it proved; most of those had been
known for a long time, often centuries. No, its real contribution lay in the stringent logical organisation of this material which
revealed its ultimate foundations and building blocks, and thereby provided a vision of the very nature of mathematical knowl-
edge.

The fourth postulate is the only one we have not discussed so far. It is not so central, though it is more insightful that it looks.

5.7. Argue that the fourth postulate is false on the surface of a cone. Thus it is basically a “flatness” postulate.

5.8. In the Declaration of Independence of the United States, the first part of the second sentence has a very Euclidean ring
to it. It is reminiscent of one of Euclid’s postulates in particular—which one? There are in fact several further allusions to
Euclidean rhetoric in this document.
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Figure 8: Artist’s impression of Euclid with his iconic compass.

Figure 9: 13th-century illustration of God designing the world using a compass.

6 Ruler and compass

As seen above, Euclid’s geometry is essentially the geometry of ruler and compasses. There are many reasons why these tools
form a beautiful foundation for geometry:

• Theoretical purity: line and circle, straightness and length.

• Practical simplicity: both can be generated by e.g. a piece of string.

• Practical exactness.

• Inclusive: +, −, ×, ÷, p, and the regular polyhedra are all subsumed by ruler and compasses.

• Natural motion. In Aristotelian physics, earth and water want to go straight down, fire and air want to go straight up, and
heavenly bodies are made of a fifth element that wants to go in circles.

6.1. In this problem we shall show that the operations +,−,÷,×,p can be carried out with ruler and compasses.

(a) Explain how to add and subtract, i.e., given line segments of lengths a and b, how to construct line segments of length
a +b and a −b.

Note that it is the compasses and not the ruler that enable us to treat length. Only the compass can “store” a length and
transfer it to a different place.
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(b) It may seem that this construction is based on nothing but some of Euclid’s postulates—which ones?

Actually these axioms themselves are not enough, because Euclid’s compasses “collapse” when lifted. Thus we could draw
a circle with radius b centered at either of the endpoints of the line segment b, but we cannot set the compasses to this
length, then lift it up and put it down at the end of a. Or rather, the axioms do not tell us that we can do this, so Euclid has
to prove as a proposition that this can be done.

(c) Which of Euclid’s propositions enables us to “transfer” the length b to the end of segment a? Hint: start reading
Euclid’s propositions from the beginning; this construction occurs very early.

Now multiplication. Given line segments 1, a,b, to produce a line segment ab, we proceed as follows. Make 1 and a the
legs of a right triangle.

(d) Explain how this is done with ruler and compasses.

Then extend the side of length 1 to a side a length b

(e) Explain how this is done with ruler and compasses.

Complete a right triangle similar to the first with this new segment as one of its legs.

(f) What is its remaining leg?

(g) Explain how to construct a/b. Hint: division is the inverse of multiplication.

To construct
p

a (cf. Elements, II.14), draw a circle with diameter a +1 and draw the perpendicular at the dividing point
between the a and 1 segments.

(h) Explain how
p

a can be obtained from the resulting figure. Hint: recall Thales’ Theorem of problem 3.9.

6.2. In this problem we shall show that the regular pentagon is constructible by ruler and compasses. Equilateral triangles,
squares, and regular hexagons are easily constructed, as are any regular polygons with twice as many sides as a previ-
ously constructed polygon. Some regular polygons, such as the heptagon (7-gon), cannot be constructed with ruler and
compasses.

The pentagon is an interesting case since it is needed for one of the regular polyhedra, the dodecahedron, and since its
construction is non-trivial. Euclid’s construction of the regular pentagon (IV.11) is much too complicated for us to go into
here, but using the correspondence between algebra and geometric constructions developed above we can see that it must
be possible to construct the regular pentagon.

1

τ

(a) Use the symmetry of the regular pentagon to find similar triangles implying τ= 1
τ−1 .

(b) Solve this equation for τ. Note that τ is constructible by problem 1.

(c) Give step-by-step instructions for how to construct a regular pentagon given line segments of length 1 and τ.
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Figure 10: A typical window design in Gothic architecture.

6.3. Figure 10 shows a common design of Gothic windows.

(a) How can you construct such a design using ruler and compasses?

(b) Name one proposition from the Elements that may have suggested the basic idea of such a design. Hint: start looking
at the beginning.

The Gothic style of architecture arose in the early 12th century, within a decade or two of the first Latin translation of
Euclid’s Elements. It is not known whether, or to what extent, this was a case of cause and effect. But we do know that
architects of this era showed the utmost reverence for geometry in general, as seen in the reading from Simson.

7 Conic sections

2.4 Conic Sections 29

More generally, any second-degree equation represents a conic section or
a pair of straight lines, a result that was proved by Descartes (1637).

Figure 2.7: The conic sections

The invention of conic sections is attributed to Menaechmus (fourth
century bce), a contemporary of Alexander the Great. Alexander is said
to have asked Menaechmus for a crash course in geometry, but Menaech-
mus refused, saying, “There is no royal road to geometry.” Menaechmus
used conic sections to give a very simple solution to the problem of dupli-
cating the cube. In analytic notation, this can be described as finding the
intersection of the parabola y = 1

2 x2 with the hyperbola xy = 1. This yields

x
1
2

x2 = 1 or x3 = 2.

Although the Greeks accepted this as a “construction” for duplicating
the cube, they apparently never discussed instruments for actually drawing
conic sections. This is very puzzling since a natural generalization of the
compass immediately suggests itself (Figure 2.8). The arm A is set at a
fixed position relative to a plane P, while the other arm rotates about it at a
fixed angle θ, generating a cone with A as its axis of symmetry. The pencil,
which is free to slide in a sleeve on this second arm, traces the section of
the cone lying in the plane P. According to Coolidge (1945), p. 149, this
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ellipse parabola hyperbola

Figure 11: The conic sections.

The next step beyond lines and circles are the conic sections, i.e., the curves that arise when a cone is cut by a plane. There are
three fundamentally different kinds of conic sections: ellipse, parabola, and hyperbola. (Figure 11.) These terms mean roughly
“too little,” “just right,” and “too much,” respectively, which makes sense as characterisations of the inclination of the cutting
plane, as we see in the figure.

7.1. Discuss how this relates to the meaning of the words ellipsis (the omission from speech or writing of words that are su-
perfluous; also the the typographical character “. . .”), parable (a simple story used to illustrate a moral or spiritual lesson),
hyperbole (exaggerated statements or claims not meant to be taken literally).

Many of the important reasons we used to justify ruler and compasses generalise directly to conic sections, e.g., construction by
strings:
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Even the compass can be generalised to draw conics, as shown in figure 12.

30 2 Greek Geometry

instrument for drawing conic sections was first described as late as 1000 ce
by the Arab mathematician al-Kuji. Yet nearly all the theoretical facts one
could wish to know about conic sections had already been worked out by
Apollonius (around 250–200 bce)!

A
θ

P

Figure 2.8: Generalized compass

The theory and practice of conic sections finally met when Kepler
(1609) discovered the orbits of the planets to be ellipses, and Newton
(1687) explained this fact by his law of gravitation. This wonderful vin-
dication of the theory of conic sections has often been described in terms
of basic research receiving its long overdue reward, but perhaps one can
also see it as a rebuke to Greek disdain for applications. Kepler would not
have been sure which it was. To the end of his days he was proudest of
his theory explaining the distances of the planets in terms of the five reg-
ular polyhedra (Section 2.2). The fascinating and paradoxical character of
Kepler has been warmly described in two excellent books, Koestler (1959)
and Banville (1981).

Exercises

A key feature of the ellipse for both geometry and astronomy is a point called
the focus. The term is the Latin word for fireplace, and it was introduced by
Kepler. The ellipse actually has two foci, and they have the geometric property
that the sum of the distances from the foci F1, F2 to any point P on the ellipse is
constant.

2.4.1 This property gives a way to draw an ellipse using two pins and piece of
string. Explain how.

Figure 12: Generalised compass for drawing conic sections, as described by al-Kuji, c. 980, and a schematic illustration from
Stillwell, Mathematics and Its History.

7.2. Explain how this instrument works.

7.3. This instrument is not mentioned until al-Kuji around 980, but argue that this construction is implicit already in the Greek
tradition. Hint: what is the definition of a cone?

Although not known to the Greeks, the natural motion argument also generalises to conic sections, for projective motion is
parabolic and planetary orbits are elliptical, as discovered by Galileo and Kepler respectively in the 17th century. Another 17th

-century discovery that reveals the conics as the natural successors of lines and circles is the algebraic geometry of Descartes.

7.4. (a) In three-dimensional space, the equation x2 + y2 = z2 represents a cone. Why?

(b) This implies that “conic sections” are curves of degree two. Consider for example the plane y = 1. Why is y = 1 a
plane? What will be its intersection with the cone? What type of conic section is it?

(c) The Greeks had no algebra or coordinate systems, and yet they too knew that conics were of “degree two.” Explain
how by giving a purely geometrical definition of this concept.

7.5. “Gnomon” is a fancy word for a stick standing in the ground. The tip of its shadow traces a curve as the sun moves, as
indicated in figure 13.

(a) What type of curve is it?

(b) How can you find north by using the stick and the curve?

(c) At the spring and autumn equinoxes the shadow cast by the gnomon is a straight line. Explain why.
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Figure 13: From Evans, History and Practice of Ancient Astronomy.

8 Three classical construction problems

Three classical construction problems dominated in large part the development of Greek geometry: the duplication of the cube
(finding a cube with twice the volume of a given cube), the quadrature of the circle (finding a square with area equal to a given
circle), and the trisection of an angle (dividing an angle into three equal pieces). And it is with good reason that these problems
were seen as fundamental. They are very pure, prototypical problems—not to say picturesque embodiments—of key concepts
of geometry: proportion, area, angle. The doubling of a plane figure, the area of a rectilinear figure, and the bisection of an angle
are all fundamental results that the geometer constantly relies upon, and the three classical problems are arguably nothing but
the most natural way of pushing the boundaries of these core elements of geometrical knowledge. The great majority of higher
curves and constructions studied by the Greeks were pursued solely or largely because one or more of the classical construction
problems can be solved with their aid.

A strong case can be made that even conic sections were introduced for this reason, even though other motivations may appear
more natural to us, such as astronomical gnomonics or perspective optics.

8.1. Making a cube twice as voluminous as a unit cube is obviously equivalent to constructing 3p2. Show that this can easily be
accomplished assuming that the hyperbola x y = 2 and the parabola y = x2 can be drawn.

For trisecting an angle, one of the Greek methods went as follows.

= =

=

O A

B

C
D

E

Consider a horizontal line segment O A. Raise the perpendicular above A and let B be any point on this line. We wish to trisect
∠AOB . Draw the horizontal through B and find (somehow!) a point E on this line such that when it is connected to O the part
EC of it to the right of AB is twice the length of OB . I say that ∠AOC = 1

3∠AOB , so we have trisected the angle, as desired.

8.2. Prove that ∠AOC = 1
3∠AOB . Hint: Consider the midpoint of D of EC . It may help to draw the horizontal through D and

see what you can infer from this.

But how exactly are we supposed to find the point E? This can in fact not be done by ruler and compass only.

8.3. Argue, however, that it can be done if we are allowed to make marks on our ruler, and then fit the marked length into the
figure by a kind of trial-and-error process. (This is called a neusis construction.)

8.4. Explain how E could also be found if we could construct curves like this:

This is called a conchoid. It was invented by Nicomedes, who also showed how it could be constructed by an instrument.
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8.5. Explain how to build such an instrument. Hint:

8.6. Build such an instrument for yourself and use it to trisect an angle.

Hint: Hardware stores sometimes have tools consisting of linked rulers—sometimes called a “templater”—which are very
suited for this purpose. Also, as a plane of construction it is useful to use a large sheet of very thick paper. To mark points
one may use flat-headed nails piercing through the paper from below.

9 Trigonometry

The history of trigonometry is the history of measuring heaven and earth. Regiomontanus called his book De triangulis omni-
modis (1464) “the foot of the ladder to the stars.”

9.1. Synopsis of Aristarchus’ work On the distances and sizes of the sun and moon (c. -270).

Notation: E, M, S are the centers of the earth, moon and sun respectively, and E’, M’, S’ are points on their apparent
perimeters.

(a) The ratio of the distances from the earth to the moon and from the earth to the sun can be determined by measuring
the angle MES at half moon. For at half moon the angle EMS=90◦ and the angle MES is measurable, so we know all
angles of this triangle and thus the ratios of its sides.

(b) The ratio of the sizes of the moon and the sun can then be inferred at a solar eclipse. For at a solar eclipse, the moon
precisely covers the sun. Thus EMM’ is similar to ESS’, with the scaling factor discovered above, i.e. SS’:MM’::ES:EM.

(c) The ratio of the distance of the moon to its size can be inferred from its angular size. For the angle EMM’=90◦ and the
angle MEM’ is measurable, so we know all angles of this triangle and thus the ratios of its sides.

(d) These distances can be related to the radius of the earth at a lunar eclipse. For the shadow that the earth casts on the
moon is about two moon-diameters wide. To incorporate this information into a similar triangles setup, let O be the
point beyond the moon from which the earth has the same angular size as the sun (i.e. precisely blocks out the sun).
Then SS’:EE’::OS:OE. Now the algebra gets a little bit involved. We want to know the LHS so we have to reduce the
RHS to a number, which we will do by expressing both OS and OE in terms of OM. From above we know SS’:MM’, and
now we have OS:OM::SS’:2MM’, which enables us to express OS in terms of OM. To express OE in terms of OM we first
note that OE=OM+EM. From above we know how to express EM in terms of ES, or, if we prefer, MS. But again from
OS:OM::SS’:2MM’ we know OS=OM+MS in terms of OM, so we know MS in terms of OM, so we are done. OS:OE is
now some multiple of OM over some multiple of OM, i.e. a number, so we have found SS’:EE’, i.e. we have expressed
the size of the sun (and thereby the size of the moon, of course) in terms of the size of the earth.

Aristarchus thus used the earth to measure the heavens. It remained only to determine the size of the earth itself. This was done
soon thereafter by Eratosthenes.

9.2. Explain his method on the basis of the figure.

(Figure from Encyclopaedia Britannica.)
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The contrast between the arguments of Aristarchus and Eratosthenes, though a mere generation apart, can be seen as reflecting
a cultural shift in Greek antiquity. In the age of Socrates, Plato, and Aristotle, Athens was the cultural center. This was an era of
abstract philosophising, of figuring things out from your armchair. We see a taste of this in the readings from Plato. Aristarchus
was born on the island of Samos in classical Greece, and his measurements of the heavens embody well the power and spirit of
abstract philosophising.

A new era of Hellenistic culture, however, was initiated by the conquests of Alexander the Great. His wars spread Greek culture
around the Mediterranean; to Egypt among other places, where one of the cities named after him, Alexandria, was to become
the new intellectual capital. Aristotle went to Macedonia to teach the young Alexander in year −343, thus marking the boundary
of the two eras. Euclid wrote his Elements in Alexandria around year −300, synthesising great amounts of “pure” mathematics
in the classical Athenian style. Later Hellenistic mathematics tends to be more “applied,” broadly speaking, perhaps in part
triggered by the logistic requirements of a rapidly expanding empire. Eratostenes was born in Cyrene in northern Africa—he was
a “new Greek.” And indeed his measurement of the size of the earth reflects the culture into which he was born. The armchair
philosophers of Athens cared little about such practicalities, but when you start conquering vast lands the question soon arises:
how much is there to conquer? Or: how big is the earth anyway?

9.3. China is a big country, and it has bamboos in it. This is reflected in their methods for measuring the heavens. As Chen Zi
says, “16,000 li to the south at the summer solstice, and 135,000 li to the south at the winter solstice, if one sets up a post at
noon it casts no shadow. This single [fact is the basis of] the numbers of the Way of Heaven.” (From The book of Chen Zi,
in the Mathematical Classics of the Zhou Gnomon, compiled around the first century BCE.)

Chen Zi is referring to the point S’ on the earth’s surface perpendicularly beneath the sun S. Now, standing somewhere
else, we erect a bamboo tube BB’ so that its shadow falls at our feet O.

(a) Draw a picture of this and use it to find a formula for the distance to the sun from the earth, SS’, in terms of measurable
quantities. (Assume that the earth is flat.)

Now, Chen Zi continues, pick up the bamboo tube you used as the post and point it towards the sun. Suppose its diameter
is just big enough for you to see the whole sun through the tube (otherwise go get a longer or shorter tube).

(b) Draw a picture of this and use it to find a formula for the diameter of the sun in terms of measurable and known
quantities.

(c) The value for SS’ reported by Chen Zi is 80,000 li. Does this seem accurate? (Rather than trying to look up how long a
li is you can answer this on the basis of the information in the quotation above.)

9.4. While the Chinese thus utilised their benefit of having vast land and bamboo sticks at their disposal, the Muslims faced
other circumstances in response to which they devised other methods. Al-Biruni (Book of the Determination of Coordi-
nates of Localities, c. 1025, chapter 5) discusses a method for measuring the circumference of the earth akin to that of
Eratostenes, but does not find it feasible:

“Who is prepared to help me in this [project]? It requires strong command over a vast tract of land and extreme caution
is needed from the dangerous treacheries of those spread over it. I once chose for this project the localities between
Dahistan, in the vicinity of Jurjan and the land of the Chuzz (Turks), but the findings were not encouraging, and then the
patrons who financed the project lost interest in it.”

Instead: “Here is another method for the determination of the circumference of the earth. It does not require walking in
deserts.”

The method is this. Climb a mountain. Let M be the mountain top, E its base, and C the centre of the earth. Now look
towards the horizon and let H be the point furthest away from you that you can see.

(a) Draw a picture of this and use it to find a formula for the radius of the earth in terms of measurable quantities.

Al-Biruni did indeed carry this out:

“When I happened to be living in the fort of Nandana in the land of India, I observed from an adjacent high mountain
standing west from the fort, a large plain lying south of the mountain. It occurred to me that I should examine this method
there. So, from the top of the mountain, I made an empirical measurement of the contact between the earth and the
blue sky. I found that the line of sight had dropped below the reference line by the amount 0;34◦. Then I measured the
perpendicular of the mountain and found it to be 652;3,18 cubits, where the cubit is a standard of length used in that
region for measuring cloth.” Al-Biruni goes on to calculate the radius of the earth from this data, which comes out as
12,803,337;2,9 cubits.
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These numbers are given in a mixed notation. The integer part (before the semicolon) is given in ordinary decimal
notation, while the fractional part (after the semicolon) is given in sexagesimal (base 60) form. Thus, for example,
12,803,337;2,9 = 12803337;2,9 = 12803337+ 2

60 + 9
602 .

(b) Check al-Biruni’s calculation. Note that some discrepancy results from imperfections in the trigonometric tables
available to him.

“Cubit” means “forearm,” which makes sense as a unit for “measuring cloth.” Although the exact value of a cubit intended
by an author is often unclear, one may generally assume it to be about 44 cm.

(c) In terms of metric units, with what accuracy does al-Biruni specify the height of the mountain?

The downside of this method is of course that it requires “a high mountain close to the seashore, or close to a large level
desert.” Thus, coming across such a mountain is an opportunity too good to pass up even if you are in the middle of a war:

“Abu al-Tayyib Sanad bin ’Ali has narrated that he was in the company of al-Ma’mun when he made his campaign against
the Byzantines, and that on his way he passed by a high mountain close to the sea. Then al-Ma’mun summoned him to his
presence and ordered him to climb that mountain, and to measure at its summit the dip of the sun.”

(d) However, a mountain next to a vast, completely flat land is better than a mountain next to the sea. Why? (Hint: how
do you determine the height of the mountain?)

(e) Argue on the basis of figure 14 that geographical circumstances were ideal for al-Biruni’s measurements.

Figure 14: Location of al-Biruni’s earth measurement on altitude map.

Why did the Chinese measure the heavens and the Muslims the earth? Shang Gao expresses the Chinese attitude: “one who
knows Earth is wise, but one who knows Heaven is a sage.” But in the Muslim world, different cultural circumstances conferred
a higher status on earth-measurements:

If the investigation of distances between towns, and the mapping of the habitable world, ... serve none of our needs
except the need for correcting the direction of the qibla we should find it our duty to pay all our attention and energy
for that investigation. The faith of Islam has spread over most parts of the earth, and its kingdom has extended to
the farthest west; and every Muslim has to perform his prayers and to propagate the call of Islam for prayer in the
direction of the qibla.” (al-Biruni, ibid.)

In the early modern west, trigonometry was used for large-scale land surveying, which can be done by measuring one single
distance between two points and then propagating this distance by triangulation by measuring nothing but angles. Snellius
measured the Netherlands by this method in 1617, calling himself the “Dutch Eratosthenes” as you can see here on the title page
on his book (left):
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On the right is a typical figure from the book. The problem is to determine the distance from the Hague to Leiden given all
the angles and one single length. Snellius measured the angles by sighting from one tall building to another, for example the
Jacobstoren in the Hague, the Town Hall in Leiden, and the Nieuwe Kerk in Delft.

9.5. (a) Explain how the entire country can be measured given only angles and a single length. (Assume that the earth is flat.)

(b) This is yet another example of a trigonometric technique arising in a geographically appropriate context. How so?

The same method was employed by the French Academy in 1735 to decide between the Newtonian and Cartesian hypotheses
regarding the curvature of the earth. Descartes viewed the solar system as a vortex, which led him to believe that the earth would
be elongated along its axis, like a lemon. Newton argued, on the basis of his theory of gravity, that the earth was rather flattened
at the poles, like an orange.

9.6. The French Academy sent expeditions to Peru and Lapland. Can you imagine why? Hint: There are at least two scientific
reasons.

9.7. Carry out a triangulation project yourself. Start with a small triangle, for instance one drawn on an ordinary piece of paper.
Measure only one of its sides. Then use a triangulation network to infer from this a much larger distance, such as the size
of a classroom.

10 Islam

During the middle ages the intellectual epicenter of the world shifted east. The Islamic world experienced a golden age around
say 800–1200, while virtual barbarism reigned in mainland Europe. A number of mathematical advances in the Islamic world
reflect their cultural context in an interesting way. For example, the design of mosques involved very substantial amounts of ge-
ometry for two reasons. Firstly, Muslims must pray in the direction of Mecca and mosques are aligned accordingly. Determining
the direction of prayer correctly even at the outskirts of the Muslim world requires sophisticated astronomical and geographi-
cal calculations. Also, Islam prohibits the depiction of prophet Muhammed, which led to mosques being decorated with very
exquisite geometrical patterns instead of figurative art.

The Islamic world also played a crucial role in terms of the transmission of knowledge. A number of Greek works have come down
to us only via Arabic translations and preservations. On the other side of the empire, India also provided valuable influences,
such as the prototype of the “Hindu-Arabic” numeral system that we still use in the West today. Al-Biruni lived in the eastern
regions of the Islamic world and knew India well. Perhaps you have heard a story involving putting grains of rice on a chessboard:
one on the first square, two on the next, four on the next, and so on, doubling in each step. Al-Biruni used this example to show
the superior ease with which one can calculate with the Indian numeral system as opposed to the Abjad numeral system in use
at that time. Like Roman numerals, the Abjad system is not a place value system, which makes it less efficient for calculations
involving large numbers. By the way, chess is originally an Indian game and rice is of course especially prominent in Indian
agriculture and cuisine, so it is quite appropriate that these ingredients should figure in the promotion of Indian numerals.

10.1. Arabic is read “backwards,” but numbers are written as we write them.

(a) Argue that reading a big number written in Hindu-Arabic numerals from right to left, or reading it in Roman numerals
from left to right, is in a sense more natural than reading it in Hindu-Arabic numerals from left to right. Hint: what is
the meaning of the first digit you encounter?

(b) Argue against this interpretation.

In 1424 al-Kashi computed π with 16-decimal accuracy using different methods. Here is al-Kashi’s result in his own notation:

That’s 3.1415926535897932. Note the interesting way in which our symbols for 2 and 3 are derived from their Arabic counterparts.
The Arabic symbols are perhaps a more natural way of denoting “one and then some.”
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10.2. Thus our symbols for 2 and 3 are 90◦ rotations of their Arabic counterparts. This rule also works (more or less) for two
other digits—which ones?

9th-century Baghdad was the centre for a massive and purposeful translation movement, aimed at translating all important
works from Greece and India into Arabic. Al-Kindi was right in the thick of it, and it is surely no coincidence that he wrote a great
work on cryptography in this context. For what is translation from a difficult language but a form of decryption? The Kama Sutra
is an Indian manual for lovers. It also contains a section on encryption to facilitate secret communication between perhaps illicit
lovers. The encryption is based on pairing each letter of the alphabet with another randomly selected letter. This pairing table
is then used to scramble and unscramble the secret text. A similar method was used by Julius Caesar; it is easy to imagine that
sensitive military and political correspondence must be kept encrypted when one is trying to run an empire by mail from some
battlefront or while frolicking with Cleopatra in Egypt.

If he had anything confidential to say, he wrote it in cipher, that is, by so changing the order of the letters of the
alphabet, that not a word could be made out. If anyone wishes to decipher these, and get at their meaning, he must
substitute the fourth letter of the alphabet, namely D, for A, and so with the others. (Suetonius, Life of Julius Caesar,
56.)

But these ciphers are not very secure at all. Al-Kindi, stimulated to think abstractly about languages and ciphers by the transla-
tion movement, described the way to crack encryptions of this kind, namely by letter-frequency analysis, and proposed better
ciphers.

10.3. (a) Explain how letter-frequency analysis can be used to crack these ciphers.

(b) Consider how one might design a cipher that cannot be cracked in this way.

Linguistic influence also goes the other way. For example, the word “algebra” comes from the Arabic “al-jabr,” meaning “restora-
tion (of anything which is missing, lost, out of place, or lacking), reunion of broken parts, (hence specifically) surgical treatment
of fractures” (OED).

10.4. Argue that solving quadratic equations by completing the square is indeed “al-jabr” in this sense of the word.

11 Numbers in early modern Europe

We saw above that al-Biruni used a computational example involving larger and larger numbers to highlight the benefit of the
Indian numeral system when he brought it to an Islamic audience. It was much the same when this system was introduced in
Europe from the Arabic world. This was done by Fibonacci in his Liber Abaci of 1202, who introduced his famous Fibonacci
numbers

1,1,2,3,5,8,13,21, . . .

to showcase the superior computational facility of the Hindu-Arabic numeral system.

11.1. Each Fibonacci number is the sum of the previous two. Explain how the sequence can be seen as describing a growing
rabbit population, which is the example Fibonacci used.

The Hindu-Arabic numerals of course replaced the Roman numerals. In the Roman as in many other old numeral traditions,
numerical values are indicated by ordinary letters. Thus 1, 2, 3, 4 was denoted by alpha (A), beta (B), gamma (Γ), delta (∆) in
classical Greek, and by

in the abjad system used in the Arabic world. You can still see the remnants of this in any geometry book today, for when we
draw geometrical diagrams we still label our points A, B , C , etc., following the Greek tradition. But when Euclid labelled his
points A, B , Γ, etc., he really meant first point, second point, third point, etc. Indeed, in the early Latin West one finds sometimes
geometrical diagrams with the points labelled 1, 2, 3, etc., since they considered this the right translation of the Greek.

In any case, using the ordinary alphabet to denote numbers also has the consequence that any word is automatically associated
with a number. The following example is indicative of this very widespread numerological tradition.

At the time of the Reformation in the early 16th century, Stifel proved that the reigning pope, Leo X, or Leo the tenth, was the
antichrist, based on a Latin numeral interpretation of his name. “Leo X (the tenth)” in Latin capitals is LEO X DECIMVS.

11.2. Discard the letters which do not have a numerical value as Latin numerals, and write the remaining ones in descending
order. What is the resulting number?

11.3. This evokes a number occurring in the New Testament, Book of Revelations, chapter 13, verse , where it is called the
number of the .
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This may strike you as a crackpot argument against the pope, and “yet this is the man who, in the next few years, produced
some of the most original and vigorous mathematical works to be found in the 16th century,” as noted by Smith, History of
Mathematics, vol. 1, Dover, 1958, p. 328.

Note also how this story reflects two of the main tenets of the Reformation: distrust of the pope and the primacy of the words of
the Bible. The Bible was then just recently made available to people at large due to the first translations into common languages
and the invention of printing. Thus it very much fit the Zeitgeist to use the very words of the Bible itself to stick it to the authorities
who used to have a monopoly on interpreting this work.

12 Logarithms

Logarithms were first developed in the early 17th century as a means of simplifying long calculations. Long calculations were
involved for example in navigation which was of increasing importance in this era. Indeed, the first ship of slaves from Africa to
America set sail only four years after the publication of the first book on logarithms.

Logarithms simplify calculations by turning multiplication into addition: log(ab) = log(a)+ log(b). This saves an incredible
amount of time if you have to do calculations by hand, since it is so much easier to add than to multiply. Not long ago, before
the advent of pocket calculators, people still learned logarithms for this purpose in school. Indeed, whenever you go to a used
bookstore and look at the mathematics section you almost always find many tables of logarithms published some fifty or sixty
years ago.

a ln(a)

b ln(b)

ab ln(ab)

a

b

× (hard)

ab

+ (easy)

ln(a)+ln(b) 
=ln(ab)

Figure 15: Using a logarithm table.

The inventor of logarithms introduced them as follows:

There is nothing (right well beloved Students in the Mathematickes) that is so troublesome to Mathematicall prac-
tice, not that doth more molest and hinder Calculators, then the Multiplications, Divisions, square and cubical Ex-
traction of great numbers, which besides the tedious expence of time, are for the most part subject to many slippery
errors. I began therefore to consider in my mind by what certain and ready art I might remove those hindrances.
And having thought upon many things to this purpose, I found at length some excellent brief rules to be treated
of (perhaps) hereafter. But amongst all, none more profitable than this which together with the hard and tedious
multiplications, divisions, and extractions of roots, doth also cast away from the work itself even the very numbers
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themselves that are to be multiplied, divided and resolved into roots, and putteth other numbers in their place which
perform as much as they can do, only by addition and subtraction, division by two or division by three. (John Napier,
A Description of the Admirable Table of Logarithms, 1616.)

This passage expresses the original purpose of the “laws of logarithms” that you have probably been taught from a very different
point of view:

log(x y) = log(x)+ log(y)

log(x/y) = log(x)− log(y)

log(x y ) = y log(x)

12.1. Suppose you have a table of all numbers x and their corresponding logarithms log(x). Explain how to compute x y without
multiplying, x/y without dividing, and

p
x without using a root extraction algorithm.

Indeed logarithms “doubled the lifetime of the astronomer,” as Laplace put it. A similar endorsement is this:

The Mathematics formerly received considerable Advantages . . . by the Introduction of the Indian Characters . . . yet
hat it since reaped at least as much from the Invention of Logarithms. . . . By their Means it is that Numbers almost
infinite, and such as are otherwise impracticable, are managed with Ease and Expedition. By their assistance the
Mariner steers his Vessel, the Geometrician investigates the Nature of the higher Curves, the Astronomer determines
the Places of the Stars, the Philosopher accounts for the Phenomena of Nature; and lastly, the Usurer computes the
Interest of his Money. (John Keil, A Short Treatise of the Nature and Arithmetick of Logarithms, 1733.)

13 Renaissance

Greek treatises on geometry are often hopelessly convoluted. See for example figure 16. “Intricacy and surprise govern the
arrangement of the text,” as the editor of the modern edition of Archimedes’ works says. 17th -century mathematicians were
convinced that these treatises were deliberately opaque and that the Greeks had a secret method of discovery which they did not
reveal. In the reader I quote many expressions of this idea.

Figure 16: Dependency diagram for the very complex chain of propositions involved in Archimedes’ derivation of the volume of
a sphere. From Netz (ed.), The Works of Archimedes, Volume 1.

The suspicions of these mathematicians were dramatically vindicated when a long-lost treatise by Archimedes was discovered
in 1906. In this treatise Archimedes does indeed reveal a “secret” method of discovery that has quite a bit in common with the
calculus of the 17th century. We shall now have a look at his proof in slightly modernised terms.

13.1. Archimedes’ long lost treatise uses the “law of the lever” to arrive at geometrical results. This law states, in effect, that the
lever multiplies the effect of a force by the length of the lever arm from the fulcrum to the point where the force is applied.
Thus we can lift a stone with, say, a three times smaller force than that required to lift it directly by using a lever with a
three times longer arm on our side than on the stone’s side.
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As Archimedes writes in the preface to his treatise: “Certain things first became clear to me by a mechanical method,
although they had to be demonstrated by geometry afterwards because their investigation by the said method did not
furnish an actual demonstration. But it is of course easier, when we have previously acquired, by the method, some
knowledge of the questions, to supply the proof than it is to find it without any previous knowledge.”

In proposition 2 of his treatise, Archimedes reduced the complicated volume of a sphere to the easy volumes of a cylinder
and a cone by proving that the lever arrangement below is in equilibrium: a cylinder with base radius 2r and height 2r
placed with its center of mass r to the left of the center balances a cone of base radius 2r and height 2r and a sphere of
radius r placed with their centers of mass 2r to the right of center.

(a) Express the fact that these bodies are in equilibrium as an equation. The volumes of the cylinder and cone (one third
of the circumscribing cylinder) are considered known, but the volume of the sphere should be left as an unknown.
(Assume, of course, that all bodies have the same uniform density.)

(b) Solve for the volume of the sphere. (This should of course give you the famous formula for the volume of a sphere.)

We shall now prove that these bodies are indeed in equilibrium. First arrange the bodies as follows: sphere with midpoint
(r,0,0); cylinder with same midpoint and its lid and bottom parallel to y z-plane; cone with bottom parallel to y z-plane
and vertex at origin.

2r

2r

rx

We shall cut the bodies into infinitely thin vertical slices and prove the equilibrium slicewise. Since a slice is infinitely thin,
its weight is completely determined by the area of the cut, and not by the large scale shape of the object it came from.

(c) Fill in the blanks: For a given x-coordinate the cross sections (parallel to y z-plane) have the areas

for the cylinder,

for the cone,

for the sphere.

(d) Now let the x-axis be a lever with the fulcrum at the origin. Prove that a slice of the cylinder, kept in its position, will
balance the corresponding slices of the cone and the sphere put at (−2r,0).

(e) Conclude the proof of the volume of the sphere.

13.2. Test Archimedes’s result empirically using a balance and some clay.
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13.3. Archimedes would never have expressed the volume of the sphere as a “formula,” but rather as a geometrical relation.
Indeed, Plutarch writes of Archimedes that “although he made many excellent discoveries, he is said to have asked his
kinsmen and friends to place over the grave where he should be buried a cylinder enclosing a sphere, with an inscription
giving the proportion by which the containing solid exceeds the contained.” What is the proportion in question?

13.4. In 1635 Cavalieri solved this kind of problem with a different method, namely the principle that if two bodies have the
same cross-sectional areas at any height then they have the same volume. Using this method to find the volume of a
sphere makes the above proportion especially vivid. Consider a sphere and its circumscribing cylinder. Cut two cones out
of the cylinder: both with vertex at the midpoint of the cylinder, and one sharing a base with the cylinder, the other being
upside-down, having the cylinder’s “lid” as its base.

(a) Prove that the cross-sectional areas of these figures (at any given height) are equal.

(b) Explain how the proportion referred to by Plutarch follows from this.

13.5. Fermat’s theory of maxima and minima, developed in the 1630’s, is based on the idea of extrema being double roots.
Say for example that we want to maximise f (x) = x − x2. Fermat’s method goes like this. Pick some Y smaller than the
maximum. Then Y = f (x) will have two solutions (one for each branch of the parabola), call them X and X +D . Thus
f (X ) = Y = f (X +D).

(a) Find a simple equation relating X and D from this equality.

(b) For the maximal Y the two roots coincide (at the vertex of the parabola), i.e., the maximum corresponds to the
condition D = 0. Use this to solve for X in your equation.

13.6. Fermat’s theory of tangents was a byproduct of this method. Say for example that we want to find the tangent to y = x2 at
the point (2,4).

(a) Draw a picture of this.

The tangent line is below the curve everywhere except at the point of tangency. In other words, among all points (x, y)
on the tangent, the point of tangency minimises the quantity x2 − y . Using the theory of optimisation above, we suppose,
counterfactually, that there is another x-value, say x = 2+D , for which the quantity x2 − y is the same as for x = 2.

(b) If the tangent line has y-intercept −Y , what is its slope?

(c) Therefore, what is its y-value when x is 2+D?

(d) Equate the two different expressions for x2 − y (one for x = 2 and one for x = 2+D), and simplify.

(e) Since the minimum is actually unique, D = 0 after all. Plug this into your equation and solve for Y .

13.7. In 1637 Descartes published a similar method for finding normals (and thereby tangents). An example is shown in Figure
17. Let’s consider another example: finding the normal to the ellipse y2 = x − (1/4)x2 at the point P = (1,

p
3/2). Similar

to the example in the figure, consider the equation of a circle passing through P and (X ,0), and determine for what X the
intersection equation of this circle with the ellipse has a double root at x = 1. This amounts to identifying the coefficients
of the two equations:

□ x2 + (4/3)(1−2X )x + (4/3)(2X −7/4) = 0

□ x2 + (4/3)(1+2X )x + (4/3)(2X +7/4) = 0

□ x2 + (4/3)(1−2X )x + (4/3)(2X +7/4) = 0

□ x2 + (4/3)(1+2X )x + (4/3)(2X −7/4) = 0

□ x2 + (4/3)(1−2X )x + (4/3)(−2X −7/4) = 0

□ x2 + (4/3)(1+2X )x + (4/3)(−2X +7/4) = 0

□ x2 + (4/3)(1−2X )x + (4/3)(−2X +7/4) = 0

□ x2 + (4/3)(1+2X )x + (4/3)(−2X −7/4) = 0

□ x2 +2x +1 = 0

□ x2 +2x −1 = 0

□ x2 −2x +1 = 0

□ x2 −2x −1 = 0

13.8. When Leibniz introduced the calculus in 1684 he used it to find the tangents of curves defined as the loci of points whose
distance to a fixed set of points is constant. Such curves are a kind of generalised ellipses, as indicated in figure 18. Leibniz
used this example as an illustration of a problem that the calculus can handle easily but which would be almost impossible
to solve by the methods of Descartes and Fermat. Explain why.
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Figure 17: Descartes’s method for finding normals. We want to find the normal of the parabola y = x2 in the point (1,1), without
using calculus. Consider the circle with midpoint (0,Y ) passing through (1,1). This circle has equation x2+(y−Y )2 = 1+(Y −1)2.
Thus it intersects the parabola y = x2 at y-values given by y + (y −Y )2 = 1+ (Y −1)2. If (0,Y ) is the y-intercept of the normal, the
circle will be tangent to the curve, that is, it will only intersect the parabola once, at y = 1. Thus, as a quadratic equation in y , the
intersection equation will have the form (y −1)2 = 0. Matching this with our previous form of the intersection equation, we get
1−2Y =−2 from the coefficients of y , and 1 = 2Y −2 from the constant terms, so Y = 3/2. Thus the normal is the line through
(1,1) and (0,3/2).

Figure 18: String constructions of circle, ellipse, and generalisations.

14 Astronomy

As we have seen in the reader, classical cosmology is based on the mathematical-metaphysical principle that the circle is the
perfect shape. The evident roundness of the sun and the moon, and the circular motions of the heavenly bodies, was seen as an
expression of their divine perfection. Classical astronomy always operated within these metaphysical parameters. Though the
technical task of astronomy was always to predict the position of the heavenly bodies, the theories posited for doing so had to
agree with this basic cosmological framework. Ptolemy’s Almagest (c. 150) was the definitive standard work in astronomy from
Greek times to the renaissance. While Plato and Aristotle were merely philosophising conceptually, Ptolemy does the actual
technical work of providing numerically explicit models for the planetary motions capable of making very accurate predictions.
But nevertheless Ptolemy subscribes to the exact same metaphysical commitment, as we see in the reader.

The motions of the planets are quite complicated, however, and can by no means be seen as simple circular motions. Ptolemy
therefore had to use variants on circular motion that could nevertheless be construed as being in agreement with the metaphys-
ical principle of circular motion. Most notably he used epicycles (i.e., circles upon circles):
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and equants (i.e., circular motion whose speed is uniform not as seen from the centre but as seen from some other point):

But is the use of equants not a betrayal of the principle of perfect circular motion? Copernicus thought so, and made his dislike
of the equant known immediately at the very beginning of the Commentariolus (c. 1510):

Ptolemy . . . envisioned certain equant circles, on account of which the planet never moves with uniform velocity
. . .. A theory of this kind seemed neither perfect enough nor sufficiently in accordance with reason. Therefore I
often pondered whether perhaps a more reasonable model composed of circles could be found from which every
apparent irregularity would follow while everything in itself moved uniformly, just as the principle of perfect motion
requires.

Copernicus is of course more famous for putting the sun at the center of the solar system. In Ptolemy’s system the earth is
the centre of the universe and the heavenly bodies all revolve around it. This agrees well with appearances, common-sense
physics, the conception of the cosmos outlined above, and even the Bible. So it is no wonder that this was the standard view for a
thousand years and more. But Copernicus turned the universe inside out. Our first instinct is perhaps to praise him for his bold
and forward-thinking insight, and indeed he deserves praise. But his own motivations were for arriving at his system were quite
different than we might imagine. In particular, his philosophical aversion to the equant seems to have been crucial to him. So
one could make a strong case that Copernicus was not at all a revolutionary but rather an arch-conservative: he wanted nothing
more than to go back to the original vision of circular motion by Plato. Thus one of the greatest scientific advances of the era was
based on a reactionary philosophical principle that was universally recognised as complete nonsense just a century or so later.

Whatever the motivations for its original discovery, the sun-centered model of the solar system has a number of advantages over
the earth-centered one.

14.1. Explain why the sun-centered model gives more natural explanations of the retrograde motions of especially the outer
planets.

14.2. Explain why the sun-centered model explains why the inner planets (Mercury and Venus) never deviate too far from the
sun while the other planets can be found in any position relative to the sun.

14.3. Explain why the relative distances to the planets are not determined in an earth-centered model of the solar system, but
are so in a sun-centred model.

Hint: Are the following configurations observationally equivalent?

27



And the following two?

As Copernicus puts it, the heliocentric system “binds together so closely the order and the magnitudes of all the planets and
of their spheres or orbital circles and the heavens themselves that nothing can be shifted around in any part of them without
disrupting the remaining parts and the universe as a whole.” For this reason he can claim triumphantly that earlier astronomers
“have not been able to discover or to infer the chief point of all, i.e., the form of the world and the certain commensurability of its
parts. But they are in exactly the same fix as someone taking from different places hands, feet, head, and the other limbs—shaped
very beautifully but not with reference to one body and without correspondence to one another—so that such parts made up a
monster rather than a man.”

The Copernican system conflicts with the ancient vision of the cosmos and the polyhedral theory of the elements in a number
of ways.

14.4. Outline how.

But Kepler, as we saw in §2, was fascinated by the mathematical beauty of those theories and was not about to give them up so
easily. In his Mysterium Cosmographicum (1596), gave a very imaginative interpretation of the Copernican universe in terms of
the regular polyhedra, using them to explain “the nature of the universe, God’s plan for creating it, God’s source for the numbers,
the reason why there are six orbits, and the spaces which fall between all the spheres.” See figure 19. The spheres of the planets
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are nested in such a way that the regular polyhedra fit precisely between them. Kepler’s theory fits the facts remarkably well, and
is a striking unification of the two special numbers from §2.

Figure 19: Kepler’s theory of planetary distances.

14.5. Explain why the sun-centred model of Copernicus was crucial in two ways for Kepler to be able to posit this theory.

You might think that the “p-value” of Kepler’s theory does not pass a significance test since there are so many possible permuta-
tions of the polyhedra—shouldn’t one of them fit just by chance? Kepler had some dubious arguments for his particular ordering,
a sample of which you will find in the readings. But even if you are not impressed by these arguments, Kepler’s theory is not as
arbitrary as you might think, because many permutations do not change the sizes. For example:

14.6. Show that the cube and the octahedron are interchangeable (i.e., have the same ratio of circumradius to inradius).

15 Galileo

Galileo was a prominent advocate of Copernicus’s heliocentric system; this even got him into hot water with the church author-
ities, as we learn more about in the readings. Galileo presented his case in Dialogue Concerning the Two Chief World Systems
(1632). At the end of the work one reads:

In the conversations of these four days we have, then, strong evidences in favor of the Copernican system, among
which three have been shown to be very convincing—those taken from the stoppings and retrograde motions of the
planets, and their approaches toward and recessions from the earth; second, from the revolution of the sun upon
itself, and from what is to be observed in the sunspots; and third, from the ebbing and flowing of the ocean tides.

The first argument is that of problem 14.1. The third argument is that the tides can only be due to the earth’s motion:

There is nothing we can do to replicate artificially the motions of the tides, apart from moving the vessel containing
the water. Surely this is enough to convince anyone that any other cause that is put forward to explain this effect is
a vain fantasy that has nothing whatever to do with the truth?

This argument agrees very well with the mechanical philosophy and experimental spirit that we see more of in the readings. But
of course it is completely wrong: the tides are caused by the gravitational attraction of the moon, and thus could just as well
occur on the stationary earth of Ptolemy.

The third argument comes from telescopic observations, which Galileo was among the first to perform. One discovery was that
Venus shows phases like the moon, i.e., only the half of it facing the sun is lit up.

15.1. How is this evidence for Copernicus’s system? How does it fall short of a conclusive demonstration?

Thus Galileo’s third argument is based on another telescopic observation, namely the sun has spots on it. As the sun rotates on
its axis (with a period of less than a month), sunspots trace out latitude lines on its surface. In the course of a year, these curves
are seen as alternately happy mouths, straight diagonal, sad mouths, straight diagonal, etc. This is what one would expect from
a Copernican point of view if the sun’s axis is inclined relative to ecliptic (i.e., the plane of the earth’s orbit).

15.2. Explain.
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To explain this from a geostatic point of view is more complicated since it requires the sun’s axis to change inclination in a conical
motion with a period of one year.

15.3. Explain.

Galileo rejects this motion of the axis as physically implausible. However, when doing so he conveniently forgets that the earth
has precisely such a motion (with the same orientation; albeit a much slower one), which is the reason for the precession of
the equinoxes, as Copernicus explained. Thus Galileo cannot reject as unreasonable the geostatic account of sunspot paths
without simultaneously rejecting the precession of the equinoxes. Galileo was surely aware of this but suppressed it; he was an
opportunist through and through.

In fact, Galileo published his sunspots argument knowing full well not only that it refutes Copernicus as well as Ptolemy but
also that it was resolutely falsified by the data he himself had collected and published when he was still unaware of what his
theory said he was supposed to see. Scheiner did not like the idea that the sun had blemishes on its surface, so he hypothesised
that the sunspots were planets. Galileo disagreed and undertook careful observations to establish that the sunspots exhibited
foreshortening effects and differences in velocity at the center as compared to the perimeter just as one would expect if the
sunspots were on the surface (or atmosphere) of the spherical sun. He could then triumphantly refute Scheiner with what he
called “observations and diagrams of the sunspots . . . drawn without a hairsbreadth of error.”

Unfortunately for Galileo, he did not yet know that he was supposed to observe the sunspot paths as inclined to the ecliptic.
Instead, in his resulting Letters on Sunspots, he asserted on the contrary that the paths of sunspots were in fact parallel to the
ecliptic. When Galileo finally realised that inclined sunspot paths spoke in favour of heliocentrism, he immediately threw all his
old observations “without a hairsbreadth of error” out the window and rushed the pro-Copernican argument into print. This
whole business goes to show that scientific data can be a rather pliable thing, at least to an opportunist like Galileo.

Galileo also worked on mechanics. For example, have you ever considered why Newton’s law F = ma has acceleration in it, and
not, say, velocity? In fact this has to be so because to stand still and to move with constant velocity is physically equivalent.
That is, no physical experiment can tell one state from the other. This was known to Galileo, who explained it as follows in his
Dialogue:

Shut yourself up with some friend in the main cabin below decks on some large ship, and have with you there
some flies, butterflies, and other small flying animals. Have a large bowl of water with some fish in it; hang up a
bottle that empties drop by drop into a wide vessel beneath it. With the ship standing still, observe carefully how
the little animals fly with equal speed to all sides of the cabin. The fish swim indifferently in all directions; the
drops fall into the vessel beneath; and, in throwing something to your friend, you need throw it no more strongly
in one direction than another, the distances being equal; jumping with your feet together, you pass equal spaces
in every direction. When you have observed all these things carefully (though doubtless when the ship is standing
still everything must happen in this way), have the ship proceed with any speed you like, so long as the motion is
uniform and not fluctuating this way and that. You will discover not the least change in all the effects named, nor
could you tell from any of them whether the ship was moving or standing still. In jumping, you will pass on the floor
the same spaces as before, nor will you make larger jumps toward the stern than toward the prow even though the
ship is moving quite rapidly, despite the fact that during the time that you are in the air the floor under you will be
going in a direction opposite to your jump. In throwing something to your companion, you will need no more force
to get it to him whether he is in the direction of the bow or the stern, with yourself situated opposite. The droplets
will fall as before into the vessel beneath without dropping toward the stern, although while the drops are in the
air the ship runs many spans. The fish in their water will swim toward the front of their bowl with no more effort
than toward the back, and will go with equal ease to bait placed anywhere around the edges of the bowl. Finally
the butterflies and flies will continue their flights indifferently toward every side, nor will it ever happen that they
are concentrated toward the stern, as if tired out from keeping up with the course of the ship, from which they will
have been separated during long intervals by keeping themselves in the air. And if smoke is made by burning some
incense, it will be seen going up in the form of a little cloud, remaining still and moving no more toward one side
than the other.

This means that physical laws cannot speak directly about velocity. An observer on the shore thinks the guy in the ship is moving;
but the guy in the ship could claim that he is in fact standing still and that it is the guy on the shore that is moving. As we just
saw, no physical experiment can settle their dispute, so they must both be considered to be equally right so far as physics is
concerned. Nature does not distinguish between them, so her laws must be equally true for both of them.

To illustrate this more formally, let the person on the shore be the origin of a coordinate system, and let the ship be traveling in
the positive x-direction with constant velocity v . Now imagine releasing a butterfly inside the ship, in the manner described by
Galileo. Suppose the butterfly moves in the x-direction only, and let X (t ) be its position in the coordinate system of an observer
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on the ship (i.e., taking a point inside the ship as the origin).

15.4. (a) Find the general formula for the position of the butterfly in the coordinate system of the observer on the shore.

(b) Express the position, velocity, and acceleration of the butterfly in terms of both coordinate systems.

(c) What is the conclusion?

It makes sense then, as you were told in physics class, that everything falls with the same gravitational acceleration, g Å9.8m/s2,
at least insofar as one ignores the resistance of the air. This too is often considered a discovery of Galileo’s. Indeed, in Aristotelean
physics, heavier objects fall faster than light ones:

A given weight moves a given distance in a given time; a weight which is as great and more moves the same distance
in a less time, the times being in inverse proportion to the weights. For instance, if one weight is twice another, it
will take half as long over a given movement. (Aristotle, De Caelo, I.6.)

Galileo argued against this view as follows:

If then we take two bodies whose natural speeds are different, it is clear that on uniting the two, the more rapid one
will be partly retarded by the slower, and the slower will be somewhat hastened by the swifter. . . . But if this is true,
and if a large stone moves with a speed of, say, eight while a smaller moves with a speed of four, then when they
are united, the system will move with a speed less than eight; but the two stones when tied together make a stone
larger than that which before moved with a speed of eight. Hence the heavier body moves with less speed than the
lighter; an effect which is contrary to your supposition. Thus you see how, from your assumption that the heavier
body moves more rapidly than the lighter one, I infer that the heavier body moves more slowly. . . . [Since this is a
contradiction] we infer therefore that large and small bodies move with the same speed provided they are of the
same specific gravity [i.e., density]. (Galileo, Dialogues Concerning Two New Sciences, first day.)

15.5. Does Galileo’s argument prove that Aristotle’s theory is inconsistent?

16 Descartes

Descartes’s Géométrie of 1637 taught the world coordinate geometry and the identification of curves with equations. However,
Descartes’s take on these topics is radically different from the modern view in numerous respects. In particular, Descartes did
not argue that algebraic geometry was a replacement for classical geometry, or a radically new approach to geometry. On the
contrary, he argued at great length that it was in fact subsumed by classical geometry, and he would never have accepted it if it
wasn’t. Such an attitude made perfect sense considering the unique epistemological status of classical geometry outlined in the
readings.

Descartes, accordingly, began by generalising the curve-tracing procedures of Euclid and then went on to show that the curves
that could be generated in this way were precisely the algebraic curves, thereby establishing a pleasing harmony between clas-
sical construction-based geometry and the new methods of analytic geometry. And with the lines, circles and conic sections
of classical geometry being of degree one and two, Descartes’s reconceptualisation of geometry to include algebraic equations
of any degree was a natural way of subsuming and extending virtually all previous knowledge of geometry, and, at that, a way
which had a definite air of seeming finality. Descartes could therefore claim with considerable credibility that only curves that
could be expressed by polynomial equations were susceptible to geometrical rigour. In this way Descartes’s vision of geometry
masterfully combined Euclidean foundations with a bold new scope, and supplied its converts with compelling arguments as to
why true geometry goes this far and no further.

Years before making his breakthroughs in analytical geometry, Descartes speculated about “new compasses, which I consider to
be no less certain and geometrical than the usual compasses by which circles are traced.” The key criterion for these “new com-
passes,” according to Descartes, was that they should trace curves “from one single motion,” contrary to the “imaginary” curves
traced by “separate motions not subordinate to one another,” such as the quadratrix and exponential curves. The quadratrix is a
curve that had been considered by the Greeks; its definition uses two independently moving lines, which makes it inadmissible
to Descartes:
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Indeed, the ratio of the two velocities involve π, which is not known exactly, so the construction is impossible to perform in
practice. The same goes for the spiral r = θ.

r

θ

16.1. Explain why these constructions require π to be known.

Descartes developed his single-motion criterion before he had the idea of a correspondence between a curve and an equation.
This shows that he was very much working in the tradition of classical geometry, and that the mathematical techniques he
developed were tailored to fit his philosophy of mathematics, not the other way around.

An example of his curve-tracing procedure is shown in figure 20. To find the equation of the curve traced, we can take A as the
origin of a coordinate system with AB = y and BC = x. Introduce the notation AK = t , LK = c, AG = a, and m = K L/N L. Thus t
is variable while c, a, and m are constants. In terms of these quantities we can express the equations of the lines C N K and GC L,
and then combine these so as to eliminate t , which gives the equation for the traced curve in terms of x, y , and constants.

Figure 20: Descartes’s method for tracing a hyperbola. The triangle K N L moves vertically along the axis ABLK . Attached to it at
L is a ruler, which is also constrained by the peg fixed at G . Therefore the ruler makes a mostly rotational motion as the triangle
moves upwards. The intersection C of the ruler and the extension of K N defines the traced curve, in this case a hyperbola.

16.2. Show how to generate the standard hyperbola x y = 1 using Descartes’s method. That is, find a suitable choice of constants
that will yield the desired curve (perhaps translated with respect to the origin, which is insignificant). Illustrate with a
sketch.

16.3. Build a “new compass” for yourself and make your own x y = 1 hyperbola. Include the coordinate axes in your figure.

Hint: The construction tips in problem 8.6 are applicable here as well.

16.4. What curve is obtained if in Descartes’s curve tracing method the line K NC is replaced by a circle with center L and radius
K L = c?
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And so it continues: once a curve has been generated this way it in turn can be taken in place of the starting curve K NC , and so
on. In this way one can generate algebraic curves of higher and higher degree. Altogether, says Descartes, all algebraic curves,
and nothing but algebraic curves, can be obtained in this way. This, therefore, is the domain of exact geometry according to
Descartes: Euclid was right to exclude some curves (such as the spiral and the quadratrix) but wrong to limit himself to just lines
and circles—geometrical rigour, according to Descartes, extends as far as all algebraic curves but no further.

17 Sources: constructions of conics

� Frans van Schooten, Vierde Bouck der Mathematische oeffeningen, begrijpende de tuych-werckelycke beschryving der kegel-
sneden op een vlack, Amsterdam, 1660.

= � Frans van Schooten, De Organica Conicarum Sectionum in Plano Descriptione, Leiden, 1646.

Early in the foreword (page 275 of the Dutch edition, shortly after mentioning Apollonius and Euclid), Van Schooten explains
why no ancient works contain recipes for how to draw a conic section in a plane. His explanation is:

□ The Greeks were not interested in constructions since they preferred an axiomatic-deductive approach to mathematics.

□ The Greeks were not interested in physical or practical applications of conic sections.

□ The Greeks probably did write on constructions of conics, but those works were lost during the Dark Ages.

In the preface (Voor-reden), page 278 of the Dutch edition, Van Schooten begins listing the applications of conic sections, starting
with their use in solving “Lichamelijcke Werck-stucken” (“solid” or “bodily” problems, meaning problems of degree 3). What is
the corresponding phrase in the Latin edition (3rd page of the Praefatio)?

□ Quaestiones corporum

□ Solidorum Problematum

□ Problemata tertii gradus

□ Quaestiones tertii ordinis

� Philippe de La Hire, Nouveaux éléments des sections coniques, 1679.

= � Philippe de La Hire, New Elements of Conick Sections, translated from the French by Brian Robinson, London, 1704.

� Christiaan Huygens. Oeuvres complètes. Tome IX. Correspondance 1685-1690.

� L’Hôpital, Guillaume Antoine Francois, Traité analytique des sections coniques, Paris, 1707.

Consider the following authors’ statements on whether conic sections should be drawn by instrument or pointwise construc-
tions. (An example of a pointwise construction of a conic section is to construct for instance the parabola y = x2 by plugging
in various x-values and plotting the corresponding points on the curve in a coordinate system, and then free-hand drawing the
curve by interpolating by eye between these points.) De La Hire, page 15 7of the French = page 139 of the English. Huygens,
Letter 2477, second half of page 199 of (starting with “doch soo en kan men niet seggen”). L’Hospital, page 17, before seconde
maniere. Which of these authors argue in favour of pointwise constructions?

□ De La Hire

□ Huygens

□ L’Hospital

� René Descartes, La Géométrie. Leiden, 1637.

Consider Figures 21 and 22. Which point in Descartes’s figure corresponds to my Q?
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Figure 21: The curve C (here a line) and the point Q participate in the same linear motion (here vertical). The motion of Q causes
the ruler OQ to turn about its fixed point O. The intersection P :=C ∩OQ traces the curve C ′ (here a hyperbola).

Figure 22: Descartes’s main example of the procedure illustrated in Figure 21. Descartes (1637), page 320.

□ A

□ B

□ C

□ E

□ G

□ K

□ L

□ N

� Frans van Schooten, Vierde Bouck der Mathematische oeffeningen, begrijpende de tuych-werckelycke beschryving der kegel-
sneden op een vlack, Amsterdam, 1660.

= � Frans van Schooten, De Organica Conicarum Sectionum in Plano Descriptione, Leiden, 1646.

Van Schooten included Descartes’s hyperbola construction in his Chapter VII (the first figures of that chapter). Which point in
Van Schooten’s figures corresponds to my Q?

□ A

□ B

□ D

□ E

□ K

□ L

□ I

□ b

□ d

� Jan de Witt, Elementa Curvarum Linearum, Amsterdam, 1659.

De Witt included Descartes’s hyperbola construction in his Book I, Chapter II. Which point in De Witt’s figure corresponds to my
Q?

□ A

□ B

□ C

□ E

□ F

□ G

□ H

□ K

□ L
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Figure 23: Newton’s organic construction of conics. Two V-shaped rulers (each with a fixed angle between its two arms) pivot
about two pole points, A and B . One of their intersections, D , is made to move along the “directrix” line d . The other intersection,
P , traces a conic section.

D

P

A B

Figure 24: Another example of Newton’s organic construction of a conic section. Same construction mechanism as the previous
figure but with different parameters.

� L’Hôpital, Guillaume Antoine Francois, Traité analytique des sections coniques, Paris, 1707.

L’Hospital included Descartes’s hyperbola construction in his Book III, Prop. XIV (seconde maniere). Which point in L’Hospital’s
figure corresponds to my Q?

□ A

□ B

□ C

□ H

□ K

□ M

� Isaac Newton, letter to John Collins, 20 August 1672. https://cudl.lib.cam.ac.uk/view/MS-ADD-03977/84

This letter includes a drawing of Newton’s organic construction of conics in his own hand. See also Figures 23–26.

Newton’s term for the rays that are labelled AD and BD in my figures are:

□ describing leggs

□ directing leggs

□ variable leggs

□ motion leggs

□ pen leggs

□ hand leggs

Newton’s term for the rays that are labelled AP and BP in my figures are:
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Figure 25: Newton’s organic construction with a conic section as directrix curve.

□ describing leggs

□ directing leggs

□ variable leggs

□ motion leggs

□ pen leggs

□ hand leggs

In Newton’s organic construction, consider (as Newton did elsewhere) the case where the directrix curve (along which D is
moving) is a conic section passing through A but not through B . I have provided a figure for this, but I have not revealed the full
curve traced by P . Sketch the curve traced by P using a visual method. Note that the arms AP and BP must be regarded as lines
and not only as rays (which is how they are usually drawn for clarity). In other words, at a certain point it becomes necessary to
“point the arm the other way” (the angle between AD and the line AP remains the same, but we switch which of the two halves
(rays) of the line AP we consider, and similarly for BP ). The curve traced by P has:

□ a cusp at A

□ a double point (self-intersection) at A

□ a cusp at B

□ a double point (self-intersection) at B

18 Newton’s calculus

Like Descartes and Leibniz, Newton was rather ambivalent about the increasing use of algebraic methods in mathematics. As
Pemberton, a contemporary of Newton, reports:

Newton used to censure himself for not following the ancients more closely than he did; and spoke with regret of
his mistake, at the beginning of his mathematical studies, in applying himself to the works of Descartes, and other
algebraical writers, before he had considered the Elements of Euclid with that attention so excellent a writer deserves.

Indeed, in his great work Philosophiae Naturalis Principia Mathematica (1687), Newton shunned the calculus of formulas, even
though he mastered it to perfection, and favoured instead a more geometrical style. As he says:

To the mathematicians of the present century, however, versed almost wholly in algebra as they are, this synthetic
style of writing is less pleasing, whether because it may seem too prolix and too akin to the method of the ancients,
or because it is less revealing of the manner of discovery. And certainly I could have written analytically what I had
found out analytically with less effort than it took me to compose it.

To get a flavour of this style we may consider the very first proof in the Principia, namely Newton’s proof of Kepler’s law of equal
areas. The law says that planets sweep out equal areas in equal times:

∆t
∆t
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Figure 26: Newton’s organic construction with a conic section passing through A as directrix curve.
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Newton’s proof uses nothing but very simple infinitesimal geometry:

S A

b B

C c

In an infinitely small period of time the planet has moved from A to B . If we let an equal amount of time pass again then the
planet would continue to c if it was not for the gravity of the sun, which intervenes and deflects the planet to C . Since the time it
takes for the planet to move from B to C is infinitely small, the gravitational pull has no time to change direction from its initial
direction BS, thus causing cC to be parallel to BS.

18.1. Conclude the proof of the theorem.

Let us consider a second example from the Principia. It is the most important scientific work ever written after all. And one of its
key results is the law of gravitation. The moon is kept in its orbit by the earth’s gravitational pull, or so your high school textbook
told you. How do you know that it is really so? How do you know that the moon is not towed about by a bunch of angels? This
question doesn’t seem to arise in today’s authoritarian classrooms, but Newton gave an excellent answer if anyone is interested.

“That force by which the moon is held back in its orbit is that very force which we usually call ‘gravity’,” says Newton (Book III,
Prop. IV). And his proof goes like this. Consider the hypothetical scenario that “the moon be supposed to be deprived of all
motion and dropped, so as to descend towards the earth.” If we knew how far the moon would fall in, say, one second, then we
could compare its fall to that of an ordinary object such as an apple. Ignoring air resistance, the two should fall equally far if
dropped from the same height.

Of course we cannot actually drop the moon, but with the power of infinitesimals we can deduce what would happen if we did.
Here is a picture of the moon’s orbit, with the earth in the center:

D
S C A

EB

Suppose the moon moves from A to B along a circle with center S in an infinitely small interval of time. If there were no gravity
the moon would have moved along the tangent to the circle to some point E instead of to B (BE is parallel to ASD because the
time interval is infinitely small so gravity has no time to change direction).

18.2. Assuming AB being straight, use similar triangles to show that AC /AB = AB/AD , i.e., (diameter of the or-
bit)/(arc)=(arc)/(distance fallen).

Prove that ABC is similar to ABD .

18.3. Use this relation to calculate how far the moon falls in one second.

18.4. Compute how far the moon would fall if dropped at the surface of the earth, where gravity is 602 times stronger since the
moon is 60 earth radii away.

18.5. Is the result the same as for a falling apple?

The Principia introduced the law of gravitation and established it as an undeniable fact. But this law is in some ways very
disturbing; even Newton himself thought so (§0). This is because it seems to fly in the face of the mechanical philosophy that
had gone hand in hand with all recent scientific advances. Recent science had prided itself on banishing all forms of “occult”
forces in favour of concrete explanations of natural phenomena based on nothing but push-pull mechanics. But how to explain
gravity in such terms? Metaphysically, it seemed as occult a force as there ever was. Newton himself and many others speculated
at the time that gravity might be due to some kind of imperceptible “rain” of fine particles that drags bodies with it on their way
to the center of the earth or the sun. But no coherent theory along these lines was found. In fact, an obvious aspect of the law of
gravity seems to show that it is not caused by any kind of pushing on the surfaces of things; rather it somehow seems to “reach
inside” objects effortlessly.
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18.6. What well-known aspect of the law of gravity am I referring to?

18.7. Newton imagined that this reflected the omnipresence of God, a well-known tenet of Christianity expressed in the Bible,
for instance in Jeremiah, chapter 23, verse .

19 Leibniz’s calculus

Leibniz was every bit as committed to the classical geometrical paradigm as Descartes was, as we see in the readings. Conse-
quently the early calculus is permeated by geometrical constructions. As a simple illustration, consider for example how Johann
Bernoulli expressed the solution to the differential equation y ′ = y .

19.1. Explain how solving y ′ = y by separation of variables corresponds to figure 27. Areas in the same shade are equal. The
point generalises to any separable differential equation.

Figure 27: Geometrical interpretation of separation of variables.

So rather than looking for a “formula” for the solution, Bernoulli read the equation literally as a construction recipe. And in a
sense it is not hard to understand why: what kind of “solution” is ex anyway? It’s just some arbitrary symbols. The geometrical
interpretation, on the other hand, fits well with the long tradition of constructions as the bedrock of mathematics that goes back
to Euclid. Leibniz too was very sensitive to this tradition, as the following example shows.

In 1691 Leibniz published a construction of the catenary (the shape of a hanging chain) corresponding to the modern formula
y = (ex +e−x )/2. His interpretation of this result differs drastically from a modern view, especially in two crucial respects:

• He never writes this formula, or indeed any formula, for the catenary. That is not what he considers a solution to a differ-
ential equation to be. Instead he “constructs” it, i.e., shows how it can be built up step by step. In this respect he is very
much in line with Euclidean and Cartesian traditions, and indeed he justified his construction in such terms as we shall
see.

• He sees this relationship as saying that the catenary and logarithms are essentially interchangeable. In modern terms, the
function ex is one of the most basic ingredients in the mathematician’s toolbox whereas the catenary is a rather esoteric
application. To Leibniz there is no such hierarchy. To him the two functions are equals. For this reason he proposes, in all
seriousness, that the catenary may be used to compute logarithms: “This may be helpful since during a long journey one
may lose one’s table of logarithms; in case of an emergency the catenary can then serve in its place.”

Leibniz’s recipe for finding logarithms is shown in figure 28. Finding logarithms from a catenary may seem like an oddball
application of mathematics today, but to Leibniz it was a very serious matter. Not because he thought this method so useful in
practice, but because it pertained to the very question of what it means to solve a mathematical problem. Today we are so used
to thinking of a formula such as y = (ex +e−x )/2 as “the answer” to the question of the shape of the catenary, but this would have
been considered a very naive view in the 17th century. The 17th-century philosopher Hobbes once quipped that the pages of the
increasingly algebraical mathematics of the day looked “as if a hen had been scraping there,” and what indeed is an expression
such as y = (ex +e−x )/2 but some chicken-scratches on a piece of paper? It accomplishes nothing unless ex is known already, i.e.,
if ex is more basic than the catenary itself. But is it? The fact that it is a simple “formula” of course proves nothing; we could just
as well make up a symbolic notation for the catenary and then express the exponential function in terms of it. And however one
thinks of the graph of ex it can hardly be easier to draw than hanging a chain from two nails. So why not reverse the matter and let
the catenary be the basic function and ex the “application”? Modern tastes may have it that “pure” mathematics is primary, and
its applications to physics secondary, but what is the justification for this dogma? Certainly none that would be very convincing
to a 17th-century mind.
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Thus it was with good reason that 17th-century mathematicians summarily rejected the chicken-scratch mathematics that we
take for granted today. They published not formulas but the concrete, constructional meaning that underlies them. If you
want mathematics to be about something then this is the only way that makes any sense. It is prima facie absurd to define
mathematics as a game of formulas and at the same time naively assume a direct correspondence between its abstract gibberish
and the real world, such as y = (ex+e−x )/2 with the catenary. It makes a lot more sense to turn the tables: to define the abstract in
terms of the concrete, the construct in terms of the construction, the exponential function in terms of the catenary. It was against
this philosophical backdrop that Leibniz published his recipe for determining logarithms using the catenary. We see, therefore,
that it was by no means a one-off quirk, but rather a natural part of a concerted effort to safeguard meaning in mathematics.

19.2. Find the value of for example log(2) by Leibniz’s method using for example a neckless, a piece of cardboard, and some
sewing needles.

19.3. The veracity of Leibniz’s construction may be confirmed as follows. Figure 29 shows the forces acting on a segment of a
catenary: the tension forces at the endpoints, which act tangentially, and the gravitational force, which is proportional to
the arc s measured from the lowest point of the catenary.

Figure 29: The forces acting on a segment of a catenary.

(a) Deduce by an equilibrium of forces argument that the differential equation for the catenary is

dy

dx
= s,

for some appropriate choice of units.

(b) Use dx2 +dy2 = ds2 to eliminate dx from this equation; then separate the variables and integrate. Take the constant
of integration to be zero (this corresponds to a convenient choice of coordinate system).

(c) Interpret the result in terms of figure 28(e).

(d) Explain why Leibniz’s construction works.

From here it is a simple matter of algebra to check the final step of figure 28, insofar as the equation y = (ex +e−x )/2 for the
catenary is known. We shall now derive this equation.

(e) In the equation you obtained in problem 19.3b, solve for s. Then substitute this expression for s into the original
differential equation for the catenary.

(f) Check that y = (ex +e−x )/2 is a solution of the resulting differential equation.

(g) Verify the final step of figure 28.

Perhaps we are too complacent today in accepting expressions like ex or
∫

dx/x as primitive notions just because they have a
simple symbolic representation. It was different in Leibniz’s day. Before long these kinds of expressions were to become accepted
as legal tender but Leibniz and his contemporaries still felt obligated to fork up their actual “cash value.”

19.4. Another curve related to logarithms is the tractrix, i.e., the curve traced by a weight dragged along a horizontal surface by
a string whose other end moves along a straight line:
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ln(x)

= =

=

=

h

h

h×(x+1/x)/2

ln(x)

h

ln(x)d
FOUND

=d/h

Figure 28: Leibniz’s recipe for determining logarithms from the catenary.
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Figure 30: Leibniz’s figure for his catenary construction.

In the physique de salon of 17th -century Paris, a pocket watch on a chain was a popular way for gentlemen to trace this
curve, as shown in figure 31.

(a) Let’s say that the length of the string is 1. Consider it as the hypothenuse of a triangle with its other sides parallel to
the axes. Draw a figure of this triangle and write in the lengths of its sides (1 for the hypothenuse, y for the height,
and the last side by the Pythagorean Theorem).

(b) Find a differential equation for the tractrix by equating two different expressions for its slope: first the usual dy/dx
and then the slope expressed in terms of the triangle you just drew.

(c) Have a computer solve the differential equation for x as a function of y (using wolframalpha.com or Mathematica
or similar; it is possible to solve this differential equation by hand but the calculations will be intricate). Choose the
constant of integration so that the asymptote (along which the free end of the string is pulled) is the x-axis and the
point (0,1) corresponds to the vertical position.

The solution formula shows that the tractrix is related to logarithms. It does not reveal an easy way of finding the logarithm
of some given number, but Huygens managed to turn it into such a recipe. Or rather what he did is equivalent to this.
What he actually says is a bit different. He considers first this triangle, where the length of the leg a is chosen so that the
hypothenuse equals this leg plus Y :
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a

a+Y 1

(d) Find a in terms of Y .

Next Huygens cuts off a portion of length 1 of the hypothenuse:

b

1
y

(e) Find b in terms of y , and y in terms of Y .

(f) Rewrite the equation from 19.4c to obtain an expression for log(1/Y ) in terms of measurable quantities (a,b, x, y).

Huygens explored the practical aspect of this construction quite thoroughly, as figure 32 shows.

Figure 31: Tracing the tractrix by means of a pocket watch. (From Giovanni Poleni, Epistolarum mathematicarum fasciculus,
1729.)

20 Sources: osculating circle

The radius of curvature is the radius of the circle that best approximates a curve at a given point. It can also be thought of as the
distance from a curve to the point of intersection of two “successive” normals to the curve (i.e., the normals to the curve drawn
from two points on the curve that are very close to each other). Watch the animation https://www.desmos.com/calculator/
lbjisuikaf. You see that, at the inflection points, the radius of curvature (= radius of osculating circle) is infinite. Change the
function to f (x) = x3/100. Then the radius of curvature at the inflection point is:
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Figure 32: Detail of a 1692 manuscript by Christiaan Huygens on the tractrix. The sentence in the top left corner reads: “Une
charette, ou un batteau servira a quarrer l’hyperbole” (“a little cart or boat will serve to square the hyperbola”). “Squaring a
hyperbola” means finding the area under a hyperbola such as y = 1/x, so it is equivalent to computing logarithms, as Huygens
was well aware. The bottom line reads: “sirop au lieu d’eau” (“syrup instead of water”). Syrup offers the necessary resistance and
a boat leaves a clear trace in it. Using a liquid instead of a solid surface such as a table top ensures that the surface is everywhere
horizontal.

□ 0 □ ≈ 1 □ ≈ 10 □ ∞

Change the function to f (x) = x5/3. Then the radius of curvature at the inflection point is:

□ 0 □ ≈ 1 □ ≈ 10 □ ∞

Change the function to f (x) = ((x5 −1002x3)/2002)1/3, and change the bounds of a to −100 to 100 and the step length of a to
0.01, and zoom out a bit. (We will come back to this example again later.) The radius of curvature at the inflection point at the
origin is:

□ 0 □ ≈ 1 □ ≈ 10 □ ∞

Leibniz said: “At an inflection point [puncto flexus contrarii, point of contrary turning] there is minimal curvature and maximal
obtuseness, and Mr [Jakob] Bernoulli has said rightly that the osculating circle in this case degenerates into a line; for the radius
is infinite, ... because before two adjacent perpendiculars of the curve that meet on one side of the curve can meet on the
other side of the curve ... they must become parallel, in which case their intersection will be infinitely far away.” (https:
//books.google.nl/books?id=7iI1AAAAIAAJ&pg=PA334#v=onepage&q&f=false) For which curves is Leibniz’s statement
correct:

□ f (x) = sin(x)

□ f (x) = x3/100

□ f (x) = x5/3

□ f (x) = ((x5 −1002x3)/2002)1/3

The example f (x) = ((x5 −1002x3)/2002)1/3 was considered by Jakob Bernoulli, except I switched the roles of x and y to fit the
Desmos format. Here is a manuscript page where Bernoulli investigates this example: https://www.e-manuscripta.ch/bau/
content/zoom/1452851. In Bernoulli’s notation, he considered aax3 = y5 −bby3 where a = 200 and b = 100. (Back then it was
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common to write aa instead of a2.) Bernoulli considered this example precisely because of the exceptional nature of x5 = y3 that
we encountered above. The curve aax3 = y5 −bby3 includes y5 = x3 as a special case, but for other values of b it “pulls apart”
the compound singularity of y5 = x3 into multiple separate singularities, thereby illuminating the behaviour of this curve. In his
notebook, Bernoulli calculated the x-values for various y-values, in increments of 10. Bernoulli also included two exceptional
y-values in his numerical table (corresponding to important points on the curve): 77.46 and 134.2. If he had included more
decimals, he would have written instead:

□ 77.4573 □ 77.4597 □ 77.4622 □ 77.4639

“Jac. B.” published this “solution to a certain difficulty concerning the nature of inflection points” in a 3-page paper: https://
books.google.nl/books?id=GqkRjAxrfpAC&lpg=PA410&ots=WM3uyXbOHp&pg=PA410#v=onepage&q&f=false (the article
includes Figures 11 and 12, printed on a separate sheet that you can find if you switch to thumbnail view in Google Books). A
common behaviour among mathematicians throughout history and to this day is: calculate numerical examples in private, but
publish only abstract general proofs. Does Bernoulli’s article show the numerical calculations that he used to understand the
curve?

□ Yes □ No

21 Foundations of the calculus

The early calculus was rather freewheeling in its use of infinitesimals. The foundations for such methods eventually developed
into a hot-button issue, which we shall follow in some detail in the readings. To see what all the fuss is about, we shall now have
a look at the infinitesimal way of doing calculus that was the norm in the 17th century.

Infinitesimally speaking, to find the derivative of y(x) we should:

• let x increase by an infinitesimal amount, which we shall denote dx (“d” for “difference”);

• calculate the corresponding change in y , which we shall denote dy;

• divide the two to obtain the rate of change dy
dx .

In the case of y = x2 this goes as follows. Suppose x increases by dx. What is the corresponding dy? It is dy = (x +dx)2 − x2 =
2x dx+ (dx)2 so dy

dx = 2x dx+(dx)2

dx = 2x +dx. Since dx is so small we can throw it away. Thus the derivative is dy
dx = 2x. Note that the

calculations correspond to this picture:

dx

dxx

x

21.1. Find the derivative of x3 and draw the corresponding picture. Note that the derivative comes from three actual squares, a
point lost on most students who learn to parrot “three x squared.”

21.2. Prove the product rule ( f g )′ = f ′g + g ′ f in a similar way and draw the corresponding picture.

As Leibniz puts it: “It is useful to consider quantities infinitely small such that when their ratio is sought, they may not be
considered zero but which are rejected as often as they occur with quantities incomparably greater. Thus if we have x+dx,
dx is rejected. But it is different if we seek the difference between x +dx and x. Similarly we cannot have xdx and dxdx
standing together. Hence, if we are to differentiate x y we write (x +dx)(y +dy)−x y = xdy+ ydx+dxdy. But here dxdy is to
be rejected as incomparably less than xdy+ ydx.”

The integral
∫ b

a y dx means the sum (hence the
∫

, which is a kind of “s”) of infinitesimal rectangles with height y and base dx:
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dx

y

a b

21.3. Why don’t the little “gaps” between the rectangles and the curve discredit the method?

21.4. If the area under the curve is the area of the rectangles, is the length of the curve the length of the top sides of the rectan-
gles?

The fundamental theorem of calculus says that derivatives and integrals are each other’s inverses in the following ways:

d

dt

∫ t

a
y(x)dx = y(t ) (FTC1)

∫ b

a
y ′(x)dx = y(b)− y(a) (FTC2)

To prove FTC1 we proceed as with any derivative. In this case the variable is t and the function is
∫ t

a y(x)dx.

∫ t
a y(x)dx = area under y(x) from a to t =

a t

so if t increases by dt then
∫ t

a y(x)dx increases by

area under y(x) from t to t +dt =

  dtt

= y(t )dt,

so
d

∫ t
a y(x)dx

dt
= y(t )dt

dt
= y(t ),

which proves FTC1.

FTC2 is even easier to prove:

∫ b

a
y ′ dx =

∫ b

a

dy

dx
dx =

∫ b

a
dy

= sum of little changes in y from a to b

= net change in y from a to b

= y(b)− y(a)

Another way of saying this is that in order to integrate some function f (x) one has only to find an antiderivative F (x), i.e., a
function such that F ′ = f , because then ∫ b

a
f (x)d x = F (b)−F (a).

To Leibniz this hardly rose to the status of a theorem, let alone a “fundamental” one. He certainly never published a proof of it;
in fact he barely even stated it. He was satisfied with the casual statement that “as powers and roots in ordinary arithmetic, so
for us sums and differences, or

∫
and d , are reciprocal.” As far as Leibniz is concerned, the comparison is an apt one not only

procedurally but also foundationally: in neither case can there be a question of proof of the reciprocal relationship; rather it is
built into the very meaning of the notions involved.
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21.5. (a) Explain why investigating the derivatives of sine and cosine leads to the figure below, and why the things marked as
equal really are equal. Explain also why it is important that the angle is measured in radians.

cos θ
θ

dθ

dθ

1
1

sin
 θ

-d cos θ

d s
in

 θ

(b) Find the derivatives of sine and cosine using similar triangles in this figure.

The argument in the above problem is very Leibnizian in spirit. However, explicit use and differentiation of trigonometric func-
tions did not occur in print until a 1739 paper by Euler. These results were in effect perfectly well understood by Newton and
Leibniz and others some 70 years before Euler’s paper. But they did not see the need to introduce expressions like sin(x) and
cos(x) into the standard arsenal of functions and study their derivatives etc. in a systematic manner. They could do pretty much
everything we can do with sines and cosines, but instead of canonised notation and standard derivatives they simply expressed
themselves geometrically, in terms of such-and-such an ordinate of a circle and so on. This served all their purposes perfectly
well, so there was simply no need to standardise these functions. Geometrical language conveys the meaning of the results more
directly; writing “sin(x)” etc. would have been little more than pretentious obfuscation.

Sines and cosines solve differential equations such as the harmonic oscillator equation s̈ − s = 0 which is so fundamental in
physical theory. But this situation is simple enough that it can be described perfectly adequately in purely geometrical terms,
so there was no need to write the solution as an explicit “formula.” It was different for Euler. In his 1739 paper he considered a
periodically forced harmonic oscillator, which we would express by the equation s̈−s = sin(t ). At this point geometrical language
is no longer suited for expressing the complicated solutions that arise. Euler says precisely this in a letter to Johann Bernoulli:
“there appear . . . motions so diverse and astonishing that one is unable altogether to foresee until the calculation is finished.”
Only in this context did it become necessary to introduce sin(x) and cos(x) formally as functions with explicit differentiation
rules and so on.

The shift from the geometrical to the analytical way of treating these kinds of situations was, then, anything but a revolution.
The old, geometrical point of view held its own for a long time and was abandoned on pragmatic rather than principled grounds.
It was not abandoned because it was conceptually limiting, or incompatible in principle with new directions of research, or be-
cause the new paradigm enabled some radical change of course. It was abandoned, instead, for having grown a bit too cumber-
some, much like the geometrical paradigm of the Greeks eventually grew too cumbersome in practice and had to be replaced by
analytic geometry.

22 Power series

In modern textbooks, the theory of power series begins with a derivation of the general Taylor series, and then the series for
the various standard functions are derived as special cases of this general theorem. History brings another perspective. Taylor
did not publish the general Taylor series until 1715, almost half a century after Newton knew how to find the series of virtually
any function. Newton and Leibniz and their followers simply had no use for the general Taylor series; they had more concrete
methods which were just as powerful. In this section we shall see some of them. Furthermore we shall see Taylor’s own derivation
of his series, which is certainly very different from anything found in modern textbooks.

22.1. The binomial series

(1+x)q = 1+qx + q(q −1)

2!
x2 + q(q −1)(q −2)

3!
x3 +·· ·

was one of Newton’s earliest discoveries. But to Newton the binomial series and its little brother the geometric series

1

1−x
= 1+x +x2 +x3 +·· ·
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are not theorems to be proved but rather nothing but shorthand summaries of algebraic operations. Here are Newton’s
own words:

Fractions are reduced to infinite series by division; and radical quantities by extraction of the roots, by carrying
out those operations in the symbols just as they are commonly carried out in decimal numbers. These are the
foundations of these reductions: but extractions of roots are shortened by this theorem [the binomial theorem].

Indeed, Mercator famously found a power series for the logarithm by precisely such a route, namely as follows. First note
that

log(1+x) =
∫ x+1

1

1

t
dt =

∫ x

0

1

1+u
du.

(a) Find a series for 1
1−x using long division, i.e., the kind of algorithm indicated here for 2675/25=107:

1 0 7
2 5 2 6 7 5

2 5
1 7 5
1 7 5

0

Assume that 0 < x < 1.

(b) Plug in x =−u and integrate term by term to find the series for log(1+x) in this way.

22.2. Let us use this result to illustrate another of Newton’s forgotten power series techniques, namely his method of series
inversion. Given a power series for y as a function of x,

y = ax +bx2 + cx3 + . . . ,

we compute the power series for x as a function of y , i.e., the inverse function, as follows.

• First we find the linear term. Set x = Ay . Substitute this into the series for y and throw away all non-linear terms.
This leaves y = a(Ay). Solve for A.

• Next we find the quadratic term. Set x = Ay +B y2 (A now being known). Substitute this into the series for y and
throw away all non-quadratic terms. Solve for B .

• And so on.

(a) Find the series for ex −1 by inverting the series for log(1+x).

The series for sin, cos, and tan can all be found in the same way since their inverse functions are expressible as integrals of
functions that are easily expanded as a binomial or geometric series.

22.3. Here is a way of convincing you that any function can be expressed as a power series

f (x) = A+B x +C x2 +Dx3 +·· ·

(a) Argue visually that by choosing the coefficients you can make a parabola of the form y = ax2 +bx +c = A(x −B)2 +C
go through essentially any three points but not any four.

This is because the parabola has three “degrees of freedom,” i.e., you have three choices to make when picking the coeffi-
cients. Thus you can make it do three things.

(b) Adapt this argument for functions of the form y = c and y = bx + c.

(c) Conclude that it makes sense that any function can be represented by an “infinite polynomial.”

22.4. Indeed, Newton constructed such a polynomial, namely a polynomial p(x) which takes the same values as a given function
y(x) at the x-values 0,b,2b,3b, . . .. Here is the construction. First, our polynomial p(x) is supposed to have the same value
as the given function y(x) when x = 0. Therefore we should start by setting p(x) = y(0). Next, we want p(x) to take the
same value as y(x) when x = b. This is easily done by setting

p(x) = y(0)+ x

b

(
y(b)− y(0)

)
.
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n = 2 n = 3 n = 4
b
=

2.
5

b
=

2
b
=

1.
4

Figure 33: Examples of a polynomial p(x) = a0 + a1x + ·· ·+ an xn of degree n passing through the same n +1 points as a given
function f (x) (here cos(x)) at the x-values 0,b, . . . ,nb. It is in general possible to choose the coefficients of p(x) so that this
occurs by solving the n +1 equations p(0) = f (0), p(b) = f (b), . . ., p(nb) = f (nb) for the n +1 unknowns a0, . . . , an . Taylor’s way
of obtaining the “Taylor series” is in effect to let n →∞ and b → 0.

This polynomial obviously agrees with y(x) when x is 0 or b. Now we need to add a quadratic term to make it agree when
x is 2b as well. We want the new term to contain the factor (x)(x −b) because then it will vanish when x is 0 or b, so our
previous work will be preserved. If we set x = 2b in the piece of p(x) that we have so far we get

p(2b) = y(0)+2y(b)−2y(0) = 2y(b)− y(0).

So we want the quadratic term to have the value y(2b)−2y(b)+ y(0) at x = 2b.

(a) Use this reasoning to write down a second-degree polynomial p(x) that agrees with y(x) when x is 0, b or 2b. (Keep
the factor (x)(x −b) as it is, i.e., do not reduce the expression to the form p(x) = A+B x +C x2.)

In the same manner we could add a cubic term to make p(x) agree with y(x) at x = 3b, and so on.

The formula becomes more transparent if we introduce the notation∆y(x) for the “forward difference” y(x+b)−y(x), and
∆2 y(x) for the forward difference of forward differences ∆y(x +b)−∆y(x), etc., so that

∆y(0) = y(b)− y(0)

∆2 y(0) =∆y(b)−∆y(0) = y(2b)−2y(b)+ y(0)

∆3 y(0) =∆2 y(b)−∆2 y(0) = y(3b)−3y(2b)+3y(b)− y(0)

...

(b) Rewrite your formula for p(x) using this notation, and then extend it to the third power and beyond “at pleasure by
observing the analogy of the series,” as Newton puts it.

(c) Show that Taylor’s series

y(x) = y(0)+ y ′(0)x + y ′′(x)

2!
x2 + y ′′′(x)

3!
x3 +·· ·

is the limiting case of Newton’s forward-difference formula as b goes to 0.

This is indeed how Taylor himself proved his theorem in 1715. The nowadays more common method of finding the series
by repeated differentiation was used by Maclaurin in 1742.

22.5. On the left here is the geometrical definition of the tangent function (hence its name):
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θ

ta
n θ x

y
 =

 arctan
 x

dx

dy

In this problem we shall investigate the inverse of the tangent function, i.e., the arctangent. For the inverse of the tangent,
tanθ is the input and θ is the output; to emphasise this we call them x and y respectively, as shown on the right. Note that
since we are using radian angle measure the angle is the same thing as the corresponding arc (of course the circle is a unit
circle).

Let us find the derivative of the arctangent. In other words we are looking for dy/dx. In the figure I made x increase by an
infinitesimal amount dx and marked the corresponding change in y . We need to find how the two are related. To do this I
drew a second circle, concentric with the first but larger, which cuts off an infinitesimal triangle with dx as its hypothenuse.

(a) Show that this infinitesimal triangle is similar to the large one that has x as one of its sides.

(b) By what factor is the second circle larger than the first? (Hint: Find the hypothenuse of the triangle with x in it.
Remember that the first circle was a unit circle.)

(c) Use this to express the short leg of the infinitesimal triangle as a multiple of dy.

(d) Find dy/dx by similar triangles. (Check that you obtain the known derivative of the arctangent.)

(e) By the fundamental theorem of calculus, the arctangent is the integral of its derivative. Use this to find a power series
for the arctangent. (To make sure that you take the constant of integration into account, check that your constant
term is correct using the geometrical definition of the arctangent.)

(f) Find the value of arctan(1) in two ways: by the geometrical definition, and from the power series.

(g) Equate these two expressions for arctan(1) to find an infinite series representation for π.

When Leibniz found this series he concluded that “God loves the odd integers,” as you can see in the figure below (taken
from his 1682 paper).

(h) What does Leibniz’s series have to do with a square of area 1, which is what Leibniz has drawn on the left?

Leibniz’s series is beautiful but it is not really very efficient for computing π. Already in 1424 al-Kashi had computed πwith
16-decimal accuracy using different methods.

(i) Estimate how many terms of Leibniz’s series must be added together to achieve the accuracy al-Kashi had obtained
already in 1424 (see §10).
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23 Complex numbers

Figure 34: A page from Bombelli’s Algebra (1572).

With complex numbers we can solve any quadratic equation, or so the textbooks tell us. But what kind of “solutions” are these
weird things with i ’s in them anyway? Indeed, the first person to publish on complex numbers, Cardano in his 1545 treatise Ars
magna, called them “as subtle as they are useless.” This was indeed in the context of a quadratic equation. Since some students
may share Cardano’s lack of enthusiasm about complex numbers it may be interesting to see what compelled mathematicians
to recognise the value of complex numbers despite this natural reluctance.

Bombelli was more positive towards complex numbers in 1572. But what convinced him was not the quadratic equations found
in textbooks today but rather cubic ones, i.e., equations of degree 3. For cubic equations there is a formula analogous to the
common quadratic formula, namely the solution of y3 = py +q is

y = 3

√√√√ q

2
+

√( q

2

)2
−

( p

3

)3
+ 3

√√√√ q

2
−

√( q

2

)2
−

( p

3

)3
.

23.1. (a) Apply the formula to x3 = 15x + 4. Before simplifying, locate (the equivalent of) the expression you obtain in
Bombelli’s own notation in figure 34. Hint: Bombelli denotes certain algebraic operations by the initial letters of
the corresponding words.

(b) The two cube roots that arise are in fact equal to 2+ i and 2− i . Check this.

(c) So what solution does the formula give? Is it correct?

The conclusion is that even if you think answers with i ’s in them are hocus-pocus you still have to admit that complex numbers
are useful for answering questions about ordinary real numbers as well.

More generally, complex numbers broke down the resistance towards them by being unreasonably effective for solving real
problems. In case after case, doing algebra with complex numbers as if they were real simply works, and gives incredibly simple
solutions to otherwise intractable problems. Here is an example.

23.2. Fermat claimed without proof that y3 = x2 +2 has only one solution in positive integers.

(a) Find it.

To prove that there are no other solutions, Euler (1770) factored x2 +2 into the complex factors (x +
p
−2)(x −

p
−2). Next

he simply assumed—without worrying too much about it—that numbers of the form n+
p
−2m are analogous to ordinary

integers. In particular, since the left hand side is a cube, so must (x+
p
−2)(x−

p
−2) be. And since no common factor of of

these terms leaps to the eye it seems reasonable to assume that these factors are relatively prime, which means that both
of them must be cubes in turn. Thus for example x +

p
−2 = (a +

p
−2b)3.
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(b) Expand the cube and determine the possible integer values of a and b.

(c) Conclude Euler’s proof of Fermat’s claim.

(d) Similarly, show that y2 = x5 +5 has a positive solution but that Euler’s method fails to find it.

Another “blind faith” use of complex numbers was the following.

23.3. (a) Integrate arctan(x) = ∫ x
0

dx
1+x2 using (complex) partial fractions to obtain i

2 log x+i
x−i .

Johann Bernoulli did this in 1702. Basically he had no idea what a complex function was or what the logarithm of a complex
number is even supposed to mean. He simply trusted the algebra and assumed that everything works the same way as for
real numbers.

No one would have been very exited if this was nothing but algebraic gymnastics leading to formulas that no one knew
what they meant. But Bernoulli soon figured out how to put his imaginary formula to “real” use, namely for finding
multiple-angle formulas for tanθ. Let y = tannθ and x = tanθ. Then arctan y = nθ = n arctan x.

(b) Use this to find an algebraic relationship between y and x.

Bernoulli admits that this formula contains “quantitates imaginarias . . . quae per se sunt impossibilia”—imaginary quan-
tities which are by themselves impossible. But this, he says, is not a problem since they “in casu quolibet particulari
evanescunt”—vanish in any particular case.

(c) Let n = 3 and find a formula for tan3θ in terms of tanθ involving no imaginary quantities.

Bernoulli is quite proud to have carried out the derivation “sine serierum auxilio”—without the help of series. One benefit
of this approach, he notes, is that it shows that the relationship is “semper algebraicum”—always algebraic—which is not
clear from a series approach. Apparently, he considered working with “impossible quantities” a small price to pay for this
added insight and simplicity.

Laplace (1810) also used complex substitutions to evaluate real integrals and called it “un moyen fécond de découvertes”—
a fruitful method of discovery. But by way of justifying these methods he offered little but a vague appeal to “la généralité
d’analyse”—the generality of analysis. Although his results were all correct, Poisson still found it worthwhile to rederive them by
other methods, since, as he said, Laplace’s reasoning was “une sort d’induction fondée sur le passage des quantités réelles aux
imaginaires”—a sort of induction based on the passage from real to imaginary quantities. In a reply, Laplace agreed that the use
of complex variables constituted “une analogie singulière”—a singular analogy—which “laissent toujours à désirer des démon-
strations directes”—still left a desire for direct demonstrations—and he proceeded to offer some such demonstrations himself.
As a result of this debate, Laplace assigned his young and ambitious protégé, Cauchy, the task of investigating the foundations
of complex methods in integration. The day after his 25th birthday, Cauchy presented his “Mémoire sur les intégrales définies,”
aiming to “établir le passage du réel à l’imaginaire sur une analyse directe et rigoureuse”—base the passage from the real to the
imaginary on a direct and rigorous analysis.

Cauchy went on to create the field of complex analysis, which blossomed into a key area of mathematics in the 19th century. In
retrospect it is hard to imagine that such a wonderful field of mathematics was initially developed for such an esoteric purpose
as to address some nagging little technical matters concerning a particular technique for dealing with certain obscure integrals
which could already be dealt with by other means. But in fact it is not unusual for mathematical theories to enter the world in
this backward manner, in response to some minuscule technical problem.

24 Analysis in place of geometry

Blind faith in the manipulation of formulas was a successful research strategy in the 18th century. We already saw this with
respect to complex numbers, but the point generalises. In the 17th -century analytical methods were primarily conceived of as
a way of shortening and automatising already existing geometrical reasoning. An analytical proof was seen as different in form
but not in principle from a geometrical one; in principle the two were intertranslatable. Descartes’s attitude is typical:

This does not make [my solution of the Pappus problem] at all different from those of the ancients, except for the
fact that in this way I can often fit in one line that of which they filled several pages.

But quite soon analytical methods were found to take on a life of their own. Analytical methods began generating reasonings that
had no geometrical counterpart. And, somewhat miraculously, these reasonings proved to be very reliable. Analytical methods
had originally relied on their intertranslatability with geometry as the source of their credibility, and there seemed to be no
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reason to believe that they would not always need this crutch. But it soon became undeniable that they could stand on their own
legs and even cover vast areas with ease that geometry could hardly wade through with the greatest effort.

As an illustration of the analytical magic so characteristic of the 18th century, consider the following early triumph of Euler (1735),
which set the tone for a life’s work based on bold faith in analytical methods.

24.1. (a) By considering the roots of sin(x)/x, argue that its power series

sin(x)/x = 1− x2

3!
+ x4

5!
− x6

7!
+·· ·

can be factored as (
1− x2

π2

)(
1− x2

4π2

)(
1− x2

9π2

)
· · ·

by analogy with the way one factors ordinary polynomials, such as x2 −x −2 = (x +1)(x −2).

(b) What is the coefficient of x2 when the product is expanded?

(c) Equate this with the coefficient of x2 in the ordinary power series and use the result to find a formula for the sum of
the reciprocals of the squares,

∑
1/n2.

These kinds of examples cannot be seen as codified and streamlined geometry; they are simply inherently analytical in their
very essence. The striking triumphs of these methods, therefore, force upon us the conclusion that there is something more
to mathematics than the geometrical paradigm can encompass. Two possible attitudes toward this new state of affairs suggest
themselves. Either we fall into an identity crisis since mathematical meaning and rigour had always been firmly anchored in
the Euclidean tradition, and now these new methods are proving of undeniable effectiveness despite their dubious meaning
and ontological status by any traditional standard. This reaction would certainly make sense for a philosopher concerned with
the epistemology of mathematics. Alternatively, one can take a more pragmatic attitude and say that the Euclidean paradigm
was justified through its triumphs in the first place, and now analytical methods have won that same warrant, so we simply
admit them as equals without worrying any more about it. In other words, our attempts to mimic the Euclidean paradigm in
modern times was not due to any deep-seated philosophical conviction, but was just an opportunistic attempt at mining more
truths from a fruitful vein; whence it stands to reason that, at the moment it proved depleted, we did not hesitate to abandon it
unceremoniously. The pragmatic attitude could not have been stomached by Descartes or Leibniz, but the new generation of
mathematicians counted no philosophers among them and no qualms about taking the pragmatic route.

Lagrange was the most brazen propagandist for a wholesale break with geometry and unquestioning acceptance of analytical
formulae as the new de facto subject matter of mathematics. In his Mécanique Analytique (1788), he put it succinctly:

No figures will be found in this work. The methods I present require neither constructions nor geometrical or me-
chanical arguments, but solely algebraic operations subject to a regular and uniform procedure.

This is the direct antithesis of the view of Leibniz, you will recall. Lagrange lamented that “those who rightly admire the evidence
and rigour of ancient demonstrations regret that these advantages are not found in the principles of these new methods [of
infinitesimals],” and this has been the mainstream view ever since. But advocates of this view often fail to realise that it is based
on a radical reconception of what “the evidence and rigour of ancient demonstrations” really consist in. Leibniz et al. were
passionately dedicated to preserving “the evidence and rigour of ancient demonstrations” and stubbornly refused to budge an
inch on the matter. But to them this evidence and rigour consisted first and foremost in the constructive element of the method.
This is what they fought tooth and nail to preserve, and this is what Lagrange fervently purged from mathematics like so much
superstition and dead weight. Indeed, if Leibniz had lived for a hundred years more one could easily imagine him criticising
Lagrange’s approach to the calculus in the exact same words that we saw Lagrange direct against Leibniz above. To Leibniz, it is
Lagrange who has sold the soul of geometry by giving up constructions. What is at stake here is not who is rigorous, but what
rigour means.

On the very same page as the above quotation Lagrange goes on to give his own supposedly more rigorous account of the appli-
cation of calculus to geometry, which starts: “To consider the question in a general manner, let y = f (x) be the equation of any
given curve . . .” In other words, the identity of curves with analytic expressions is taken for granted at the outset. This entire way
of framing the question is profoundly incompatible with the 17th -century interpretation of geometrical evidence and rigour.
Gone is the notion that geometry constructs its objects. Instead of points and lines drawn in the sand, analytic expressions—i.e.,
symbolic scribbles on a piece of paper—are the new primitive objects of mathematics.

In his Théorie des fonctions analytiques (1797), Lagrange gives a complete treatment of the calculus from this point of view. Thus
he states upfront:
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It will be seen in this work that the analysis that is commonly called transcendental or infinitesimal is at bottom
nothing but the analysis of primitive and derived functions, and that the differential and integral calculus is nothing,
properly speaking, but the calculus of these same functions.

In other words, the ontology of mathematics simply is analytic expressions and nothing more. The entire framework of math-
ematical meaning and rigour stemming from constructions has simply been ripped away like a band-aid. The mathematical
appeal of such a move is not hard to appreciate, but it comes at a cost. The framework of constructions had given mathematical
concepts a clear meaning, existential status, and bond to reality. Analytical formulae have none of these things. They are scrib-
bles on a piece of paper. Mathematics is ostensibly an empty game of symbols. One can see from its fruits that it is not empty
after all, but with Lagrange mathematics has given up its attempts at explaining why.

Lagrange, thus, was determined to sever the geometrical leg of mathematics completely and mercilessly, and installing the an-
alytical aspect—once a mere deputy in the service of geometry—in its place as the absolute ruling force of mathematics. In
retrospect it is easy to see that this was a coup d’état a hundred years in the making. The classical geometrical paradigm could
only live off past glory for so long; though once thought destined for great conquests, its attempts to stay relevant at the battle-
fronts of current research were becoming increasingly strained. Meanwhile, its analytical deputy was growing up fast, proving
itself remarkably powerful in ways that no one could have anticipated. Soon enough it had accumulated a track record rivalling
that of the geometrical paradigm in days of old. The conclusion was plain for all to see: the geometrical paradigm was not the
one and only divine force in the empire of knowledge after all, but merely a passing dynasty whose cycle of power had come and
gone.

25 Source: Projective geometry

� Jean-Victor Poncelet, Treatise on the Projective Properties of Figures (1822), selections in David Eugene Smith (ed.), A Source
Book in Mathematics, McGraw-Hill, 1929.

Consider Poncelet’s discussion of projections in his Chapter III. Consider the central projection of the x y plane onto the plane
y = 1 using the point (0,0,1) as the center of projection. In order to give an example of what Poncelet describes in §101, we can
consider the two lines:

□ y = 2x

□ y = 1−x

□ y = x −1

□ y = 1

□ x =−2

Still considering the central projection of the x y plane onto the plane y = 1 using the point (0,0,1) as the center of projection, in
order to give an example of what Poncelet describes regarding asymptotes in §104, we can consider x2+ y2 = 1 together with the
line:

□ x = 1 □ y = 1 □ y = x

26 Source: Barycentric calculus

� August Ferdinand Möbius, Barycentric Calculus (1827), selections in David Eugene Smith (ed.), A Source Book in Mathemat-
ics, McGraw-Hill, 1929.

Consider a line with two weights attached at the points A and B . Where do we have to put our finger for the line to balance (like
a lever arm, a playground see-saw, or a waiter’s tray)? If the weights are equal, we have to put our finger halfway between them.
If one of the weights is twice the other, we have to put our finger closer to the heavier one. We can even allow our weights to be
negative (a helium balloon instead of a piece of led, let’s say). If the weight at A is positive, say 2, and the weight at B is negative,
say -1, then we have to put our finger at a point on the line beyond A. This can all be understood with physical intuition. But
what if the weight at A is 1 and the weight at B is -1? There is no balancing point anymore. Physical intuition breaks down
and fails to define a point this way. But we can work around this limitation of physical intuition by finding an alternative way
of defining the balancing point which is equivalent to physical intuition in the cases where physical intuition is applicable, but
which remains applicable also in the cases where physical intuition is not. This is in effect what Möbius does in §2. Draw two
parallels through A and B (for example, we can choose these lines perpendicular to AB) and let A′ and B ′ be points on these
parallels respectively. Consider all lines A′B ′ such that a A A′+bBB ′ = 0 where a and b are the weights at A and B , and A A′ and
BB ′ are the signed lengths of these line segments (thus A A′ and BB ′ have opposite sign, one positive and one negative, if they
point in opposite directions). Draw a picture of all such lines A′B ′ in the case where a = 2 and b = 1, for example. All these lines
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intersect in the point that is the balancing point given by physical intuition in the manner above. Draw all lines A′B ′ in the case
where a = 2 and b =−1. The same interpretation applies. Now draw the all lines A′B ′ in the case where a = 1 and b =−1. This is
the case we could not do with physical intuition but which we can now interpret with our extended definition. In this case, the
lines A′B ′:

□ are parallel to AB

□ are parallel to A A′

□ intersect in one point between (the extended) A A′ and BB ′

□ intersect in different points between (the extended) A A′ and BB ′

□ intersect in one point on A A′

□ intersect in one point on BB ′

In the barycentric calculus, we can interpret Möbius’s A,B ,C , . . . as elements of R3 (or in other words vectors) and his a,b,c, . . . as
elements of R (numbers, scalars). Let A = (1,1,1) and B = (0,3,1), and a = b = 2. Thus a A+bB determines an associated S in the
sense of Möbius’s equation §14.I. What is S? (Möbius’s = can be understood to mean vector equality in the usual R3 sense.)

□ (2,8,4) □ (1,4,2) □ (1/2,2,1) □ (2,8,1)

Consider Möbius’s net recipe from §200. Let ABC D be a convex quadrilateral.

□ The Möbius net consists of precisely the edges of a perspective view of a tiled floor with ABC D as a tile.

□ The Möbius net contains the edges of a perspective view of a tiled floor with ABC D as a tile, plus additional lines.

□ The Möbius net does not correspond to a perspective view of a tiled floor with ABC D as a tile.

Consider Möbius’s §219 and let A = (0,0,1), B = (1,0,1), C = (0,1,1)), D = (1,1,1) = (−1)A + (1)B + (1)C , A′ = (0,0,1), B ′ = (3,0,1),
C ′ = (1,1,1), D ′ = (2,1,1) = (−1/3)A′+ (1/3)B ′+ (1)C ′. If P = (1,2,1), what is the corresponding point P ′? (It may help to draw the
Möbius nets and observe that the intrinsic coordinates χ and ψ have a simple interpretation in terms of the nets.)

□ (2,1,2)

□ (5,2,1)

□ (9/5,6/5,1)

□ (-1,2/3,10/3)

□ (-2/3,1/3,2)

27 Source: Grassmann’s Linear algebra

� Hermann Grassmann, Ausdehnungslehre (2nd ed., 1862). English translation: Extension Theory, AMS/LMS History of Math-
ematics Source Series, 2000.

At the beginning of Chapter 2, §37, Grassmann introduces a general notion of multiplication. In this exercise we shall see that
this notion incorporates as special cases a number of standard vector operations we use in linear algebra today. Let us use the
modern convention of writing i, j,k for the unit basis vectors in the x, y, z directions. This is comparable to what Grassmann
denotes by e1,e2,e3. Consider the product (x1i+ y1j)(x2i+ y2j). By Grassmann’s general laws of multiplication this expands to
x1x2ii+x1 y2ij+ y1x2ji+ y1 y2jj. Various special types of multiplication can be obtained by specifying what values are assigned to
ii, ij, ji, and jj. Namely:

□ The modern notion of the determinant (of a 2×2 matrix whose columns are x1i+ y1j and x2i+ y2j) is obtained by letting...

□ The modern scalar product (a.k.a. dot product, inner product) is obtained by letting...

□ The modern vector product (a.k.a. cross product, outer product) is obtained by letting...

□ ii = 0, ij = 1, ji =−1, and jj = 0

□ ii = 1, ij = 0, ji = 0, and jj = 1

□ ii = 0, ij = k, ji =−k, and jj = 0
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In 51, Grassmann proves that there are only two types of multiplication that are what he calls “linear”. These two are the “com-
binatorial” product given (in the case of two generators or basis vectors e1,e2) by [e1e1] = [e2e2] = 0 and [e1e2] =−[e2e1], and the
“algebraic” product given by [e1e2] = [e2e1]. Let us define the “2-algebraic” product as the multiplication given by the defining
equation [e1e2] = 2[e2e1]. To investigate whether the 2-algebraic product is “linear” in Grassmann’s sense (50), we need to check
whether [e ′1e2] = 2[e2e ′1] follows from [e1e2] = 2[e2e1] when e ′1 is a linear combination of e1,e2. (We also know that the general
rules from Chapter 2.1 such as distributivity and the interaction of products with scalars hold for all products.) Select all that are
true: If [e1e2] = 2[e2e1] for two “units” (basis vectors) e1,e2 then it follows that [e ′1e2] = 2[e2e ′1] when ...

□ e ′1 = 2e1 □ e ′1 = 3e1 □ e ′1 = e1 +e2

Grassmann’s combinatorial product (Chapter 3) has much in common with today’s determinants. For example, Grassmann has
theorems corresponding to determinant signs changes when swapping two columns (55), determinant = 0 corresponding to
linear dependence (61), and determinant invariance under linear columns operations (67). Our determinant is only defined for
square matrices. Let us consider whether Grassmann’s combinatorial product has a corresponding restriction. For instance,
consider whether one could still use 61 for a case that does not correspond to a square matrix. For example, is the combinatorial
product [(1e1 +2e2 −2e3)(2e1 +4e2 −4e3)] equal to zero?

□ Yes □ No

In Grassmann (1862), 2.1.4, the theorem in §378 (which in modern terms corresponds to: if two matrices have the same effect
on each basis vector then they are the same matrix) is stated incorrectly in the English translation. It is correct in the original
German. The part of the statement in the English translation that needs to be corrected is:

□ first order □ only if □ principal domain

Consider the “fraction” Q = (b1,b2,...,bn )
(a1,a2,...,an ) of Grassmann (1862), 2.1.4. To translate Grassmann’s notion into modern notation, let

A be the n ×n matrix with column vectors a1, a2, . . . , an , and let B be the n ×n matrix with column vectors b1,b2, . . . ,bn . Then
Grassmann’s Q corresponds to:

□ AB

□ AB−1

□ A−1B

□ A−1B−1

□ B A

□ B A−1

□ B−1 A

□ B−1 A−1

28 Sources: Linear algebra

� Jacqueline Stedall (ed.), Mathematics Emerging: A Sourcebook, Oxford University Press, 2008, Sections 17.1–17.3.

Consider Cauchy’s S(±a1a2
2 a3

3). When fully expanded and simplified, how many terms does S(±a1a2
2 a3

3) consist of?

□ 1

□ 2

□ 3

□ 4

□ 5

□ 6

□ 7

□ 8

□ 9

□ 10

□ 11

□ 12

What is today called the trace of a matrix M can, in Cayley’s notation, be written Det.(M̃).

□ True □ False

Consider Frobenius’s expression ∂A
∂y1

. Could he not simply have written A
y1

instead? (We are treating y1 as a formal variable so
this would not lead to any issues related to division by 0.) That would be equivalent when

□ A = x1 y1

□ A = 5x1 y1

□ A =−3x1 y1

□ A = y1

□ A = x1

□ A = 0

□ A = x1 y2

Which of the expressions for A in the answer alternatives of the previous question are examples of bilinear forms in the sense of
Frobenius (as defined by Stedall in the editorial comments before Frobenius’s article)?
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□ A = x1 y1

□ A = 5x1 y1

□ A =−3x1 y1

□ A = y1

□ A = x1

□ A = 0

□ A = x1 y2

In order to rewrite the quadratic surface z = x y in the form Ap2 +B q2 +Cr 2 +Gp +H q + I r +K = 0 in the manner of Euler, we
should take k,n,m to be

□ k =π/4,n = 0,m = 0 □ k =π/4,n =π/4,m = 0 □ k = π/4,n = π/4,m =
π/4

□ k = 0,n =π/4,m =π/4

Are Euler’s angles k,n,m what are called “Euler angles” today? (See for example the Wikipedia article “Euler angles” for a defini-
tion and a nice visualisation.)

□ Yes □ No

In paragraph 115, Euler says that equations of the form Ap2 +B q2 +Cr 2 +Gp + H q + I r +K = 0 can be reduced to the form
Ap2 +B q2 +Cr 2 +K = 0 by translating the origin of the pqr coordinate system. For example, to reduce x2 + y2 +3z2 + x +2 = 0
we should take

□ x = p −3

□ x = p −2

□ x = p −
p

2

□ x = p −1

□ x = p − 1
2

□ x = p + 1
2

□ x = p +1

□ x = p +
p

2

□ x = p +2

□ x = p +3

If f (x, y) = x y +4x2, Cauchy’s matrix

(
Axx Ax y

Ax y Ay y

)
is

□
(

3 1
2

1
2 −1

)
□

(
4 1

2
1
2 0

)

□
(
8 1
1 0

)
□

(
7 1
1 −1

)

□
(
8 1
1 0

)

29 Source: Leibniz’s definition of line

� Vincenzo de Risi, Geometry and Monadology: Leibniz’s Analysis Situs and Philosophy of Space, Birkhäuser, 2007.

Let d(a,b) denote the distance between points a and b. What De Risi, page 220, calls Leibniz’s “finest” definition of a straight line
can be stated as follows: The straight line determined by a and b is the set of all x such that, for any point y, ...

□ d(a,x) = d(a,y) and d(b,x) = d(b,y) =⇒ x = y

□ d(a,x) = d(a,y) = d(b,x) = d(b,y) =⇒ x = y

□ d(a,b) = d(x,y) =⇒ x = y

□ d(a,b) ≤ d(a,x)+d(x,b) and d(a,b) ≤ d(a,y)+d(y,b) =⇒ x = y

□ x = y =⇒ d(a,x) = d(a,y) and d(b,x) = d(b,y)

□ x = y =⇒ d(a,x) = d(a,y) = d(b,x) = d(b,y)

□ x = y =⇒ d(a,b) = d(x,y)

□ x = y =⇒ d(a,b) ≤ d(a,x)+d(x,b) and d(a,b) ≤ d(a,y)+d(y,b)
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30 Sources: Transformation-based geometry

� Mario Pieri, Geometry Envisioned as a Purely Logical System, 1900, translated in Marchisotto, Rodríguez-Consuegra, & Smith,
The Legacy of Mario Pieri in Foundations and Philosophy of Mathematics, Birkhäuser, 2021.

In VI(8), Pieri defines points a, b, c to be collinear if there exists a “motion” T such that T (a) = a, T (b) = b, T (c) = c, but T (d) ̸= d
for some d (the last requirement is what makes it a “proper” [i.e., non-trivial, non-identity] motion). Pieri says that this definition
“is not appropriate for the geometry of hyperspace.” By “hyperspace” we can think of R4 (or higher). By “motion” Pieri means
direct isometry (a.k.a. “rigid motions”; this includes translations and rotations but excludes reflections). With Rn as the set of
points, any orthogonal n ×n matrix with determinant 1 is an example of a “motion” in Pieri’s sense. Therefore, Pieri’s claim that
the definition of VI(8) wouldn’t work in the “hyperspace” R4 can be justified by exhibiting a non-identity orthogonal 4×4 matrix
T with determinant 1 such that T (a) = a, T (b) = b, T (c) = c for some non-collinear points a, b, c. (That is to say, a, b, c are points
that we know to be non-collinear (in the usual sense) but which would erroneously be counted as collinear according to Pieri’s
definition.) Examples of such matrices are:

□




−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




□




−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1




□




−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1




□




−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1




□




1 0 0 0
0 1 0 0
0 0 cosπ/4 −sinπ/4
0 0 sinπ/4 cosπ/4




Right before VII(17), Pieri defines the concept of (line) segment. How?

□ It is defined in terms of the concept of betweenness, which is a primitive notion as Pieri noted at the beginning of IV
(following Pasch).

□ It is defined in terms of the concept of the “inside” of a sphere. This concept is implicit in Pieri’s definition of a sphere
(following VI(9)). Pieri’s “sphere” is a solid sphere (ball) that includes its interior points. Thus being “inside” the sphere
simply means being an element of the set of points of the sphere.

□ It is informally characterised in terms of the undefined notion of the “inside” of a sphere, and this informal characterisation
is then reformulated in terms of previously defined notions. Thus the notion of the “inside” of a sphere is effectively defined
in the sentence after it is mentioned.

� Hermann Weyl, Raum, Zeit, Materie (1918), English translation Space Time Matter, by Henry L. Brose, 1922, §1.

Consider Weyl’s way of defining translations independently of the concept of rotations (§1, p. 15 of the English translation).
Weyl defines two congruent transformations T,T ′ to be “interchangeable” if T (P ) = P ′ =⇒ T (T ′(P )) = T ′(P ′). Consider the
points O = (0,0) and X = (1,0) in R2. Let T denote the 10-degree counterclockwise rotation around O. Which of the following
transformations of the plane R2 are interchangeable with T ?

□ the identity transformation

□ T itself

□ the 20-degree counterclockwise rotation around O

□ the 17-degree counterclockwise rotation around O

□ the 10-degree clockwise rotation around O

□ the 10-degree counterclockwise rotation around X

□ the 20-degree counterclockwise rotation around X

□ the 17-degree counterclockwise rotation around X

□ the 10-degree clockwise rotation around X

Let T,T ′ denote congruent transformations of the plane R2. Select all that are true:
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□ If T is a rotation, there exist points A,B ∈ R2 such that T is interchangeable with some non-identity congruent transfor-
mation T ′ for which T ′(A) = B .

□ If T is a rotation and A,B ∈ R2 are arbitrary distinct points, there exists some non-identity congruent transformation T ′

interchangeable with T for which T ′(A) = B .

□ If T is a translation, there exist points A,B ∈R2 such that T is interchangeable with some non-identity congruent transfor-
mation T ′ for which T ′(A) = B .

□ If T is a translation and A,B ∈R2 are arbitrary distinct points, there exists some non-identity congruent transformation T ′

interchangeable with T for which T ′(A) = B .

31 Source: elliptic curve arithmetic

See Figure 35 for an introduction to elliptic curve arithmetic. The exercises below make use of the notation introduced
in this figure. The operation ∗ on cubics is useful in number theory. Famous mathematicians who have used it in-
clude Newton (https://cudl.lib.cam.ac.uk/view/MS-ADD-04004/184) and Poincaré (https://archive.org/details/
uvresdehenripoin05poin/page/490/mode/2up?view=theater).

“Composition” of points on cubic curves
Let C be a cubic curve such as y = x!.
De"ne the operation → on C :

A→B := line(A,B)↑C

A B

A→B

y! = x"→x y! = x!(x+ ") y! = x" y! = x"→x+ # y! = x!(x→ ")

A→A := limB↓AA→B
=tangent(A)↑C

The tangent line intersects the curve withmultiplicity # at the point of tangency. A B

A→B

A→A At an in$ection point I, the multiplicityincreases to !. Hence:

I→ I= limB↓I I→B
=I

Perhaps I should be our identity?
I

If I is to be regarded as the identity, then weshould de"ne A↔% ↗C to be a point suchthat

A→A↔% = I
I

A

A→!

Is C a group under →, with identity elementI?
Hint:

A→ I= I
A

A→!

Quick "x:

A+B := (A→B)→ I

Is C a group under →, with identity elementI? Yes! A
B

A→B

A+B := (A→B)→ I

I

Inverse with respect to → is inverse withrespect to +:

A↔% =↔A

Maybe O is a better notation for I whenusing additive notation.
I=A→A↑! =A+ (↑A)=O

A

A↑! =↑A

Projective equivalence of y = x! and y# = x!

x!! = x"#


& & ↔%& % &% & &




↘↓

x! = x"#
Where does I=O go?

+ on y# = x!
With I=O sent to ≃ in thedirection of the y-axis,inverting in I becomesmirroring in the x-axis.

A B

A→B

A+B

A
→A=A→!

A→A=O= I=A↑A→!

Figure 35: Elliptic curve arithmetic.

Consider Sylvester’s article https://www.jstor.org/stable/2369443. On page 59, Sylvester defines an operation ( , )
which corresponds to what I denoted ∗ in my figures. At the beginning of the section “Title 1” (starting on page 58), Sylvester
considers, in modern language, picking some point A on a cubic and forming the closure of {A} under ∗. He observes that this
closure is not a “spread.” Sylvester gives a quaint discussion of what “spread” means, informed by his perspective as an English-
man having moved to the United States. The precise mathematical meaning remains elusive, but it seems to mean something
like “dense set.” Sylvester then considers the closure of {A, I } under ∗, and observes that this is
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□ a spread □ still not a spread

At the beginning of “Title 2” (page 68), Sylvester considers some properties of the operation, as well as how it behaves with
respect to inverses. Note that Sylvester proves a theorem very closely related to what we regard as the elementary group theory
fact that (ab)−1 = b−1a−1. But note that his proof is based on a lemma (reminiscent of chemistry, according to Sylvester!) from
the top of page 60, for which Sylvester refers to an advanced geometry book for a proof. This shows how messy things were before
the age of group theory. Nowadays, when everybody has had a group theory course, you only need to verify the group axioms
and you get lots of such theorems for free, since they are valid for any group, instead of having to rely on messy context-specific
proofs. Such an economy and efficiency would have been made available by switching from ∗ to +. Instead, as things stand, with
Sylvester’s chosen operation, identity I , and inverses (“opposites”), one does not quite get a group. Indeed, consider the equal
signs on page 68 in order. Which is the first equal sign that states an equality that is inconsistent with this being a group? (There
is at least one small typo on this page, where you have to use your mathematical judgement to infer the intended meaning.)

□ 1

□ 2

□ 3

□ 4

□ 5

□ 6

□ 7

□ 8

□ 9

□ 10

too little, fall short

ellipse
x2 = py−k y2

elliptic integrals∫
1p

1−x4
d x

elliptic functions

elliptic curves

arc length

invert

parametrise

too much, exceed

hyperbola
x2 = py+k y2

circle
x2 + y2 = 1

arctrig integrals∫
1p

1−x2
d x

trig functions

circles

arc length

invert

parametrise

Figure 36: Etymology of the name “elliptic curve.”
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