ON THE INTERPRETATION OF
EXACTNESS

Henk J. M. Bos

Introduction: construction and representation

The subject of this talk arose out of a problem which I encountered in my
research in early modern mathematics. The theme of that research is ‘The
Concept of Construction and the Representation of Curves’ and the period is
roughly from 1550 till 1750. During this period, the concept of ‘construction’
played an important and intriguing role in the development of mathematics. In
classical Greek geometry construction was the standard procedure for solving
problems. Geometrical propositions came in two kinds: theorems and problems;
Pythagoras’ theorem is a theorem; to draw a circle through three given points
is a problem. Theorems were proved, problems were constructed. The formal
construction of a problem consisted of a sequence of operations performed upon
some given configuration and resulting in a new element of the figure with certain
required properties. The operations were either postulated to be possible (as the
constructions by ‘ruler and compass,’ implied in Euclid’s first three postulates)
or explained in earlier problem-type propositions. The construction of a problem
was concluded by a proof that the constructed figure did indeed possess the
required properties. This classical conception of propositions and of problems
in particular was still accepted as a matter of course in the early modern period;
hence in a geometrical context problems could only be solved by a construction.

Two characteristic features of early modern mathematics gave an extra sig-
nificance to the concept of construction. The first concerned the importance
of problems. Early modern mathematicians, geometers in particular, saw their
task primarily as problem solving and were less interested in proving theorems
or investigating properties of geometrical constructs. As a result many math-
ematical activities were ultimately aimed at finding constructions. The second
feature concerned curves. Many new curves were found and studied in the pe-
riod. These curves had to be described in such a way that henceforth they could
be considered known. I use the term ‘representation of curves’ for such descrip-
tions of curves. At present we are used to representing curves by their algebraic
or analytical equations. However, it was only during the eighteenth century

1Or rather ‘by circles and straight lines’, because Euclid did not refer to instruments in his
postulates; in the sequel I shall use both expressions.
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that the validity of this technique became self-evident. For some 100 years af-
ter Descartes and Fermat had introduced analytical geometry the equation of
a curve was not considered to provide the essential or basic understanding of a
curve. Mathematicians required more than merely the equation for the repre-
sentation a curve; they preferred a construction of it, that is, a procedure by
which (in principle) the curve could be drawn on paper — we will see examples
of such constructions of curves below.

What makes the concept of construction an interesting subject of study is its
importance in the early modern period, and particularly the fact that it pro-
voked grave conceptual and methodological questions. Many mathematicians
struggled with these questions and the various approaches which they adopted
to answer or avoid them reveal much about the ways of mathematical thinking
and the preferred directions of research at the time.

Basically there were two questions. The first was an old one; it arose in
classical Greek geometry, but in the early modern period it gained a new urgency
because mathematicians more and more often encountered problems that could
not be constructed by ruler and compass. It was:

How to construct in geometry when ruler and compass are insuffi-
cient?

The second question concerned the representation of curves. Many of the new
problems that confronted mathematicians, especially those generated by the new
mechanics of motion, required the determination of hitherto unknown curves.
What could count as a solution to such a problem? Not, as explained above,
an equation, but a construction. But here the Euclidean means of ruler and
compass were entirely insufficient; they provided circles and straight lines only.
The second question, then, was:

How to represent curves?

These were serious questions, both conceptually and practically; without com-
monly accepted answers to them, problem solving was impossible. I want to
stress this because the difficulties I encountered in studying the concepts of
construction and representation may at first sight seem to be incompatible with
the seriousness of the issue. Let me formulate these difficulties succinctly, and
with some hint of my initial frustration about them, as follows: i) I found an
abundance of ways of constructing and they often seemed very strange. ii) Early
modern mathematicians adduced many arguments in support of these construc-
tions but these were seldom, if ever, convincing. iii) At present, practically all
these constructions are forgotten, and with good reason.

How, then, was I to write a historical account? How could I avoid ending
up with a meaningless list of strange constructions and arguments of which
you cannot even decide whether they are correct or not? The ideas about the
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interpretation of exactness which I want to present in this lecture helped me
to pull myself out of this difficulty. I shall first present some examples of the
constructions and of the arguments about their adequacy. Then I shall discuss
the ideas about the interpretation of exactness and show how they can make
more sense of the phenomena than mere description. I’ll end the lecture with
some more general remarks about the relevance of the ideas for other historical
periods (including the present).

Constructions

I give three examples of constructions. They are: Christoph Clavius’ 1589
construction of the curve called ‘quadratrix;” René Descartes’ construction of
the roots of the general sixth-degree equation as published in 1637, and Jakob
Bernoulli’s 1694 construction of a curve called the ‘paracentric isochrone’.

Clavius gave the construction in his 1589 edition of Euclid’s Elements.? The
quadratrix was introduced by classical Greek mathematicians in relation to the
problems of dividing angles and squaring the circle (the latter connection gave
the curve its name). It is (see Figure 1-a) the curve AD within the quadrant
OABC which is traced by the intersection I of a horizontal line K L and a radius
OM when both these lines move uniformly, the radius turning from position O A
to position OC and the horizontal line moving, parallel to itself, from position
AB to position OC, the two motions being performed in the same time-span. It

2Euclid, Elementorum libri XV accessit XVI de solidorum regularium cuiuslibet compara-
tione (ed. C. Clavius), 2 vols, Rome, 1589.
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follows from that generation that for any point I on the quadratrix the following
proportionality applies:

LCOI: (COA=0K :0A.

By means of the quadratrix it is easy, for instance, to trisect an angle — a
problem which cannot be constructed by ruler and compass alone. The solution
by the quadratrix is as follows:

Let (see Figure 1-b) the given angle be ZMOC drawn with respect
to a given quadratrix AD; I is the intersection of OM and the
quadratrix. It is required to trisect ZMOC.

Construction

1. Draw a line through I parallel to OC; it intersects OA in K.

2. Divide OK into three equal parts (this can be done by ruler and
compass); draw lines through the division points parallel to OC;
they intersect the quadratrix in points J; draw radii OJ.

3. These radii divide the angle into three equal parts.

(The proof that the construction is correct is immediate from the
definition of the quadratrix.)

Evidently, the quadratrix is a powerful means for solving problems, for the
construction described above is easily generalized to dividing any angle into any
number of equal parts or into two parts with any given ratio.® Clavius realized
this but, taking over objections voiced already in antiquity, he doubted the
geometrical acceptability of the construction of the curve by motion, because it
was not clear how, without previous knowledge of the ratio between the radius
of a circle and its circumference, one could adjust the two motions such that
they would be completed in exactly the same time. Clavius therefore devised an
alternative construction of the curve, a construction which did not depend on
motion and was, he claimed, geometrically fully acceptable. The construction
was as follows:*

Given a square QABC (see Figure 2); it is required to construct the
quadratrix within the square.

Construction

1. Draw the quarter circle AC.

2. Bisect OA and BC in D and E respectively; draw DE; bisect arc
AC in F, draw OF; OF intersects DE in G; G is on the quadratrix.
3. Bisect AD and BE in D' and E' respectively; draw D' E’; bisect
arc AF in F’; draw OF'; OF' intersects D'E’ in G'; G’ is on the

3The curve can also be used to find the quadrature of the circle. It can be proved that
arcAC : OC = OC : OD. Thereby the circumference of a circle with radius OC can be
constructed and from that its quadrature, that is, its area. This property gave the curve its
name ‘quadratrix.’

4Euclid, Elementa (cf. note 2), pp. 895-896.
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quadratrix.

4. Repeat this procedure with other segments and corresponding
arcs until sufficiently many points on the quadratrix are determined.
5. “... then the quadratrix line has to be drawn uniformly through
these points, such that it does not oscillate but continues smoothly
all along, making no hump or angle anywhere.”®

6. To construct point D, the intersection of the quadratrix with
the axis OC (which will not be among the points G constructed
in (4)), construct points below OC symmetrical with points on the
quadratrix near D; draw a smooth curve through these points on
both sides; its intersection with OC gives D “without notable error,
that is, one which can be perceived by the senses.”®

(Proof: From the definition of the curve it is obvious that the con-
structed points are on the curve.)

The procedure is a ‘pointwise’ construction of a curve. This type of construction
was very common in early modern mathematics. Basically it accepts a curve
as constructed if a method is provided by which arbitrarily many points, lying
arbitrarily near to each other on the curve, can be constructed by geometrically
acceptable means (in Clavius’ case: by ruler and compass). I shall return below
to Clavius’ arguments for accepting this procedure as legitimately geometrical.

My second example is Descartes’ construction of the roots of a sixth-degree

5BEuclid, Elementa (cf. note 2), p. 896; here and elsewhere, unless stated otherwise, the
translations are mine.
SEuclid, Elementa (cf. note 2), p. 896.
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equation as published in his Géométrie of 1637.7 Descartes first showed that by
a suitable transformation any sixth-degree equation could be written as

S —prdtget—rad 2t -tz +v=0,

with p, q, ..., v positive.® Descartes’ construction of the roots of this equation
required two curves to be drawn with respect to given perpendicular axes in the
plane. The roots were then found as the ordinates of the points of intersection
of the two curves. One of the curves was a circle, the other was a so-called
‘Cartesian parabola’. Descartes explained how the latter curve ¢ould be drawn
by a procedure involving the combined motions of a turning ruler and a moving
parabola. Consider (see Figure 3) a parabola with vertex B and latus rectum a
(which means that its equation is ay = z2). The parabola moves vertically along
its axis and carries with it the point P on the axis at a fixed distance b from B.
There is also a ruler which connects a fixed point D and the moving point P.
The distance of D from the axis is ¢. When the parabola moves, the ruler turns
around D); its motion is determined by that of the parabola. The combined
motions of the ruler and the parabola (see Figure 4) in their turn determine
the motion of the points of intersection I of the ruler and the parabola; during
their motion, these intersections trace a new curve DEFGH. This curve is the
Cartesian parabola. It is a third-degree curve with two branches; the vertical is
its asymptote.

The Cartesian parabola, then, is determined by the three parameters a, b
and ¢. The other curve featuring in the construction, the circle, is determined
by three more parameters, namely its radius » and the coordinates xzpr and yar
of its centre M. The roots of any sixth-degree equation written in the above
form can now be constructed by adjusting the parameters to the values of the
coeflicients. Descartes shows how this should be done:

Construction (see Figure 5)
1. Adjust the parameters of the Cartesian parabola as follows:

TR. Descartes, Géométrie, pp. 402-411. Descartes’ Géométrie constitutes one of the ‘essais’
in his Discours de la methode pour bien conduire sa raison et chercher la verité dans les
sciences; plus la dioptrique les meteores et la geometrie qui sont des essais de cete methode,
Leiden, 1637; it is on pp. 297-413. There are facsimile reprints of this work (Osnabriick,
1973; Lecce, 1987). The text of the Géoméirie is in the Oeuvvres de Descartes (Ch. Adam,
P. Tannery, eds), Paris, 1897 - 1913 (Nouvelle présentation, Paris (Vrin) 1964-1974), vol. 6,
pp. 367-485. There is a facsimile reprint with English translation: The geometry of René
Descartes (tr. ed. D.E. Smith and M.L. Latham), New York, Dover, 1954.

8In this standard form the equation has only positive roots; the form can be achieved by
a translation.
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(note that these formulas involve square roots as the only irrational-
ities, so the lengths they represent can be constructed with ruler and
compass); draw (by the procedure explained above) the Cartesian
parabola with these parameters.

2. Adjust the parameters for the circle as follows:

Vvt
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(again, these lengths are constructible by ruler and compass); draw
the circle with centre M and radius r.
3. The two curves determine (at most six) points of intersection

29
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U; draw their ordinates UW; they are the (positive) roots of the
equation.

(Proof. Descartes proves by direct calculation that the constructed
ordinates do indeed satisfy the given equation.)

I shall return to Descartes’ arguments in favour of this construction, for the
moment I merely remark that, in Descartes’ opinion, this construction should
be accepted as the canonical solution of a sixth-degree equation if it occurred
in a geometrical context. He also believed that analogues of this construction
could be found for any polynomial equation in one unknown.

My third example® of a construction is, like the first one, a pointwise construc-
tion of a curve. Its author is Jakob Bernoulli, who gave it in 1694 in response
to a problem proposed by Leibniz. Leibniz had challenged mathematicians to

9For further information on this episode see my articles “The lemniscate of Bernoulli”,
For Dirk Struik (Cohen, R. S., e.a., eds., Dordrecht, Reidel, 1974), pp. 3-14 and “The
concept of construction and the representation of curves in seventeenth-century mathematics”,
Proceedings of the International Congress of Mathematicians, August 3-11, 1986 Berkeley,
Californie, USA (A. Gleason, ed., Providence, American Mathematical Society, 1987), pp.
1629-1641.
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determine the curve he called the “paracentric isochrone,” characterized as fol-

lows: A point M (see Figure 6) is assumed to move along the curve OM N in
a vertical plane, as if under the influence of gravity. If the form of the curve is
such that during the motion of M along it, the radius » = OM varies linearly
with time, then OM M is a paracentric isochrone. Figure 6 gives the situation
in which it is assumed that the body has a finite initial velocity when starting
from the point O. Bernoulli gave the following construction of the curve.!?

Construction

1. Take an elastic beam (!) (see Figure 7), fix its one end vertically
at A and apply a sufficient force F to its other end to bend it such
that its direction at O is horizontal; the beam now has the shape of a
curve which Bernoulli called the elastica; use it to draw the elastica
AO on paper.

2. Draw a circle around O with radius OB = a, where a is the
horizontal distance of A and O.

3. Take an arbitrary point C on BO and draw CD vertically with

10 Jakob Bernoulli, “Solutio problematis Leibnitiani de curva accessus et recessus aequabilis
a puncto dato, mediante rectificatione curvae elasticae”, Acta Eruditorum, 1694 (June), pp.
276-280; also in Jakob Bernoulli, Opera, Geneva, 1744 (reprint Brussels, 1967), pp. 601-607.
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D on the elastica. .
4. Take U on the circle such that UV = %.

5. Take W on OU such that OW = Li"%(zﬁﬁ (here it is assumed
that the rectification of the elastica can be performed).

6. W is on the paracentric isochrone; repeat the construction for
other points C on BO to get arbitrarily many points on it.

As before, I will return to Bernoulli’s arguments in favour of this construction;
now I remark only that the construction is indeed correct if one accepts that
the elastic beam bends in the form which the theory of elastic bending predicts.
In fact Bernoulli had just elaborated that theory and in this construction he
applied one of the results of that study. The paracentric isochrone is a tran-
scendental (i.e. a non-algebraic) curve. There are two steps in the construction
that introduce the transcendental nature, the one is the introduction of the

bent elastic beam, the second is the assumption that one can determine the arc
length of a given curve.

The three examples may explain my initial perplexity when surveying the seven-
teenth-century constructions of which these three are extreme but not unchar-
acteristic examples. If I try to characterize them the first adjectives that come
to my mind are methodologically useless: I find Clavius’ construction cute; I
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find the algebraic part of Descartes’ construction, the formulas for the param-
eters, decidedly ugly, but his process of tracing the Cartesian parabola I find
intriguing. And Bernoulli’s construction I find just weird. But such words —
cute, ugly, intriguing, weird — help little. Let me then turn to the arguments of
the authors of the constructions to see if these help us to understand the early
modern practice of construction.

Arguments

Together with Clavius’, Descartes’ and Bernoulli’s comments on their construc-
tions I shall discuss the opinions on construction expressed by two other math-
ematicians, namely Viéte and Kepler.

Clavius’ arguments!! in favour of his construction of the quadratrix primar-
ily regarded practical precision. He wrote that his construction was very precise
indeed. It was true that he only constructed points on the curve, but if point-
wise constructions were to be rejected then the work of Apollonius on conics,
many of Archimedes’ results and the whole practice of making sundials should
be rejected as well. Moreover, he wrote, the quadratrix construction was more
precise than the usual pointwise constructions of conic sections, and it could
be refined at will by constructing more points on the curve. Clavius admitted
that the construction did not attain absolute precision, but that did not pre-
vent him from claiming, in 1589, that his procedure was “truly geometrical”,
and that by means of the quadratrix thus constructed the quadrature of the
circle was geometrically (“geometrice”) solved. Later, probably in response to
criticism, he retracted that statement somewhat; in re-publications of his trea-
tise on the quadratrix in 1604 and 1611-12'2 he added a cautious “in a way”
(“quodammodo”) to the assertive “geometrice” of the earliest version.

In 1591 Francois Viéte published a short, programmatic treatise, the Introduc-
tion to the analytic art,'® in which he sketched a new research programme in
mathematics. In the years that followed he carried out this programme and
published some of the results in a series of separate treatises. In one of these,
A supplement to geometry,!* he treated geometrical constructions beyond ruler
and compass. He based his treatment on the fact, already known to classical
Greek geometers, that many problems which could not be solved by ruler and
compass alone could be reduced to the solution of one special problem called
‘neusis’. This neusis problem was as follows:

1 Euclid, Elementa (cf. note 2), pp. 897-898.

2Chr. Clavius, Geometria Practica, Rome, 1604, p. 362; Opera Mathematica, 4 vols,
Mainz, 1611 - 1612, vol 2, p. 191.

13Francois Viéte, In artem analyticen isagoge, Tours, 1591; the text is also on pp 1-12 of
Viéte’s Opera mathematica (ed. F. van Schooten), Leiden, 1646 (facsimile reprint Hildesheim,
1970). An English translation is on pp 11-32 of Frangois Viéte, The analytic art, nine studies
in algebra, geometry and trigonometry (tr. T.R. Witmer), Kent (Ohio), 1983.

14 Frangois Victe, Supplemenium geometriae, Tours, 1593; in Opera (cf. note 13), pp. 240-
257; translation in Analytic art (cf. note 13), pp. 388-417.
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Figure 8.

Given: two straight lines [ and m (see Figure 8), a point O and a
segment a.

Required: a line through O, intersecting { and m in A and B
respectively, such that AB = a.

Viéte asserted that geometry should be supplemented!® with a new postulate
— I shall call it the ‘neusis postulate’ — which stated that the neusis problem
could be constructed. With that supplement geometry would extend its power
over a whole area of problems which it could not handle on the basis of the Eu-
clidean postulates alone. In a sense, then, Viéte’s proposal was an alternative
to Clavius’ introduction of the quadratrix. Both legitimated the use of some
means of construction beyond the Euclidean canon of ruler and compass. Unlike
Clavius, however, Viéte adduced no explicit arguments in support of this legiti-
mation; he did not even comment on the question of how the neusis construction
should be performed. On the other hand, he gave a beautiful result that showed
clearly the power of the new postulate. He proved that any geometrical problem
which, translated into algebra, led to an equation (in one unknown) of degree
1, 2, 3 or 4, was constructible once the Euclidean postulates were supplemented
by the neusis postulate. In particular such problems as the trisection and the
construction of two mean proportionals became solvable through this supple-
ment of geometry.

In the case of Johann Kepler I need not explain a particular construction because
he rejected all constructions beyond those by ruler and compass. He was very ex-
plicit about the reasons for this purist orthodox attitude. We find his arguments
in his great study on the harmonies of the world, the Harmonices mundi from

15Hence the name of the book, cf. note 14.
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1619.1° He first of all recalled ancient authority: Proclus had explained that the
circle and the straight line were the first and the simplest and the most perfect
of lines; using others would lessen the perfection of geometrical construction.
Moreover, Kepler showed — convincingly, I may add — that many construc-
tions hitherto proposed beyond ruler and compass were inexact, unconvincing
if not downright impossible. He concluded that beyond the domain defined by
the use of straight lines and circles no truly scientific knowledge was possible
in geometry. The other domain, including problems such as the trisection, was
separated from true geometry and, as he wrote, “the bridge lies broken on the
other shore”.!” The richness of his metaphors indicates how strongly Kepler
felt about this matter and indeed he had deeper reasons for adopting such a
restrictive vision of geometry. These reasons were philosophical.

The central concept of Kepler’s philosophy was harmony. God had created
the world according to harmonious principles. Only the harmonious was truly
knowable. Geometry was one of the ways to attain such knowledge, applying in
particular to the realm of magnitudes, where harmony resided in the ratios of
magnitudes. Which ratios, then, were harmonious? According to Kepler these
were precisely the ratios of magnitudes occurring in geometrical figures which
were constructed within Euclid’s geometry, that is, exclusively by straight lines
and circles. The regular triangle, the square, the regular pentagon and hexagon
were such figures, but not, for instance, the heptagon. In space geometry the
principal figures providing harmonious ratios were the Platonic solids. These
Platonic solids, treated in the thirteenth book of Euclid’s Elements, formed as it
were the pinnacle of the building of geometry; weakening the rules of Euclidean
construction removed the cement and the roof of that building and then “the
walls stand cracked, the vaults in danger of collapse.” 18

Contrary to Kepler, Descartes did not hesitate to introduce means of construc-
tion beyond the Euclidean straight lines and circles. In his Géométrie he even
proposed that any curve could be used for construction, provided it was alge-
braic and no simpler curves could be found by which the same construction could
be performed. This new opinion on construction enormously expanded the le-
gitimate realm of geometry. Unlike Viéte, Descartes did provide arguments for
the legitimacy of his new conception of geometrical construction. Basically he
claimed that curves were acceptable for use in geometrical constructions when
they could be traced by motions or combinations of motions which could be
clearly and distinctly imagined by the mind’s intuition and were therefore pre-

16 Johannes Kepler, Harmonices mundi libri V, Linz, 1619; I refer to the edition of the work
in vol. 6 of Kepler's Gesammelte Werke (ed W. von Dyck, M. Caspar, F. Hammer), Miinchen,
1937 sqq; there is a German translation: Weltharmonik (tr. M. Caspar) (repr. of ed. 1939),
Miinchen, Oldenbourg, 1973. The most important passages on construction are in book I (pp.
13-64 in the Werke).

17Kepler, Harmonices mundi (cf. note 16), pp 60-61.

18Kepler, Harmonices mundi (cf. note 16), p. 19.
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cise and exact.!® The tracing of the Cartesian parabola by the combination of
a turning ruler and a moving parabola satisfied these criteria. Its use in the
construction of the roots of a sixth-degree equation was therefore geometrically
legitimate and thereby all problems that led to such equations were solvable in
Descartes’ new doctrine of geometry.

The paracentric isochrone was a non-algebraic curve — of the class of curves,
therefore, which Descartes had rejected from geometry. When Descartes formu-
lated this demarcation of geometry it constituted an extension of the geometrical
domain, but by the end of he century it was felt to be an undesirable restric-
tion. Bernoulli did not accept it; he saw the determination of the paracentric
isochrone as a legitimate geometrical problem and his construction as a legit-
imate solution. Yet the solution was sufficiently unusual for him to comment
in some detail on his own and other methods for constructing non-algebraic
curves in a later article.2’ He distinguished four such methods. The first was
‘by quadratures of algebraic curves’, which meant that one assumed (as a pos-
tulate) that the areas under algebraic curves could be determined. Bernoulli
had derived the following equation of the paracentric isochrone in coordinates
r and u (see Figure 7):

¥ a’du
var= [ A
where » = WO and u is defined by u? = a?sing. The right-hand side is
an elliptic integral which cannot be integrated in finite terms. But on the
basis of this analytical expression a pointwise construction ‘by quadratures’ was
immediate: the integral represented the area under an algebraic curve; if that
area were assumed to be constructible, arbitrarily many pairs (u, r), and thereby
arbitrarily many points on the curve, could be constructed.

Bernoulli considered such constructions by quadratures acceptable but hardly
satisfactory. In his opinion other kinds of construction were better. One was
‘by rectification of algebraic curves’. That case occurred if the equation of the
curve involved an integral which was interpretable as the arc length of an alge-
braic curve, so that the curve would be constructible if one assumed that arc
lengths of algebraic curves could be determined. It was better to assume that arc
lengths could be determined than to assume the same about areas under curves,
because, he argued, arc lengths, being one-dimensional, were easier to deter-
mine (for instance by applying a cord along the curve) than areas (quadratures),
which are two—dimensional. Actually, both Jakob and his brother Johann, in-
dependently, found a construction of the paracentric isochrone by rectification

19Cf. my article “The structure of Descartes’ Géométrie”, Descartes: il metodo e i saggi;
Atti del convegno per il 3500 anniversario dells publicazione del Discours de la Méthode
¢ degli Essais (ed. Giulia Belgioioso e.a., Florence, 1990), pp. 349-369, in particular pp.
362-363.

20 Jakob Bernoulli, “Constructio curvae accessus et recessus aequabilis ope rectificationis
curvae cuiusdam algebraicae”, Acta Eruditorum, 1694 (Sept), pp. 336-338.; in his Opera (cf.
note 10), pp. 608-612, see in particular pp. 608-609.
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of an algebraic curve; it turned out that each had hit on the same curve to be
rectified, namely the ‘lemniscate’ %!

Another method of constructing non-algebraic curves which Jakob Bernoulli
preferred to the use of quadratures (and which he considered to have the same
standing as those employing rectification) was a special type of pointwise con-
struction which, for reasons of space, I will not explain in detail here; I only
remark that Clavius’ construction of the quadratrix was of that type.

Although preferable to constructions by quadratures, the latter two methods
were, in Bernoulli’s opinion, not ideal. Not surprisingly, the best method was
exemplified by his own construction of the paracentric isochrone. He described
it as a construction by means of curves ‘given in nature.’ The ‘elastica’ was
such a curve given in nature (namely by bending an elastic beam). Another
such curve, Bernoulli explained, was the catenary, the shape of a chain or rope
suspended between two points. It could easily be provided ‘by nature’: one
simply suspended a chain or rope between two points in front of a vertical piece
of paper. Constructions which employed these curves which nature supplied
free of charge were the best possible.

The interpretation of exactness

This brief overview may explain why, rather than taking away my bewilderment
about the constructions, the arguments about their validity only increased my
confusion. Especially the ambivalent attitude towards practical feasibility was
difficult to interpret; most of the constructions could not actually be executed at
all and were not meant to be, and yet practicality was an argument the defence
of their geometrical legitimacy.

So how are we to make sense of this? Apparently the intellectual quality
of the arguments is not the best guide for studying them historically. And
the usual reason for interest in scientific arguments from the past is lacking
too, namely their ancestor relation to ideas that we now cherish. Indeed, there
is no danger here of a ‘Whig’ approach to history;?? both the constructions
themselves and the arguments surrounding them have long since disappeared
from the mathematical scene.

Yet the issue was important for early modern mathematics. Several devel-
opments at the time were crucially influenced by ideas about legitimate geo-
metrical construction; the interest in certain problems can only be understood
from the contemporary ideas about construction, and the terminology of the
mathematical texts can hardly be understood without an awareness of the is-
sues surrounding construction. As neither the mathematical content nor the

21For further details see my “Lemniscate” (cf. note 9).

22The term ‘Whig history of science’ is used, usually in a critical sense, to denote a type
of historiography which finds interest in past events only if they can be argued to have led
directly to the valuable achievements of modern science. See e.g. Bynum, W.F. e.a., eds,
Dictionary of the history of science, London, 1984, s.v. ‘Whig history’, pp. 445-446.
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quality of the arguments seems to provide a workable approach to the issue, we
should ask: what was the function of the debates on construction within the
mathematical enterprise? What exactly were the mathematicians doing when
they engaged in these debates? Well, they allowed and forbade, sanctioned and
vetoed, tolerated and restricted; in short, they legislated (and disputed legisla-
tion) on two important methodological questions of early modern mathematics.
These questions were:

When is a problem solved?
When is an object known?

These were crucial questions because without a generally accepted answer to

them a large part of the practice of geometry, in particular problem solving,
would be impossible.

At this point I should insert a remark about approximation. Clavius referred
to the precision of pointwise construction, Bernoulli considered the arc length
of a curve easier to determine than the area under a curve — were these math-
ematicians perhaps talking about the precision of approximative operations?
And would not, in that case, the criterion have been obvious, namely closeness
of approximation? No, the issue did not concern approximation. Early mod-
ern mathematicians interested in approximate solutions would choose methods
other than the ones we have been discussing: trisecting an angle approximately
is best done by trial and error, and for determining roots of equations arithmeti-
cal methods of approximation were available which yielded much more precise
results than any geometrical method. The above constructions did not aim at
the speediest or most precise result. Even when Clavius and Bernoulli referred
to practical precision, their aim was not to enhance that precision but rather
to abstract from it the criteria which should guide the geometer’s choices in an
idealized practice of pure geometry.

So seeking the answers to the questions on solving and knowing meant seeking
the rules for correct procedure in pure, non-approximative and non-practical
geometry. The question was: when do we, as geometers, proceed correctly, legit-
imately, exactly, in a proper mathematical way, in solving problems or declaring
objects found and known. Now I need a term for what is referred to by words
like ‘correct,’ ‘legitimate,’ ‘exact’, ‘properly mathematical,’ etc. Early modern
geometers used several different terms in this context; from these I have chosen
‘exact’.23 Thus what the geometers were engaged in while discussing the two
questions formulated above was the interpretation of eractness; their aim was
to interpret what it meant to proceed ‘exactly’ in geometry, what it meant to
have exact geometrical knowledge about solutions or objects. And obviously, a

23Cf. for instance Descartes: ‘... prenant comme on fait pour geometrique ce qui est precis
et exact, et pour mechanique ce qui ne I'est pas ...” Géométrie (cf. note 7), p. 316.
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clear interpretation of exactness was necessary — how else could one claim to
do geometry?

So we may characterize the early modern period in mathematics as an episode
in which there was much uncertainty and debate about the interpretation of
exactness. It was not the first or the last such episode. Others were the emer-
gence of mathematics as an axiomatic deductive science in ancient Greece and
the ‘foundations crisis’ during the first decades of the 20th century. These, one
may say, were successstories in the history of mathematics. The Greek mathe-
maticians responded to stricter demands of mathematical exactness by creating
a new deductive science, with axioms and proofs, and they did not hesitate,
as in the case of the theory of ratios, to reformulate theories completely when
they no longer met the standards of a new interpretation of exactness. The
results of these endeavours are still strongly present in modern mathematics
and they strike us as impressive mathematical creations. The rethinking of the
foundations of mathematics in the early twentieth century can also be termed
a successstory. No real answers were found to the questions which, because
of their impact on the self-image of the mathematical community, justified the
term ‘crisis’ with respect to the episode. Yet these questions gave rise to many
deep and powerful new theories in mathematics and logic, and in general to an
effective new understanding of the mathematical enterprise; and these successes
remained while the original questions lost their sting and thereby much of their
interest.

The story of construction and representation in early modern mathematics
constituted another episode in the interpretation of exactness, but, contrary to
the ones just mentioned, it was no successstory. Indeed it was an almost to-
tal failure. From the many arguments that were proposed one may collect a
few deeper thoughts, but these did not attain a lasting place in mathematics
and most of the activities of mathematicians relating to the issue were lost and
forgotten when, in the eighteenth century, mathematical analysis eclipsed the
earlier geometrical style and made the questions concerning construction and
representation seem insignificant and meaningless — without in any way solving
them.

Could they have been solved? Strictly speaking these questions about the legiti-
macy of constructions were unsolvable. The interpretation of exactness is extra—
or meta—mathematical, in the sense that no answer can be derived from the per-
taining formalized mathematical theory itself. From the axioms and postulates
one cannot derive the reasons why these axioms and postulates are legitimate.
Ultimately, legitimation has to be based on arguments outside mathematics.
These outside arguments have no ultimate cogency, which means that the pro-
tagonists in the debate may agree to disagree or even disagree to disagree for
ever.
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Strategies — a classification

Thus the mathematicians whose constructions and arguments I have been dis-
cussing were confronted with unsolvable questions which nevertheless had to be
answered. In responding to this situation they adopted certain attitudes, or
strategies. I have found that these attitudes or strategies are a better starting
point for an understanding of their activities than the constructions and ar-
guments themselves. Indeed, whereas the choices of the constructions and the
arguments fail to convince, the strategy that appears to be followed may well
have its own, understandable logic. Thus the question that arises is whether
the various approaches to the interpretation of exactness can be divided into
categories which have an inner coherence in terms of attitude or strategy.

I have found that for the early modern discussions on construction and rep-
resentation such categories can indeed be distinguished and that, at least for
me, they clarify the matter. So I present these categories here, illustrating themn
by fitting the above constructions and arguments into them. After that I shall
close with some remarks — and hope for discussion.

The categories I discern in the various early modern reactions to the in-
terpretation of the exactness of constructions and representations in geometry
are:

Appeal to authority and tradition

Idealization of practical methods

- Philosophical analysis of the mathematical intuition
Regard for the quality of the resulting system
Revolt

. Non-interest

S Gk

For the first category, ‘appeal to authority and tradition,” the example is Kepler.
Kepler was sincerely worried, primarily for philosophical reasons, that the tra-
dition which restricted genuine geometry to those configurations constructible
by straight lines and circles, and which in his time was subject to considerable
erosion, would be lost. So, in support of his purist orthodox conception of ge-
ometry he appealed to the authority of Euclid, and of Euclid’s late classical
interpreter Proclus. Another example of the recourse to a strategy of appeal
to authority and tradition in the interpretation of constructional exactness con-
cerns a passage of Pappus in which the geometer is warned against the “sin”
of constructing by improper means. Many early modern geometers gratefully
invoked Pappus’ authority by quoting this passage when they defended their
own ideas on construction or attacked those of others.24

24 Thus, for instance, Fermat: “Certainly it is an offence against pure Geometry if one
assumes too complicated curves of higher degrees for the solution of some problem, rather than
taking the simpler and more proper ones; because, as Pappus, and recent mathematicians as
well, have often declared, in geometry it is a considerable error to solve a problem by means
that are not proper to it.” Pierre de Fermat, “De solutione problematum geometricorum (-)
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The second category, ‘idealization of practical methods’, covers the cases in
which, implicitly or explicitly, mathematicians proceeded from the conviction
that the criteria of exactness in a mathematical field should run parallel to the
criteria of precision in the corresponding practice. Among the constructions and
arguments discussed above, those of Clavius belong to this category. Clavius
defended the geometrical status of his pointwise construction of the quadratrix
by the argument that the procedure was very precise in practice. It should be
remarked that by modelling criteria on those observed in practice Clavius did
not make geometrical construction a practical pursuit. The adoption of these
criteria still involved a step of idealization and therefore it did not turn geom-
etry into a practical science. For Clavius the legitimation of the quadratrix as
means of construction was a contribution to pure geometry.

Bernoulli’s arguments for his hierarchy of methods for constructing non-
algebraic curves also belong to this category. He claimed that the arc length
of a curve was easier to measure than the area under it and that it was even
more expeditious to use curves ‘given in nature’. Here the step of idealization,
by which the practical criterion is transported to pure geometry, is even larger
than in Clavius’ case; Bernoulli must have been aware that, in practice, work-
ing with curves ‘given in nature’ like the ‘elastica’ would not be very practical
or precise. Yet the idealization of such a practice gave him the arguments he
needed to decide on a hierarchy of methods for solving problems involving non-
algebraic curves.

In the examples given above, the third category, ‘philosophical analysis of the
mathematical intuition’, is represented by Descartes. Central to his philosophy
was an analysis of how the mind attains certainty. This analysis, in which math-
ematics served as an important source of inspiration, led him to adopt clarity
and distinctness as criteria for accepting insights as certain. When in geometry
he took up the interpretation of exactness of constructions, he applied the same
criteria and concluded that constructions were acceptable if they involved only
curves whose tracing by motion could be conceived with clarity and distinct-
ness. He gave various examples of tracing processes which he deemed clearly
and distinctly conceivable; tracing the Cartesian parabola by a turning ruler
and moving parabola was one of these. He also indicated procedures in which
he did not find sufficient clarity and distinctness and he excluded from geom-
etry the curves resulting from such procedures. (He further concluded that on
the basis of this criterion the curves that should be accepted in geometry were
precisely those that have algebraic equations; his arguments for that statement
are too complicated to be detailed here.)

I propose Viéte as an example of a mathematician whose approach to the in-
terpretation of exactness falls in category four, ‘regard for the quality of the
resulting system’. Viéte did not produce any explicit arguments in support

dissertatio tripartita”, in Ocuvres (P. Tannery, C. Henry eds) (4 vols), Paris 1891-1912, vol.
1 pp- 118-131, quotation on p. 121 (my translation).
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of his adoption of the neusis postulate as a legitimate geometrical postulate.
Yet his results provided an implicit argument. He showed that on the basis of
this postulate a theory could be erected in which a large but definable class
of problems became solvable without becoming trivial. This implicit argument
was a forceful one because in mathematics large but accessible extent and non-
triviality are strong marks of quality of a theory. On that account Victe’s use
of the neusis postulate was much more effective than, for instance, Clavius’ use
of the quadratrix. Both provided a considerable extension of the set of solvable
problems, but in Clavius’ case the solutions (the constructions) were trivial and
therefore of no interest.

For the fifth category, ‘revolt’, I gave no examples; I am not even sure whether
enough such examples could be found to justify a separate category. The reason
why I formulated it is that I encountered one source whose author seemed to
me just to be making fun of the whole business of problem solving by inventing
very eccentric constructions indeed.?’

The sixth and last category, ‘non interest’, may be the most important one in
terms of the number of mathematicians who adopted attitudes that fit into it.
Especially if combined with an occasional appeal to tradition or current estab-
lished practice, such attitudes provide a very workable basis for mathematical
activity, especially in fields and periods in which the interpretation of exactness
is not in dispute.

So far the classification. It helped me to get over my initial perplexity and to
order, understand and interpret the material on construction and representation
in early modern mathematics. By identifying the categories I could use another
logic in the study of these mathematical activities and arguments than the sim-
ple one of truth or conviction, namely the circumstantial logic of the choice for
one rather than another strategy. Here other arguments come to play, personal,
philosophical, professional and situational ones, which can provide acceptable
explanations for the reactions of mathematicians faced with the dilemmas of in-
terpreting exactness. I will not follow up these explanations here; what I wanted
to report on was the classification itself and the way it structured phenomenon
that was at first sight enigmatic.

Remarks and questions

I would like to close with some questions and remarks about the interpretation
of exactness and the classification of possible approaches to the issue. One
question is whether the categories are recognizable. They proved useful for my
own research on early modern mathematics. But mathematical exactness was

25Nicolas Bion, The construction and principal uses of mathematical instruments trans-
lated from the french of M. Bion (-) to which are added the construction and use of such
instruments as are omilted by M. Bion (-) by Edmund Stone (-), London, 1758; the examples
are by Stone, see especially pp. 319-325.
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interpreted in other periods as well; does the classification also apply for these
periods? Little is known explicitly about the motives that led classical Greek
mathematicians to readjust the criteria of exactness in their science, so it may
be over optimistic to expect much from an application of the classification in this
case. But an exploration of its applicability for the period of the ‘foundations
crisis’ might be a useful means for studying analogies between that episode and
the interpretation of constructional exactness in the early modern period.

There is also another area in which the distinctions implicit in the classifica-
tion may retain some meaning. In the nineteenth and early twentieth century
the choice of axioms in mathematics was directly linked with philosophical and
foundational concerns and therefore often gave rise to doubts and debate; it was
seen as laying down the mathematical laws, interpreting exactness, and therefore
it needed legitimation. In present-day mathematics the choice of axioms and
postulates has become a standard procedure; the routine axiomatic introduction
of new mathematical structures rarely raises questions of legitimation. Yet the
motivation of these choices, as in the case of the interpretation of exactness,
ultimately lies outside the realm of the formal structures themselves. I would
surmise that attitudes and strategies similar to those in the above classification
may be discerned in the present-day procedures of choosing and advocating cer-
tain mathematical structures as worthy of study.

Another comment relates to the classical question of whether we may learn
something from history. To quote the title of a well-known book, history shows
us ‘distant mirrors’ in which, despite distortions, we recognize ourselves. The
story of the attempts to interpret exactness in the case of construction and
representation in the early modern period was not a successstory but a failure.
Maybe, then, it produces little recognition, because as long as the converse is not
evident we assume our own efforts to be part of a successstory. Yet choices akin
to those in the interpretation of exactness are still being made in mathemat-
ics, so it is inviting to consider the classification as a list of possible strategies
for interpreting exactness and to ask which of them was the most effective or
successful.

If we survey the examples I discussed, the inevitable conclusion seems to be
that the winners are numbers four and six: ‘regard for the quality of the resulting
system’ and ‘non-interest,’” the latter if necessary combined with number one:
‘appeal to authority and tradition.” Note that these are precisely the strategies
which need few if any explicit arguments; the others require considerable efforts
of reasoning. We have also seen that most of the arguments are of poor quality
and even the more serious ones have only a short-lived power of conviction.

Thus the more argumentative categories are the losers. I would call number
three, ‘philosophical analysis of the mathematical intuition,’” the glorious loser,
impressive for the depth of the arguments and the sincerity of the effort, but
leaving posterity unconvinced of the arguments, even if the choices are taken
over. In contrast, category two, ‘idealization of practical methods,” appears as
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the colourless loser; the arguments are often petty and the choices are ignored
by later mathematicians.

With respect to winning and losing strategies it appears also that restric-
tive interpretations of exactness tend to lose. Kepler was fighting a lost bat-
tle when he argued against any other means of construction than circles and
straight lines. Descartes increased the freedom of action in geometry, allowing
all algebraic curves in constructions; but that choice implied a new restriction:
non-algebraic curves fell outside geometry. Soon, however, this restriction came
under pressure and, as we have seen in Bernoulli’s example, Descartes’ demar-
cation of geometry was abandoned and ‘exact’ constructions were achieved for
non-algebraic curves as well. Thus we may note here — and other episodes in
the history of mathematics may well reveal the same phenomenon — that as
soon as inviting mathematics was found to lie beyond restrictive methodological
boundaries, the methodologies were soon adapted or, if necessary, forgotten.

Conclusion

All in all, the distant mirror seems to reflect a warning: mistrust methodological
arguments, especially if they advocate restrictions, and keep away from ques-
tions about the interpretation of exactness. It seems that by the time such
questions are explicitly posed, most mathematicians are already moving to-
wards further fields. In the case of the early modern interpretation of exactness
of constructions and representations, explicit methodology was generally behind
practice, legitimizing procedures which were soon to be accepted as matters of
course that needed no legitimation at all.

The interpretation of exactness, then, was largely a post factum phenomenon,
legitimizing practices that were already on their way to becoming established.
Apparently the search for exactness itself is not what makes mathematics tick;
mathematicians are not primarily driven by methodological concerns. Why
do mathematicians venture into fields which later require reformulations of the
criteria of exactness or other aspects of mathematical methodology? Well, what-
ever the answer is, they do. Apparently there is a force which tempts mathe-
maticians to enter unexplored, lawless territories. And the mirror says: better
yield to temptation than engage in setting the rules.
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