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Summary. In this article we first discuss the early history of Poncelet's closure theorem. 
We then give a modern formulation of the theorem and we compare its modern proof 
with the proofs given by Poncelet ( 1 822) and Jacobi (1 828). We add a number of mathematical 
remarks inspired by the early proofs of the theorem. 
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1 . 1  In 1 822 Jean-Victor Poncelet ( 1 788 - 1 867) published his Traite sur les pro
prietes projectives des figures. One of the theorems in this very rich book has become 
known as Poncelet's closure theorem. It concerns conics and interscribed polygons. 
Let (see Figure 1 . 1 ) K be polygon with n sides L0 , L 1 , . . .  , L. _ 1 ,  and vertices 
Po = L. _ 1 n L0 , � = L0 n L1 ,  . . .  , P,_ 1 = L. _ 2 n L. _ 1 .  We shall call K an " inter
scribed polygon " of two conics C and D if all Er are on C and all Li are tangent 
to D. [There are exceptional cases in which we shall call the interscribed polygon 
"trivial ". They occur for n = 2 k + 1 odd, if Lk is a common tangent of C and 
D, and, for n = 2 k even, if If, is a common point of C and D. In both cases FJ = P,. _ j, 
0 �j � n; the polygon is, as it were, folded flat (for an extensive discussion of these 
cases see Sections 7.6-9).] With these concepts we can formulate: 
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Theorem 1.1, Ponce let's closure theorem. Let C and D be smooth conics. If there 
is a non-trivial interscribed n-gon between C and D, then for every point P on C 
there is an interscribed n-gon which has P as one of its vertices. 

In order to explain the term " closure " in the name of the theorem we introduce 
some additional concepts and notation. Consider the following construction (Fig
ure 1 .2). Let Po be a point on C ;  let one of the tangents through Po to D be called 
L0 . Call Jl the second intersection of L0 with C. Call L1 the second tangent to 
D through Jl; � the second intersection of L1 with C, etc. Repeating this construc
tion n times we get what we shall call a " Poncelet traverse " between C and D 
starting in Po ,  that is, a series of tangents to D such that successive tangents intersect 
on C. In general there are, for each point Po on C, two Poncelet traverses starting 
in Po .  If it happens in the construction that P, = Po for some n, we say that the 
traverse " closes " ;  we have then found an interscribed n-gon between C and D. 
Poncelet's closure theorem says that if a Poncelet traverse starting at Po on C 
closes non-trivially after n steps, then, starting from any point on C the traverse 
will close after n steps. 

Ls 

\ PO 

L4 La 

Ll 

L2 
Figure 1 . 1  Figure 1 .2 

For future reference we shall also need the concept of an " almost interscribed 
n-gon" between C and D starting in Po .  This is an n-gon with vertices Po ,  . . .  , P n _1, 

on C whose first n -1  sides L0 , . . .  , Ln _ 2 are all tangent to D. Clearly, for every; 
P on C there are in general two almost interscribed n-gons starting in P ;  theyi 
are constructed by making a Poncelet traverse L0 , • • .  , Ln _ 2, starting at P and 
taking Ln _ 1 = Po .  If we consider for each P on C the nth side L" _, (P) of an almost, 
interscribed n-gon between C and D starting in P, we get a family of lines. The, 
envelope X of this family will play an important role in the proofs of the closure 
theorem. In the case of closure, X coincides with D. 

The eighteenth- and nineteenth-century authors whose work we will discuss, used, 
the imagery of motion in describing the concepts introduced above ; thus Poncelet 
let P " move " along C, by which the chord Ln also moves and envelopes the 
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curve X. In particular in the case of closure, P may be moved along C, and all 
the sides L; of the interscribed n-gon will " roll " (as Poncelet said) along D, while 
the n-gon remains closed. 

1 .2 Poncelet's closure theorem has inspired many mathematicians to further study ; 
especially from the period until the early twentieth century there is an enormous 
literature concerning variants, alternative proofs and generalisations of the theorem 
(this literature can be explored through e.g. [Dingeldey 1 903] pp. 46-52, and 
[Loria 1 889]). Then for some time the subject seems to have attracted less attention, 
but recently Griffiths has interpreted the theorem in a new way with the help 
of the theory of elliptic curves [Griffiths 1976] . 

It is impossible for us in one article to survey the complicated history of these 
studies and to do justice to all mathematicians who have contributed to the under
standing and the generalization of Poncelet's closure theorem. We do not aim 
at such a general survey ; rather we discuss a number of special topics related 
to the history and the modern understanding of the theorem. To be precise, we 
will present a modern proof along the lines suggested by Griffiths, and compare 
it with the proofs that Poncelet and Jacobi gave of the closure theorem. Poncelet's 
proof is little known and both his and Jacobi's approaches to the problem suggest 
a number of non-trivial questions which are of interest to the modern algebraic 
geometer. We will also sketch the " prehistory " of the closure theorem and call 
attention to some aspects of that prehistory which seem to have been insufficiently 
dealt with in earlier historical literature. 

2. The prehistory of Poncelet's theorem 

2. 1 The prehistory of Poncelet's theorem is connected with a special formula 
from the geometry of the triangle. Let ABC be a triangle with sides of length 
x, y, z, circumscribed circle C with radius R, and inscribed circle D with radius 
r. Let a be the distance of the centres of C and D, then we have 

(2. 1 )  

The formula can be  proved by  straightforward, though somewhat complicated 
calculation. 

The important feature of this formula is that it strongly suggests the Poncelet 
closure theorem for triangles interscribed between circles. Both R and r are functions 
of the sides x, y, z of the triangle, say 

R = R (x, y, z) and r = r (x, y, z). (2.2) 

If we now fix R, rand thereby a=(R2-2rR)112 in such a way that there is at 
least one interscribed triangle between the circles C and D, then the Equations 
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2.2 determine a one-dimensional manifold of x, y, z-values out of which a one
dimensional family of triangles can be formed. Each of these triangles has a circum
scribed circle of radius R, an inscribed circle of radius r and the distance of the 
centres of these circles is a. Hence each triangle is congruent to an interscribed 
triangle of C and D. There is, therefore, a one-dimensional family of interscribed 
triangles between C and D. Apart from an investigation of the limits between 
which the values of x, y, z will lie (in other words, whether all chords of C that 
are tangent to D will occur as x in the family of solutions) we have here the 
Poncelet closure theorem for triangles between circles. 

The argument above starts from the remark that Equations 2.2 leave one degree 
of freedom for the x, y, z values. Eighteenth- and nineteenth-century mathematicians 
were familiar with such insights. We will see that during the prehistory of the 
Poncelet theorem some mathematicians made this remark explicitly and formulated 
the closure theorem as a consequence. However, the proofs they gave were insuffi
cient. 

We will now give a short sketch of the prehistory of the closure theorem. We ' 
will give some more detail about the work of Chapple and Lhuillier, because the , 
information in the standard literature about their contributions is uninformative 
or unreliable. 

Chapple 

2.2 Formula 2 . 1 ,  

a2 = R2 - 2 r R, 

is sometimes called " Chapple's formula" after William Chapple ( 1 7 17? - 1781 )  who 
' 

gave the formula in 1 746 in an article in the English periodical Miscellanea curiosa 
mathematica [Chapple, 1 746] . No earlier appearance of the formula is known. 
Most probably Chapple's work remained unknown to any larger mathematical 
public. Only in 1 887 Mackay [ 1887] called attention to Chapple's article, and 
Cantor took over this information in his Vorlesungen ( [ 1907] vol. 3, pp. 552 - 3) .. 
Since then the formula is attributed to Chapple. ·� 
What seems not to

. 
have be�n noticed is that Chapp�e also formulated a clos�re .:j 

theorem and that mdeed h1s proof of Formula 2. 1 1s based on the assumption ] 
(although insufficiently proved) of that closure theorem. ! 
It is not easy to summarise Chapple's article because almost all the logic in it· 
is wrong. Apparently Chapple was an enthusiastic amateur of mathematics, but 1 

he was, even by the standards of his own time, very weak in formal mathematical· 
argument. 

Chapple considered two circles, the one lying inside the other, with radii r and 
R. He noted that if the circles are concentric and 2r = R, there is an interscribed 
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triangle (namely the equilateral one). He argued that if 2r > R there cannot be 
an interscribed triangle but that for 2 r � R the smaller circle can be placed within 
the larger one in such a way that there is an interscribed triangle. His algebraic 
arguments for these statements are muddled and insufficient. However, in the con
text of another argument he noted (see Figure 2. 1 ) that, in the case 2 r < R, one 
may draw a chord AB in the larger circle C and a circle D with radius r touching 
the chord, such that, completing the circumscribed triangle ABE, the vertex E 
is inside C. If we now move D along AB, the vertex E will describe a curve as 
in the figure. We see that there are two positions for D such that E is on C, 
that is, such that there is an interscribed triangle. Note that this procedure already 
suggests that two circles may have many interscribed triangles because we may 
start from any chord AB between certain limits. 

Figure 2.1 

Indeed Chapple claimed that there are infinitely many interscribed triangles but 
he did not conclude this on the basis of the figure discussed above ; he gave an 
algebraic argument. He noted that if A is the area of the triangle, A, R and r 
are related as 

A =  
r (x + y + z) xy z  

2 4R' 

where x, y ,  z are the sides of the triangle (these relations were known at that 
time.) Chapple wrote 

2 r R = 
x yz  

x + y + z' 

and concluded that for fixed r and R there are " innumerable " values x, y, z satisfying 
that equation, and hence innumerable triangles whose inscribed and circumscribed 
circles have radii r and R respectively. Chapple failed to note that there is one 
more relation which r, R, x, y, and z have to satisfy, namely (for instance) 

s r2 = (s - x) (s - y) (s - z) 

with s = (x +  y + z)/2. 

Now Chapple considered the relative positions of the inscribed and circumscribed 
circles and claimed that, if r and R are fixed, the distance a between the centres 
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of these circles is also fixed. To prove this he considered an interscribed triangle 
between two circles and argued as follows (see Figure 2. 1 ). Suppose that the distance 
is not fixed, then the inner circle could move, still allowing an interscribed triangle. 
Consider a chord parallel to the direction of that motion. Complete an interscribed 
triangle with this chord as one of its sides. (Here Chapple assumed that such 
a triangle exists, that is, he assumed the closure theorem, his argument is therefore 
circular.) The inner circle is then in the position of the left or the right circle 
D in Figure 2. 1 .  But if the inner circle moves in the direction of the chord AB, 
the vertex E will move along the curve and hence leave the outer circle. The 
inner circle therefore cannot move and still admit an interscribed triangle ; the 
distance between the circles must therefore be fixed. - The passage is a good 
example of Chapple's style of argument. 

We quote Chapple's two propositions (V and VI) that together imply the closure 
theorem : 

" An infinite number of triangles may be drawn, which shall inscribe and circum
scribe the same two circles ;  provided their diameters, with respect to each other, 
be limited, as in the two last propositions [i.e. provided 2 r::; R] . The nearest 
distance of the peripheries of two given circles, or, which amounts to the same, 
the distance of their centres, in order to render it possible to inscribe and circum
scribe triangles, is fixed, and will always be the same. " ([Chapple 1 746], pp. 1 19-
1WJ 

. 

Having come so far, Chapple used the closure theorem to derive a formula for 
a in terms of R and r. He argued that if there is an interscribed triangle, there 
are innumerable such triangles, hence one may calculate a in the special case that 
the triangle is isosceles and has its line of symmetry through the centres of the 
circles. In that case the calculation is indeed straightforward, and Chapple found 

a2 = R2 - 2 r R, 

the correct formula. 

So far Chapple. We will note that several of his ideas occurred again in the pre
history of Poncelet's theorem, so we may conclude that, despite his failures in 
the realm of logic, Chapple had grasped some essential aspects of the problem. 

Euler 

2.3 Some nineteenth-century authors attributed the formula 

a2 = R2 - 2 rR 

to Euler. This was probably done because Euler had studied, in a famous paper 
[Euler, 1 765], the positions and mutual distances of four  special points of a triangle: 
the centre of gravity, the intersection of the altitudes, the centre of the inscribed 
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circle and the centre of the circumscribed circle. For the distance between the 
last two points Euler gave the formula 

2 (x yz? xyz  
a = 

16·A2 -
x+ y + z 

in which x, y, z are the sides of the triangles and A its area. This formula did 
not express a in terms of r and R, nor did Euler investigate the relation between 
a, r and R in his article. Hence he was not lead to a formula from which a closure 
theorem could be detected. We have not found the Formula 2. 1 in other works 
of Euler. (Of course, it may well be that the formula occurs in Euler's unpublished 
manuscripts ; about this, perhaps [Belyj, 1983] gives more information, but we 
have not been able to consult that article.) Fuss, who in 1797 published the formula 
and who was certainly well acquainted with Euler's work, did not attribute it 
to Euler. It seems, therefore, that the nineteenth-century attribution of the formula 
to Euler is wrong. 

Fuss 

2.4 In a paper of 1 797 [Fuss 1 797], Nicolaus Fuss studied quadrangles that 
admit an inscribed and a circumscribed circle. He derived for such quadrangles 
a relation between r, R and a, namely 

(R2 - a2)2 = 2 r2 (R2 + a2). 

He proved the relation by direct calculation ; that calculation turned out to be 
quite involved. At the end of his article he noted and proved that also in the 
case of the triangle there is such a relation, namely 

This seems to be the first occurrence of the formula in a source that was accessible 
and known to the international mathematical public. 

Fuss did not discuss closure properties of interscribed triangles or polygons. In 
a sequel article [Fuss 1 802] he studied 5-, 6-, 7-, and 8-gons admitting both inscribed 
and circumscribed circles. He reported that he had not been able to calculate 
in general the relation between a, r and R in these cases. Instead he dealt with 
the special cases in which the polygons are symmetrical with respect to the line 
through the centres of the inscribed and circumscribed circles. Here he was able 
to derive the required formulas (cf. Section 2.7). As Jacobi was to notice later 
(see Section 6.4), the closure theorem for interscribed n-gons between circles implies 
that Fuss's results, derived from the special case of symmetrical polygons, are 
indeed general. Fuss himself, however, did not notice this, so that we may conclude 
that he had not seen a connection of his formulas with a closure theorem. 
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Repeated rediscovery - Lhuillier and others 

2.5 Although Fuss had published his results in an internationally prestigious jour-
nal, several mathematicians failed to notice them and found Formula 2 . 1  indepen
dently. This appears from the first volume of Gergonne's Annales de mathematiques 
pures et appliques of 1 8 10 - 1 8 1 1 .  On pp. 62 - 64 [Gergonne 1 8 10] we find two 
problems proposed by the editors (probably by Gergonne). They are : 

1 .  Given a circle C and a point P inside it, to prove that there is exactly one 
length such that a circle D around P with that length as radius, admits a circum
scribed triangle which is also an inscribed triangle of C. 
2. Given a circle D and a point P, to prove that there is exactly one length 
such that a circle C around P with that length as radius admits an inscribed 
triangle which is also a circumscribed triangle of D. 

Clearly the proposer of these problems knew the formula 

and had noted that, given a and r (or a and R) there is exactly one R (or r) 
which satisfies the formula. This is what he suggested his readers prove. 

The problems were solved by Lhuillier [ 1 8 10] .  Lhuillier started with a proof of 
the formula and the editors added a footnote explaining that the same result had 
been sent to them by a Monsieur Kramp, professor at Strassbourg, and that 
had been earlier communicated to them by the late Monsieur Mahieu, professor ) 
at the College of Alais, who himself had learned it from a Monsieur Maisonneuve, 
" ingenieur des mines ". They added Maisonneuve's proof. 

Lhuillier's answer to the problem is interesting because, after proving the formula,.: 
he did indeed conclude a closure theorem from it. He formulated it as follows : 

"There is therefore an unlimited number of triangles that can be at the same.: 
time inscribed in one circle and circumscribed around another circle, when the\ 
radii of these circles and the distance of their centres are related by the equation; 
a2 = R (R - 2 r). " ([Lhuillier, 1 8 10] p. 1 55 ;  our translation) ' 

. i 

This is a fairly clear enunciation of the closure theorem. Lhuillier's proof consisteal 
merely in stating that, if a, r and R satisfy Equation 2. 1 ,  then a triangle whicQ: 
is circumscribed around D and whose one side is a chord of C, will necessarilY,1• 
be inscribed in C. No further argument was given ; the proof is therefore insufficient.: 
But we may conclude that Lhuillier had hit upon the idea of a closure theore�' 

by noting the fact that the relation 

a2 = R2 - 2 r R 

leaves one degree of freedom for the choice of the sides of the triangle. 

l I 
) 1 
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Poncelet 

2.6 As we shall report in more detail below (Section 4.5), Poncelet found and 
proved the closure theorem in 1 8 1 3 - 14, and published it in 1 822. However, in 
1 8 1 7  he published an article [Poncelet 1 8 1 7] in Gergonne's Annales in which he 
announced new methods in geometry. As an example of a problem solvable by 
these methods he proposed the construction of an interscribed n-gon for two given 
conics. Poncelet may have expected that his readers would hit on the closure theo
rem while dealing with this problem. Apparently no one did, and indeed the formu
lation of the problem did not at all point towards a closure property, it rather 
suggested that for any pair of conics there are interscribed n-gons. 

Poncelet himself did not notice the relation of his closure theorem to Formula 
2. 1 .  and the related studies mentioned above ; it was Jacobi who first pointed 
out that connection (cf. Section 6.4). 

Steiner 

2.7 There are two notes by Steiner [1 827] which, although published after Ponce
let's Traite, belong to the prehistory of Poncelet's theorem. The first is a list of 
problems and theorems, published in the second volume of Crelle's Journal fur 
die reine und angewandte M athematik. Stein er left it to the reader to solve the 
problems and prove the theorems. Problem 3 is : 

" If a given (irregular) polygon (n-gon) is such that circles can be drawn in 
and around it, it is required to find a relation between the radii (r, R) of both 
circles and the distance (a) of their centres. (It is well known that for the triangle, 
the equation, first found by Euler, is a2 = R2 - 2 rR.) " ([Steiner 1 827] p. 96 ; 
our translation) 

(On the attribution to Euler, see Section 2.3 ; apparently Steiner at that time did 
not know about Fuss's work.) In a later note in the same volume Steiner gave 
the required equations for n = 3, 4, 5, 6, 8, namely 

n= 3  R2 - a2 = 2 r R 

n= 4  (R2 - a2)2 = 2 r2 (R2 + a2) 

n= 5 r (R - a) = (R + a) [(R - r + a) (R - r - a) r12 + (R + a) [(R - r - a) 2 R r12 

n= 6 3 (R2 - a2) 4= 4 r2 (R2 + a2) (R2 - a2)2 + 1 6 r 4 a2 R2 

n= 8 8 r2 [(R2 - a2)2 - r2 (R2 + a2) x 
x {(R2 + az) [(R2 - a2) 4+ 4 r4 a z R z] - 8 rz az R z(R z- az) z} 

= [(R2 - a2) 4- 4 r 4 a2 R2 Y 

But he did not give proofs, nor did he explicitly refer to a closure property. 
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3. Poncelet's approach to projective geometry 

3 . 1  Poncelet formulated the closure theorem in Sections 565 - 567 of the Traite 
[ 1 822] . His proof of the theorem was based on many different results scattered 
through the preceding paragraphs. We will give a sketch of that proof in Section 
4, but before doing so we have to discuss two special concepts that were crucial 
to Poncelet's set-up of projective geometry, and that gave his work a character 
which may seem rather strange to the modern mathematician. These concepts 
are the " principle of continuity " and the " ideal chords ". 
In his Traite Poncelet adopted a strongly " synthetic " approach to projective geome
try, avoiding analytical techniques as much as possible. This style marked the 
final stage of his development as a geometer ; in the beginning of his research 
Poncelet used analytical techniques freely. In fact many of the results in theTraite 
(including the closure theorem, see Section 4.5) were first proved analytically. 

Poncelet found these early results while in captivity as a prisoner of war at Saratov 
on the Wolga from winter 1 8 1 2/13  till June 1 8 14. Back in France, in the period ' 

1 8 1 5 - 1822, he reworked the results. Later in life he decided to publish the note
books, both from the period in Saratov and from the later years before the publica
tion of the Traite. They appeared in 1 862 and 1 864 respectively [Poncelet 1 862] . . ·.� 
The notebooks from Saratov show Poncelet using analytical techniques without 
seriously questioning the occurrence of " imaginary " and " infinite " quantities in· 
the formulas. The term " imaginary " should be taken literally here : for mathemati
cians of Poncelet's age the term referred to quantities which do not exist but; 
are " imagined " in order not to obstruct the smooth progress of the analyticaL 
operations. Mathematicians had become convinced that all such " imaginary " quan-
tities can be written in the form a +  b v=t", with a and b real. The geometrical, interpretation of these quantities as forming a plane in which the real line is embed
ded, emerged in the early nineteenth century (in studies by Gauss, Wessel an 
Argand), but mathematicians took a long time to accept it. It is not clear whethe�

' 

Poncelet was aware of this interpretation and, if so, when he learned about it: 

the conception of the complex plane occurs neither in his early analytical studie 
nor in his later synthetic work. 

· 

In his early analytic studies Poncelet had been confronted with imaginary element 
in connection with two major issues : the intersection of two conics or a con·. 
and a line, and the projective images of pairs of conics. He wanted to deriv 
properties of pairs of conics by projectively generalising properties of pairs · 

circles. To do so he needed the following theorem : 

Theorem 3.1,  Projection theorem. Any pair (C, D) of conics in a (real) plane Vi 
the projective image of a pair of circles. 

Let (see Figure 3 . 1 ) V be embedded in the real space E. Poncelet then had t 
find a point P and a plane W in E such that the perspective projection V-+ 
with centre P maps both C and D on circles. In the case that C and D hav 
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no more than two points of intersection this is indeed possible and Poncelet showed 
how such P and W can be located in space. He proceeded as follows : He showed 
that C and D determine a certain line L in V and two points R1 and R2 on 
L. The middle of R1 R2 is called Q. Poncelet considered a circle K in E with 
center Q and lying in a plane perpendicular to L. The radius r of K is equal 
to (R 1 R2)/2. Poncelet then proved that any point P on K and not in V, and 
any plane W parallel to the plane through P and L can serve as the centre and 
plane respectively of the required projection. Poncelet proved this result analytically 
while in Saratov ([Poncelet, 1 862] vol. 1, pp. 287-307) ; the Traite contains a synthet
ic proof ( [ 1 822] Section 121 ), to which we shall return in Section 3.4. 

However, in the case that C and D intersect in more than two points, the analytical 
calculation leads to an imaginary value for the radius r of K. Hence in that case 
there is no real centre for the required projection. This is in fact evident because 
in the case of a real projection the images of C and D would still have four intersec
tions, so that, if they were circles, they would coincide. So Poncelet met a major 
obstacle in his programme of deriving properties of pairs of conics from properties 
of pairs of circles. He did not remove this obstacle in the way that seems obvious 
to the modern mathematician, namely by introducing imaginary centres of projec
tion. In the Saratov period he struggled with the obstacle but did not come further 
than expressing the conviction that, although in the case of four intersections a 
pair of conics could not actually be the projective image of a pair of circles, neverthe
less it could be considered as such. Moreover, he had noticed that in the case 
that C and D intersect in more than two points, the points R 1 and R2 used in 
the construction explained above, coincide with the two additional points of inter
section. From this insight he developed the idea that in the case of two or less 
intersections the points R1 and R2 could be somehow considered as the two missing 
points of intersection of C and D; the segment R 1 R2 would be in a sense a " common 
chord " of C and D, and Q would be the middle of such a chord. 

Rack in France after his captivity, Poncelet found a lively discussion among mathe
maticians about the acceptability of various imaginary quantities in mathematics ; 
not only the reliability of calculations involving tf=l was questioned, also negative 
4uantities, infinitely distant points, and infinitely small or large quantities were 
debated. Confronted with these discussions Poncelet set himself the task of develop
ing a science of geometry which concerned real space, which was independent 
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from analytical techniques and which still admitted the generality of arguments 
and results which the analytical approach attained by the use of imaginary quanti
ties. To reach that goal Poncelet started from the ideas gained earlier in connection 
with the projection theorem, and developed them into the concept of ideal chords 
and the principle of continuity. By help of these he was able to reformulate his 
earlier results and arguments and to present them in the Traite in the synthetic 
but general style he envisaged for geometry. 

We shall now explain the concept of ideal chord and the principle of continuity 
as far as is necessary for the understanding of Poncelet's proof of the closure 
theorem in the Traite. 

Ideal chords 

3.2 Poncelet's geometry concerned the real plane and the real space, extended 
with elements in infinity. The plane (space) was taken as a primitive, further unde
fined object ; it was not considered in the modern sense as the set of ordered 
pairs (triplets) of real numbers. Poncelet did use real numbers, or rather real magni
tudes, ad hoc when he measured distances, but these magnitudes did not serve 
as the foundation of the geometrical objects. In the Traite Poncelet took the 
existence of infinite elements for granted. In earlier studies, however, he had shown 
that their adoption can be justified by the principle of continuity (cf. [Poncelet 
1 8 1 9] ,  esp. pp. 344-45). 

Poncelet did not extend the plane by adding complex points or lines. However, ! 
by means of his concept of " ideal chords " of conics ([ 1 822] Sections 54-55) he) 
was able to develop a machinery for the study of conics which is to a large degree : 
equivalent to the extension of the real affine plane to the complex affine plane. ( 
Let C be a (real) conic and L a  line. If L intersects C in points P 1 and P 2 , then,1' 

P 1 P 2 is the chord of C corresponding to L. If L does not intersect C, PonceletJ, 
constructed a linesegment R 1 R2 on L which he called the " ideal chord ", as follow�5 
(see Figure 3.2): �� 

' 

J! 

Figure 3.2 

L 
L 

Let M be the diameter of C which is conjugate to the direction of L. M intersect . 

C in 01 and 0 2 • Consider chords parallel to L, intersecting C in P 1 and � an 
M in Q. We then have 
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for some constant y. Poncelet extended this relation to the case 'that L lies outside 
C. He considered points R 1 and R2 on lines parallel to L, such that the middle 
Q of R 1 R2 is on M and 

These points form a new conic which Poncelet called the supplementary conic 
of C ;  each direction defines a different supplementary conic. Poncelet now called 
the segment R1 R2 the " ideal chord " cut off by L from C. By this construction 
every line cuts off either a real or an " ideal" chord in C. Note that the segment 
R 1 R2 is not " imaginary " but well defined in the real plane ; what is " ideal " about 
it is that it should be a chord of C. Poncelet made a sharp distinction between 
imaginary and ideal elements in his geometry, " imaginary" are those points and 
lines which do not exist in the real plane but are imagined to exist in order not 
to block the argument ; " ideal " are those elements which do exist but are imagined 
to have a certain role or property which in reality they don't have. 

It is easily seen that the following construction, using the complex extension of 
the affine real plane, yields the same R 1 R2 :  Let T1 and T2 be the complex points 
of intersection of C and L; let S be the middle of T1 T 2 .  Because T1 and T2 are 
conjugate, S is real. In fact, S is the intersection of L with its conjugate diameter 
M, so S coincides with Q. Hence 

for some real distance D. Then 

R1 = S + D and R2 = S - D  

are the real endpoints of Poncelet's " ideal chord ". We see from this construction 
that Poncelet's ideal chord determines the complex points of intersection of C 
and L and vice versa. This explains that Poncelet was able by means of this concept 
to work out a theory of conics incorporating many features that nowadays can 
be introduced only by the complex extension of the real plane. In particular Poncelet 
showed (Sections 58 - 59) that any two (real) conics have two " common chords ", 
that is, two (real) segments I 1 I 2 and I 3 I 4 which are real or ideal chords to both 
conics. Indeed the points I 1 ,  . . •  , I 4 correspond to the four complex or real points 
of intersection of the two conics, and if two points of intersection are non-real 
(and conjugate), they yield an ideal chord. 

Poncelet was aware that the endpoints of the chords, and the chords themselves, 
may lie on the line in infinity. He noted in particular that there are two imaginary 
points on the line at infinity, through which all circles pass (Section 94); in this 
way he introduced the later so-called " circular points ". 
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The "principle of continuity" 

3.3 Poncelet developed his " principle of continuity " in order to overcome obsta
cles as the one explained above in connection with the projection theorem. Poncelet 
could prove that theorem for certain positions of the conics but not for others. 
His principle enabled him nevertheless to pronounce the theorem as general. 

Poncelet discussed the principle and its use at great length in various places in 
his Traite ([ 1 822], notably Introd. pp. xiii - xiv and Sections 1 35 - 140) and he 
formulated it in various ways. It may be summarized as follows. Suppose one 
considers a figure iQ the plane and derives certain properties from certain data 
about the figure and from certain general theorems. Suppose also that the figure 
can be continuously deformed in such a way that the data and the theorems remain 
valid. Then the derived properties also remain valid, even if during the transforma
tion certain magnitudes change of sign or vanish, and also if, during the deforma
tion, certain aspects of the figure that were used in deriving the properties, do 
no longer apply. Moreover it will be a priori predictable in which positions of 
the figure the signs change or the magnitudes disappear (cf. [1 822], Inrod. p. xiii, 
cf. also our proof of Lemma 8.5 and the Remark 8.8). 

In the Traite Poncelet primarily considered transformations induced by projecting 
one figure F from continuously varying centres onto continuously varying planes. 
With help of such projections he could generalize properties proved for the single 
figure F to properties valid for all the projective images of F. However, there 
are also continuous transformations that cannot be produced in this way by real 
projections but which still apparently leave the relevant properties invariant. Such 
transformations are for instance those which transform a pair of conics from a 
situation with two intersections to a situation with four intersections. In such cases 
Poncelet invoked the principle of continuity to assert that properties that can 
be proved to be invariant under transformations induced by real projections, remain 
invariant also under the other type of transformation. 

Thus the principle of continuity enabled Poncelet to avoid the use of projections 
with imaginary centres or imaginary planes of projection. In other words, the : 
principle of continuity served a similar function as the " ideal chords " ;  it provided; 
a powerful means to derive results which nowadays can be proved, or even formulat• 
ed, only by embedding the real projective plane (space) in the complex one. 

3.4 We shall clarify Poncelet's use of the principle of continuity by discussing 
his proofs of three theorems which he later used in the proof of the closure theorem; 
one of them is the projection theorem discussed above. The theorems are : 

Theorem 3.4.1 ([1822], Sections 109 -111) .  Let C be a conic and L a straight 
line. Then C and L are the projective images of a circle and the line at infinity. 

Proof Call the plane of C :  V and embed it in a real space E. If L does not intersect 
C it is possible, by elementary theory of sections of cones, to find a point P and 
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a plane W in E such that C is projected from P onto a circle in W and such 
that the plane through P and L is parallel to W The projection V-+ W from P 
then maps L onto the line at infinity. However, if L intersects C, such P and W 
cannot be found in the real space E. Still Poncelet claimed, on the basis of the 
principle of continuity, that the theorem should be considered as valid in general. 

Theorem 3.4.2. Projection theorem ( [1822], Section 121). Let C1 and C2 be two 
conics. Then the pair cl, c2 is the projective image of a pair of circles. 

Proof. Suppose C1 and C2 have not more than two real points of intersection. 
Then they also have an " ideal common chord " along a certain real line L. By 
Theorem 3.4. 1 there is a projection which maps C1  onto a circle �\ and L onto 
the line at infinity L0 • The image {;2 of C2 passes through the points in which 
L0 intersects {; 1 .  These are the circular points, hence {; 2 is also a circle. By the 
principle of continuity the theorem should be considered to apply in general, that 
is, also in the case that C 1 and C2 have four real points of intersection. 

Theorem 3.4.3 ([1822], Section 131). Let C 1  and C2 be two conics, which are 
tangent tO each Other in tWO different pointS. Jhen the pair C 1 ,  C2 iS the projectiVe 
image of a pair of concentric circles. 

Proof. By Theorem 3 .4.2 the two conics are the projective images of circles. The 
two points of contact are the images of the two circular points. Hence the two 
circles are tangent to each other in the circular points, and the pole of the line 
in infinity is the same for both circles ; therefore they are concentric. 

The three theorems are indeed correct if we allow the complex extension of the 
affine plane. Hence Poncelet's principle of continuity led him to correct results. 
It should be noted 'that, in the context of real geometry, the three theorems are 
successively more counterintuitive. The first two theorems can still be " seen" to 
be correct in certain cases, but the third does not apply at all in the real case; 
if the two tangent conics were images of real circles, these circles would be tangent 
in two points as well, hence they would coincide. This shows how daring Poncelet's 
use of ideal chords and of the principle of continuity really was. Poncelet was 
well aware of that ; it may be illustrative to quote here one of the many assertive 
sentences he wrote in defence of the use of these new concepts : 

" Is it not at least as necessary to teach the resources used at different times, 
by men of genius, to arrive at the truth, than to teach the laborious efforts 
which they subsequently had to make to prove their results according to the 
taste of minds that were timid or unable to place themselves on their level." 
([1822] , Intr. p. xiv ; our translation) 

3.5 Before turning to Poncelet's proof of the closure theorem we make a final 
remark about his approach to projective geometry. 

Poncelet proposed to openly use the principle of continuity in geometry. He also 
claimed that, in fact, the principle was already used tacitly in almost all branches 
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of mathematics. In algebra, negative and imaginary quantities were justified by 
arguments akin to the principle, and in analysis infinitely small and infinitely large 
quantities were justified in a similar way. Poncelet was right ; the foundational 
questions about the concepts of imaginary and infinitesimal magnitudes and 
numbers were still very much open in his time, and in using these concepts mathe
maticians often relied on the tacit assumption that the usual mathematical laws 
also apply to these entities. 

However, the foundational questions were recognized as important and Poncelet's 
conscious adoption of the principle of continuity may be seen as fitting in one 
particular style of reaction to these questions. Poncelet was not alone in his 
approach ; in particular the " principle of the permanence of forms ", which English 
algebraists of that period used to justify calculations with negative and complex 
quantities, was very similar to Poncelet's principle of continuity. 

Ultimately, nineteenth-century mathematics found a convincing answer to the foun
dational questions, but not in the manner envisaged by Poncelet. The foundations, 
especially of analysis, were secured by the installation of rigour through arithmetiza
tion, an approach for which the works of Cauchy and Weierstrass became paradig
matic. That approach is still so familiar to the modern mathematician that to 
him Poncelet's style may seem unacceptably unfounded and dangerous. 

It seems to us that such a judgement is too rash. The programme of rigorization 
through arithmetization found the solution of the foundational problems in precise 
definition of the objects of mathematical study ; the complex numbers were inter
preted as pairs of real numbers, and the real numbers themselves were explicitly 
constructed from the natural numbers. Thus real spaces could be interpreted as 
real number spaces and they could be embedded in explicitly constructed complex 
spaces. In Poncelet's approach we see an attempt to solve the foundational problems 
in an entirely different way. Rather than extending or embedding the objects of 
mathematics (real numbers, real spaces), Poncelet wanted to extend the mathemati
cal rules of inference. For that purpose he introduced ideal elements and applied 
the principle of continuity. By the time Poncelet worked out this approach it could 
not be clear to mathematicians that the solution of the foundational problems 
lay in the one rather than in the other direction. Hence Poncelet's approach seems 
a justifiable enterprise. 
Moreover, modern insights in logic and model theory would make .us aware that 
extension of properties or rules of interference and extension of objects or models 
are in a way interchangeable. With this new hindsight, Poncelet's approach would 
the more seem sensible and valuable in its own right. 

4. Poncelet's proof of the closure theorem 

Poncelet's general theorem 

4. 1 Poncelet's closure theorem IS m fact a corollary of a much more general 
theorem which Poncelet presented in Section 534 of his Traite, and which we shall 
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call the " general theorem". It concerns sets of conics which, in Poncelet's terminolo
gy, " have common real or ideal chords ". This means that the conics have four 
different points (real or complex) in common. In the following we will denote 
this situation by saying that the conics belong to one pencil. Poncelet's general 
theorem is as follows. 

Theorem 4.1.1,  " general theorem". Let (see Figure 4.1) C, D 1 , D2 , • • •  , D._1 be 
conics from one pencil. Consider an inscribed n-gon of C whose first vertex is P 
and whose first n -1 sides are tangent to the successive D; .  Then if P moves along 
C the n-th side L of the polygon will envelop a curve which is again a conic belonging 
to the same pencil. 

[Poncelet also considered cases where some of the D; or the enveloped curve arc 
degenerate, see below in the present section. Poncelet was aware that for each 
P there are several such polygons, because at each vertex of a traverse starting 
in P there are in general two choices for the next side. Correspondingly, several 
curves arise as envelopes of n-th sides L. Poncelet here considered only one such 
envelope, but in the case n = 3 he discussed all the different possibilities, see Section 
4.4.] 

Figure 4.1 

For future reference we will refer to the special case n = 3 as the main theorem; thus 

Theorem 4.1.2, " Main Theorem ". The general theorem applies in the case n = 3. 
Proof (of the general theorem from the main theorem). Poncelet first proved the 
main theorem. This is the hardest and the most interesting part and it will be 
separately discussed in Section 4.3 .  Then, with the main theorem proved, Poncelet 
argued for the general case as follows (Section 534). Consider the polygon split 
up by diagonals through P into triangles P Pt  Pz, PPz � • . . .  , PP,_2 P..-t· Applyina 
successively the main theorem we find that P Pz envelops a conic D2 from the 
pencil; P �  envelops a conic D� from the pencil etc. Hence, ultimately, the side 
PP,_ 2 of the triangle PP,_ 2 P, _ 1 is tangent to a conic D� _ 2 and P,. _ 2 P, _ 1 is tanaent 
to D._1 , so that the remaining n-th side L =P,.-1 P envelops a conic D� which 
belongs to the Name pencil. 
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Poncelet was aware that for certain positions of the conics C and D; ,  a diagonal 
may pivot around one point, or move parallel to itself, rather than envelop a 
curve. He considered these occurrences as limiting cases of the general situation 
and he discussed them in connection with the case n = 3,  see Section 4.4. [For 
a modern explanation of such phenomena of degeneration see the reference to 
the theory of " complete conics " in Section 9.9 ; cf. also Lemma 8.5.i for a special 
case, and Remark 9. 1 1 .] 

Poncelet's closure theorem ' 
•I i 

4.2 If all D; in the general theorem coincide and are equal to D we are in the -�' 
situation of Poncelet's closure theorem. (Note that C and D can now be arbitrary.) . 
Poncelet dealt with that case as follows (Sections 565 - 566). Suppose that, starting ·j 
from Po on C, an interscribed n-gon K closes. Consider the family of almost inter- j 
scribed n-gons starting from points on C. Their last sides will envelop, according , 
to the general theorem, a conic D' from the same pencil as C and D. All the ' 

sides of K are tangent to D' because they occur as last sides of almost interscribed .-, 
n-gons starting in any one of the vertices of K. If n ?:  5 it follows that D and • 

D' have five or more tangents in common ; so they coincide. That means that · 

all almost interscribed n-gons ate indeed interscribed n-gons, which proves the · 

closure theorem. Poncelet dealt with the cases n = 3 and n = 4 by showing that ; 
the last side of the triangle or quadrangle starting from Po touches both D and 
D' in the same point. Hence D and D' have one point (or rather two coinciding 
points) in common. As they belong to the same pencil, they coincide. 

It may be of interest to quote here Poncelet's own enunciation of the closure ' 

theorem : 
" If any polygon is at the same time inscribed in a conic and circumscribedi 
about another conic, then there are an infinity of such polygons with the sam . 
property with respect to the two curves ; or rather, all those polygons which 
one would try to describe at will, under these conditions, will close by themselve ' 
on these curves. And conversely, if it happens that, while trying to inscri · 

arbitrarily in a conic a polygon whose sides will touch another, this polygo ' 
does not close by itself, it would necessarily be impossible that there are other. 
which do have that property. " ([1 822] Section 566 ; our translation) 

' 

The case n = 3, the " main theorem" 

4.3 We now come to the most interesting part of Poncelet's proof, namely th . 
case of the triangle in the general theorem. Poncelet gave the proof in the ea 
of circles, using the projection theorem (cf. Sections 3 . 1  and 3.4) to generali 
to arbitrary conics. Let three conics from the same pencil be given. Any pai 
of them can be considered as the projective image of a pair of circles, and th 
third will then be the image of a conic belonging to the same pencil as the tw 
circles, that is, again a circle. Poncelet proved : 
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Lemma 4.3. Main theorem for circles. Let (see Figure 4.2) C, D 1  and D2 be three 
circles from one pencil. Let PR 1 R2 he an inscribed triangle of C whose sides PR 1 
and PR2 touch D 1  and D2 respectively. Then, if P varies along C, the sides R 1  R2 
envelop a circle from the pencil. Moreover, if Qi ( i = 1, 2) are the points in which 
the chords PRi touch the circles Di ,  and H = R 1 Q 1  n R2 Q2 , then the chord R 1  R2 
touches D at the point G = PH n R 1  R2 ; this provides a construction of points on 
the envelope D. (Section 531 ) . 

In his proof of this lemma Poncelet used a number of results which he had derived 
in earlier sections of the 11-aite. The total of his argument can be split up in three 
parts, one concerning a curve that arises in a construction involving rotating chords, 

one consisting in the application of certain elementary geometrical theorems in 
the configuration of the lemma, and the third (and most interesting) part consisting 
in two brilliant ad hoc arguments. We shall deal with these parts separately below. 

Figure 4.2 Figure 4.3 

Proof of the Lemma. Part I (Sections 43 1 - 433) Let (see Figure 4.3) C be a conic 
and Q1 and Q2 two points not on C. For P on C consider the two chords PQ 1 R2 
and PQ2 R 1  with Ri on C.  For P variable on C, R 1  R2 will be a family of chords. 
Poncelet proved that this family of chords envelops a conic D which is tangent 
to C in the points S 1 and S 2 in which Q 1 Q2 intersects C. Moreover, in each 
position R1 R2 touches D in a point G such that PG, Q 1  R1 and Q2 R2 intersect 
in one point H. The proof is as follows. 

By Theorem 3.4. 1 above, C and the line Q1 Q2 are the projective image of a circle 
<;; and the line at infinity. Then S 1 and S2 are the images of the circular points 
1 1  and / 2 • We denote the originals of the other points by underlining. Poncelct 
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tacitly assumed that Q 1  and Q2 are real points at infinity so that for variable 
£ on C, the chords PR1 would be parallel, as well as the chords PR2 • [That 
assumption is not correct. It is easily seen that under a projective mapping either 
all the real points of a line have real images or at most two of them. The originals , 
of S 1 and S 2 are not real, so there will be at most two points on S 1 S 2 with 
real originals, hence in general Q 1  and Q2 will not be real. Therefore Poncelet's 
use of real parallelism and real angles in the remainder of the proof is unfounded. ' 
It is possible to prove this part of the theorem along the lines implicit in Poncelet's 
approach by using cross ratios to generalize the concepts of parallelism and angles 
from the real to the complex case. That procedure, however, is rather laborious. 
In Section 8.5 we will give an alternative proof by means of closed conditions 
on Zariski-dense sets.] Poncelet concluded that the angle between £E1 and £E2 
is constant, so that E1 E2 is a chord of constant length in the circle C. Therefore , 

E1  E2 will envelop a circle D concentric with C. !} is the origin of D because 
enveloping is a projective invariant. f) touches C in I 1 and I 2 (the images of 
sl and S2). Hence D will be a conic touching c in S I and s2 . Moreover Q is j 
the middle of E 1 E2 , and, completing the parallellogram £ E 1 lJ E2 , we have that , 

EQlf, E 1  Q 1 lf and E2 Q2 lf are each collinear, hence PG , R 1  Q 1  and R2 Q2 intersect 
in one point H. This completes the proof of part I . - Poncelet dealt here with 
the same case as in Theorem 3.4 - 3 above ; it should be noted how heavily his 
argument relies on the principle of continuity. For a modern version of this argu
ment see Sections 8 .3 - 8.5 .  

Proof of the Lemma, Part 11  (Section 53 1 )  The second part of the proof concerns 
the application of a number of elementary geometrical theorems to the configura
tion of the lemma. Consider that configuration in the case that the three circles 
C, D 1  and D2 intersect in real points I3 and I4 (cf. Figure 4.2). We have P, R1 •.. 
and R2 on C, PR1 tangent to D2 in Q2 , PR2 tangent to D 1  in Q 1 ; Q2  R2 and 
Q1 R 1  intersect in H ; PH intersects R1 R2 in G. Call V, V, W the intersections 
of PR2 , PR1 and R1 R2 with the line through I3 and I4 . We have now the following [ 
relations : 

PQ1 · R2 G · R 1 Qz = Q 1 R2 · GR1 · Q2 P 

R2 W PU · R1 V= R 1  W R2 U · PV 

(UQ1)2 = UP · UR2 

(VQ2)2 = VP · VR1 

(a): 
(b); 

(c), 

(d). 

Equation (a) is the theorem of Ceva applied in triangle PR1 R2 .  Equation (b) is; 
the transversal theorem applied for the same triangle and transversal I3 I4 . Equa
tions (c) and (d) are proved by noting that, by the power theorem for circles, : 
the terms in (c) and (d) are equal to UI3 · UI4 and VI3 · VI4 respectively. Poncelet 
concluded from (a), . . .  , (d) that 

(WG)2 = WR2 • WR 1  (e) 
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He did so by referring to earlier sections ( 161 - 163) where he had proved that 
(c), (d), (e), together with (b), imply (a). Apparently he assumed that any four of 
these relations implies the fifth. This is in fact true; it can be checked by somewhat 
complicated calculations which we omit here. 

Relation (e) has an important consequence, namely that R 1  R2 is tangent in G 
to the circle through G, I 3 and l4 . This fact is used in the following part to 
prove that that circle is indeed the envelope of the family of chords R 1  R2 • 

Proof of the Lemma, Part Ill (Section 531 )  Poncelet completed his proof as follows. 
Consider the situation of Figure 4.2. We want to determine the curve D which 
is the envelope of all chords R 1  R2 for varying P. Consider an infinitely small 
displacement of P along C. This causes displacements of the chords PR1 ,  PR2 
and R1 R2 , which, as long as the displacement of P is infinitely small, may be 
considered the same as the displacements that would occur if Q 1 and Q2 were 
fixed and PR 1 and P R2 rotated around them. [Ponce let gives no further argument ; 
for a modern proof see Section 8.] In that case it follows from Part I that R 1  R2  
envelops a conic E,  and i t  touches E in  the point G determined as  the intersection 
of PH with R1 R2 , where H is the intersection of R1 Q 1  and R2 Q2 (cf. Figures 
8.2 and 8 .3). Because by infinitesimal displacement the motion of R1  R2 when 
PR1 and PR2 touch D2 and D1 , does not differ from its motion when PR 1 and 
PR2 rotate around Q2 and Q 1 ,  we conclude that R 1  R2 will touch D in G as 
well. We have then a construction of points on D, namely; join R1  R2 , R 1 Q 1 , 
R2 Q2 , call H the point R1  Q 1  n R2 Q2 , then PH n R 1 R2 is a poipt G on D. [For 
a proof and a generalisation of this construction to arbitrary' '  algebraic curves 
C and D, see Section 8.] 

For future reference we quote here the words in which Poncelet presented the 
arguments about infinitesimal motions (we add the original text in this case to 
give one example of the flavour of Poncelet's French; we have changed the letters 
so as to fit our Figure 4.2) : 

«Pour le demontrer, commen�ons par rechercher le point de contact G du cate 
R1 R2 avec la courbe qu'il enveloppe dans ses diverses positions. J'observe 
d'abord que, si l'on imprime au triangle PR1 R2 un mouvement infiniment petit, 
ou qu'on le derange infiniment peu de sa position actuelle, il arrivera que les 
cotes de ce triangle tourneront, ou tendront a tourner autour des points de 
contact Q 1 ,  Q2 , G, qui leur appartiennent respectivement. Mais, en faisant ab
straction, pour un moment, de la courbe qu'enveloppe en general le cote R 1 R 2 ,  
il est visible que ce cote tendra aussi a rouler (43 1 )  autour d'une section coniquc 
ayant un double contact avec le cercle C; done le point de contact de cettc 
section conique et du cote RI  Rz est aussi celui de ce meme cote avec la courbc 
inconnue; et par consequent, si l'on trace les droites R 1  Q 1 , R2 Q2 ,  et qu'on 
joigne le point H de leur croisement avec le sommet P, par la droite PH, la 
direction indefinie ira rencontrer celle de R 1  R2 au point  de con tact G dont 
il s'agit (433). » ([  1 822] , Sect ion 53 1 )  
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" To prove this, let us begin by searching the point of contact G of the side 
R 1  R2 with the curve that it envelopes in its various positions. I first observe 
that, if one gives the triangle PR1 R2 an infinitely small movement, or if one 
deplaces it infinitely little from its actual position, the result will be that the 
sides of this triangle will turn, or will tend to turn around the points of contact 
Q 1 ,  Q2 , G which belong to them respectively. But, abstracting for a moment 
from the curve wich in general the side R1 R2 will envelope, it is evident that 
this side will also tend to roll [here Poncelet refers to the argument we have 
summarized in Part I of the proof of the Lemma] around a conic which has 
a double contact with the circle C; therefore the point of contact of that conic 
and the side R1 R2 is also the one of that same side with the unknown curve; 
and consequently, if one traces the straight lines R1 Q 1 , R2 Q2 and if one joins 
the point H of their crossing with the vertex P by the line PH, its prolongation 
will meet that of R1 R2 in the point of contact G which concerns us here [here 
Poncelet refers to the construction we have summarized in Part I of the proof 
of the Lemma] . "  (Our translation) 

Now from part 11 of the proof we know that the circle through G, I 3 and I4 
touches R1 R2 , and hence D, also in G. Therefore, in all of its points G, the curve 
D touches the circle through G and I 3 and I 4. Hence either D envelops the family 
of circles through I 3 and I 4 ,  or D coincides with one of these circles. The former 
cannot occur because the family does not have an envelope, hence D is a circle 
through I 3 and I 4 •  Thus the Lemma is proved in the case of circles with real 
intersections; but by the principle of continuity it may be considered to apply 
in general. This completes Poncelet's proof of the Lemma; the main theorem now 
follows by projective generalization, and the general theorem is proved in the 
way explained in 4. 1 .  

4.4 After having given the proof o f  the Lemma Poncelet remarked (Section 533) .  
that for each P o n  C there are in general four different possible positions for ; 
the triangle PR 1 R2 , hence four different chords R 1 R2 that envelop circles from .: 
the pencil. However, the four circles thus arising coincide pairwise (cf. Sections 
9 .5 - 7). Poncelet proved this by a symmetry argument : Consider (Figure 4.2) the. 
triangle P' R'1 R� symmetric to PR1 R2 with respect to the horizontal axis in the 
figure. When P is moved along C to P', R 1  R2 does not transform into R'1 R� . 
Hence these two chords belong to two different starting positions of the describing" 

triangle. Still R'1 R� touches the circle D, which means that that in its motio 
it envelops D. Hence the envelopes arising in these two different cases coincide 
(as, by a similar argument, do the other two). 

Poncelet also separately discussed (Section 532) the exceptional cases in which 
the envelope D degenerates. He referred to earlier Sections (76, 80, 370) about

· 

pencils of conics or of circles, in which he had shown that such pencils have three 
degenerate elements, namely (if we denote the four common points by I 1 ,  • • •  , I4) 
the line pairs I 1 I 2 u I 3 I 4, I 1 I 3 u I 2 I 4 ,  and I 1 I 4 u I 2 I 3 •  He concluded this from 
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a generalization (by the principle of continuity) of the case of pencils of real circles, 
and sometimes he spoke of the intersections K, L, M of the line pairs as infinitely 
small limit circles of the pencil, rather than of the line pairs themselves. However, 
it is clear that he was aware of both interpretations, and that he considered lines 
through K, L, M as tangents to the degenerate conics. [Cf. the Specialization 
Argument 9.9, where the same concept of tangents to degenerate conics is used.] 

As to the cases of degeneration in the general theorem Poncelet noted that the 
envelope D may degenerate, and that this happens in particular in the case of 
a pencil of real circles with two real intersections, when for some P on C, R 1  R2 
coincides with I 3 I 4 .  Other cases of degeneration, he said, are equivalent to this 
case by the law of continuity. [In Section 9.4 we will find as condition for the 
degeneration of D that for some k, l, k i d, the tangents at I k to D 1 and at I 1 

to D2 intersect on C ;  it is easily seen that that condition is the same as the one 
mentioned by Poncelet.] 

Poncelet also remarked that if D 1  coincides with D2 (which is the case in the 
proof of the closure theorem) one of the two enveloped conics D coincides with 
C (cf. 9. 1 1 .2). 

Poncelet had noted that the conics D; enveloped by the diagonals in the proof 
of the general theorem may degenerate. Hence in order to apply the main theorem 
in the induction proof, he should have considered the cases where D 1 , D2 or both 
degenerate. He did not do so, but it seems most likely that he was aware of that 
possibility, and that he would invoke the principle of continuity to proclaim the 
main theorem valid also in these exceptional cases (as indeed it is, cf. Remark 
9. 1 1) . 

We may assume that Poncelet was aware of all the special cases that may occur 
in connection with the main theorem. That he did not discuss all of them explicitly 
is in keeping with his general attitude to such special cases. That attitude is well 
illustrated by the following quotation, taken from his discussion of degenerate 
conics in pencils. He claimed that it is rather pointless to study these cases in 
detail, because 

" it is- evident that these concepts and these properties will remain valid in an 
analogous way, and with modifications that will always be indicated by the 
law of continuity and by an attentive study of what happens when the general 
figure passes to the particular one " ( [ 1 822] Section 98; our translation) 

Poncelet's first, analytical proof of the closure theorem 

4.5 As we have indicated in Section 3. 1 ,  Poncelet found and proved both the 
" main theorem " and the closure theorem during the period of his Russian captivity 
1 8 1 3 - 1 8 14. His first proofs of these theorems were completely different from the 
proofs which he chose to publish in the 1raite and which we have summarized 
above. In Saratov he proved the theorems by straightforward if immensely laborlou• 
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computation. These proofs can be found in [Poncelet 1862] vol. 1, pp. 308-372 
(it is the sixth of the " Cahiers " from the Saratov period which Poncelet published 
in 1 862). We shall restrict ourselves here to indicating the main lines in the calcula
tions. 

Poncelet first studied the case of circles (see Figure 4.4). He considered two circles 
C and D with equations 

x2 + y2 = r2 and (x - a)2 + y2 = R2• 

He chose P = (x (t), y (t)) on C for some parameter t, and calculated the equations 
of PR1 , PR2 and R 1 R2, where Ri are on C and PRi are tangent to D. He then 
showed, by differentiating the equation of R1 R2 with respect to the parameter 
t, that the R 1 R2 envelop a circle belonging to the pencil defined by C and D. 

c 

Figure 4.4 

Poncelet then proceeded to the case of three circles C, D 1 , D 2 from one pencil 
(Figure 4.4), calculating directly the equation of R1 R2 ; where again P, R 1 and 
R2 are on C and PRi are tangent to Di .  At this point the calculations became 
exceedingly involved, indeed the formulas as printed in [ 1 862] required sheets 
folding out to the width of four quarto pages (e.g; p. 336), and even so they could 
be given only by help of many abbreviations for separate terms and factors. The 
formulas were too involved to admit calculating the envelope of R1 R2 by differenti
ation, but Poncelet was able to show that there is a point on the axis whose 
distance to all R1 R2 is the same, thus proving that the envelope is again a circle, ,,; 
belonging, as he also showed, to the same pencil. · 1  

� 
After this analytical proof of the theorem in the case of circles and n = 3, Poncelet .. ··� 1 
generalized these results, and derived the closure theorem from them, in much : 
the same way as he did later in the Traite ; the case for general n was obtained · 

by induction, the case for general conics by projection, the closure theorem by 
letting all Di coincide. We quote how Poncelet formulated the closure theorem 
in 1 8 1 3 - 14 :  

" Geneally speaking it is impossible to inscribe in a given curve of second degree 
a polygon which is at the same time circumscribed to another curve of that , 
degree, and when the particular disposition of these curves will be such that 1 
the simultaneous inscription and ci rcumscription is possible for one single poly-
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gon tried at will, then that guarantees that there will be an infinity ((of polygons)) 
with the same property with respect to the given conics. " ([1 862], 1, p. 355 ; 
our translation) 

The " Cahier " concludes with miscellaneous remarks, among other things about 
the cases of " trivial " closure that can occur if one of the vertices (sides) is a common 
point (tangent) of the two conics (cf. Sections 7.6 - 9). 

These analytic proofs are important because they testify how fully Poncelet accepted 
analytical methods in the beginning of his career as a geometer, and hence how 
strong was the change of programme when he decided to write the Traite in  1t 
fully synthetic way. It should be noted that in his [ 1 889] (p. 9) Loria expressed 
doubts that Poncelet knew the theorem before 1 8 1 7  (which is curious because 
Loria had access to Poncelet's [ 1 862]). As virtually all other surveys of the history 
of the theorem rely on Loria's study, it seems to have been unknown that Poncelet 
actually found and proved the closure theorem already in 1 8 1 2 - 1 8 14 during his 
Saratov period. 

5. Jacobi 
5 . 1  Some years after Poncelet's Traite, Jacobi published an article [ 1 828] in which 
he proved Poncelet's closure theorem by means of elliptic functions. Jacobi found 
his new method while working out analytical formulas for chotds and tangents 
in the case of a Poncelet traverse between circles. In doing so he recognized certuin 
relations that also occur in the theory of elliptic functions. Pursuing this insight 
he found that it almost directly yielded full analytic proofs of Poncelet's theorems 
(both the " general theorem" and the closure theorem) and of the relations between 
R, r and a for circles admitting interscribed polygons. 

In this section we shall explain how Jacobi came to see the link with elliptic 
function theory and we shall summarize his proof. 

5.2 Following Jacobi's argument, we consider (see Figure 5 . 1 )  two circles C and 
D, D lying within C, with radii R and r (R > r), centres M and m, and distance 
of the centres a (r + a <  R). The line through the centres of C and D intersects 
C in 0. 

c 

Figure 5.1 0 
M 

• 
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Let PR1 be a chord of C which touches D. Let L OCP = 2 4>  and L OCR1 = 2 4>' 
(angles measured counterclockwise). By applying elementary trigonometry we de- : 
rive 

Rcos (cj>' - 4>) + acos (cj>' + 4>) = r. 

Repeating the tangent construction from R 1 ,  with L OCR2 = 2 4>", we find similarly 

Re os ( 4>" - 4>') + acos ( 4>" + 4>') = r. 

These formulas are transformed into 

(R + a) cos 4>' cos 4> + (R - a) sin 4>' sin 4> = r 

(R + a) cos 4>" cos 4>' + (R - a) sin 4>" sin 4> = r, 

respectively. Subtraction, applying the relation 

(cos x - cos y)/(siny - sin x) = tg [(x + y)/2] , 

and remodelling yields 

tg [(4>" + 4>)/2] = [(R - a)/(R + a)] tg cf>'. 

(5 . 1 )  

(5 .2) 

This formula reminded Jacobi of a formula occurring in the theory of elliptic ; 
functions. Let, for a certain k, 0 < k < 1 

"' d t  
u = F ( 4>) = f -----;==== 

o Vl - k2 sin2 t 

be the elliptic integral of the first kind. Then define the inverse function am by 

amu = cf>. 

Consider values 4>, 4>' 4>" x, u and c such that 

cf> = amu 

x = amc 
4>' = am(u + c) 

4>" = am (u + 2 c), 

then we have 

with 
tg(4> + 4>")/2) = Ll amc · tg cj>', 

Ll amc = [ 1 - k2 sin2 x] 1 '2 = [1- k2 sin2 (amc)] 1 '2 . 

(5 .3 

(Formula 5.3, as well as 5.4 below are easily derived from the usual addition formu• 
las for the functions am, en ( = cosam) and sn ( = sinam) ; for which see e.g. [Byrd 



Poncelet's closure theorem 3 1 5  

and Friedman, 1954] p .  23.) The correspondence o f  Formulas 5 . 2  and 5 . 3  suggested 
to Jacobi the possibility to adjust k in such a way that the successive values of 
cp, cp', cp", . . . , corresponding to the vertices P, R 1 ,  R2 . . .  of a Poncelet traverse 
are related as 

c/J = amu 

cp' = am (u + c) 

cp" = am (u + 2 c) 

cpCm> = am(u + me), 

for some u and c. Note that Jacobi found the analytic expression for the function 
cp ___... cp' in a Poncelet traverse by deriving the functional equation (5.2) and noticing 
that the function am u ___... am (u + c) is a solution of that equation. Apparently Jacobi 
considered it obvious that the solution is unique. 

5 .3  We shall now summarize the results which Jacobi gained by working out 
this correspondence. In doing so we shall keep to his ideas, but not to the order 
and detail of his presentation. 

Jacobi did not proceed from Formulas 5.2 and 5.3 but rather from another relation 
from the theory of am and F. If 

then 

c/J = amu 

cp' = am(u + c) 

x = amc, 

cos cp cos cp' + sin cp sin cp' [ 1 - k2 sin2 xJ 1 12 = cos X· 

Comparing this equation with Formula 5 . 1  written in the form 

cos cp cos cp' + sin cp sin cp' · [(R - a)j(R + a)] = r/(R + a), 

we adjust x and k such that 

cos x = r/(R + a) 
and 

which yields 

For one outer circle, that is, for fixed R, different inner circles will in general 
yield different values of k2• But Jacobi made the crucial observation that if C, 
D1 and Dz belong to one pencil of circles, then the pairs C, D 1  and C, D2 yield 
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the same k2, and conversely, every k2 determines a pencil through C. The proof 
is easy : Let 

C : xz + yz = Rz 
D 1 : (x + a1f + y2 = d 
Dz :  (x + az)2 + y2 = rL 

then C and Di intersect in two (in our case imaginary) points whose x-coordinates 
are 

xi = [rf - R2 - a?J/2ai .  

For circles from one pencil the xi are constant, say xi = x, s o  that 

so k2 is constant. 

[Jacobi proved this in a different way, taking over, from Steiner, the definition 
of a pencil of circles as a set of circles Ci such that there is a straight line L !, 

in the plane, from all of whose points the tangents to the Ci are equal. He remarked 
that this amounts to what Poncelet expressed by saying that the circles have com
mon real or imaginary chords (cf. Section 4. 1 ).] 

From now on we will consider a circle C and a number of circles Di lying within 'i 
C and belonging, together with C to one pencil. Let W; be the mapping geometrically : 
defined by 

W;(</J) = cf/ 

if P and R on C, with L OMP = 2 </J, L OMR = 2 <P' are such that PR is tangent' 
to Di (see Figure 5.2). In other words, W; describes the mapping P --+  R from d;J 
to C along chords tangent to Di .  As to the choice of the tangent from P, w · 

follow Jacobi who tacitly supposed that we turn counterclockwise, that is, tha 
</J' - ljJ has minimal positive value. 

c 

Figure 5.2 

We may now infer that it is possible to chose real numbers c1 such that, if <P = amu 
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then 
W;(cj>) = am (u + c;). 

To be explicit, we choose c; such that 

amc; = X; 
and 

COSX; = rj(R + a; ). 

Note that c; is dependent on the position of circle D ; ,  but not on the value of 
cf>. Note further that for all D; the modulus k2 is the same, so that indeed the 
same function am occurs for each D; . 

Jacobi noted a converse of the preceding result, namely : if Wis defined by 

W(cf>) = am (u + c) ;  cf> = amu 

for some c, then the chords PR of C with L OCP = 2 cl> and L OCR = 2 W( cl>) envelop 
a circle D from the pencil corresponding to C and the modulus k of am . The 
proof is obvious; taking 

amc = x  

there is precisely one circle D (with radius r) from the pencil such that 

cos x = r/(R + a). 

The tangency-mapping Wv connected with D is : 

Wv(cf>) = am(u + c) 

so that Wv coincides with W. The corresponding chords therefore envelop the 
circle D. 

5.4 Jacobi interpreted the converse result mentioned at the end of the P receding 
section also in a different way, namely as providing a geometrical construction 
for the addition law of the elliptic function am. His argument may be summarized 
as follows. 

For the elliptic function am, with modulus k2 we want to find a geometrical con· 
struction by which, given 

cf> = amu and x = amv, 

we can find 
1/J = am(u + v). 

[ In  fact Jacobi showed how to construct "'" = am (u + nv) ; he cal led th is  the " problem 
of the multiplication of elliptic functions " ( [ I  H28] p. 286).] 
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Q 

Figure 5.3 Figure 5.4 

We take (see Figure 5 .3) a circle C with radius R and centre M on the axis MO. 
k2 defines a pencil Pc, k of circles (CEPc, k), namely those with radii r, centre m 
on the axis, mM = a, and 

The given angles 4J and x define points P and Q and C by 

L OMP = 2 4J  and L OMQ = 2 x. 

The angle X also determines a circle Dx from Pc, k by 

cos X =  r/(R + a), 

Now draw from P the tangent to Dx (counterclockwise) and determine its second � 
intersection R with C. Then ! 

am(u + v) = 1/J = ( L OMR)/2, 

so we have found 1/J. We note that the same point R will be found if we start 
from Q and draw a tangent to Dq, ; in other words am(u + v) = am(v + u). 

Jacobi's construction is interesting because in this argument he comes nearest t 
a structure isomorphic to the elliptic curve that plays a crucial role in the moder 
proof of the closure theorem. We will return to this matter in Section 1 1 .5 .  

5 .5  We now turn to Jacobi's proof of 

Theorem 5.5.1 .  General Theorem. Let (see Figure 5 .4) C,  D 1 , • . •  , D. be circle 
from one pencil ; all the Di lying within C. For all P on C form a traverse P, R1 , . • •  , R,. 
with Ri on C and PR1 ,  R 1  R2 , • • •  , R. _ 1 R. tangent to D1 , . . .  , D. respectively. Clos 
the traverses by drawing the chords R. P. Then these chords R. P will envelop 
circle D from the pencil. 

Proof (Jacobi). Let L OMP = 2 4J  and <P = amu ; call L OMR. = 2 4J<•). Then 4J<•) i 
determined by 
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if> (n) = W, o  W, _ 1  o • • •  o Wdif>) 

= am (u + c 1  + . . .  + c.) 

= am (u + c) 

for c = c 1 + . . .  + c • .  The chords PR. now correspond to a mapping Wdefined by 

if> = am u, W(if>) = if><•> = am (u + c), 

so that these chords envelop a circle D from the pencil. 

3 1 9  

From the main theorem we  could prove Poncelet's closure theorem in  the spirit 
of Poncelet's own approach as follows : 

Theorem 5.5.2. Closure theorem. Let (see Figure 5 .5) C and D be two circle.,, D 
within C. Let, for a certain Po on C the interscribed polygon Po ,  R1 ,  R2 , . . . , Rn _ 1 If, 
close. Then from all P on C the interscribed n-gon will close. 

Figure 5 .5  

Proof. Consider the case of the main theorem with all C; coinciding in D. Then, 
for variable P on C, the chords PR. _ 1 will envelop a circle D0 from the pencil 
defined by C and D. D0 and D have Po R. _ 1 as common tangent. In the case 
of a pencil defined by two non intersecting circles, circles with a common tangent 
coincide. Hence D0 and D coincide ; therefore, starting from any P, the last side 
of an almost interscribed n-gon between C and D will also be tangent to D. 
Jacobi, however, did not take this approach but argued analytically, highlighting 
the insights gained from his use of elliptic functions. The essence of his argument 
is as follows : 

Proof of the closure theorem (Jacobi). Let W be the chord-tangent mapping associat· 
cd to D. Consider a traverse of n chords starting at P and ending at Rn - 1 •  Let 
L OMP = 2 if>  and L OMR. _ 1 = 2 1/J. We have then, for some u and c, 

1/J = am (u + n e). 

Now let for Po with angle c/>0 the traverse close to become an interscribcd n·gon. 
That means that Po = R0, " - 1 ; or, for certain natural number .� : 
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am (u + n e) =  c/>0 + s n  

= amu + s n  

= am(u + 2sK), 

tt/2 d t  
K =  J 

o V 1 - k2 sin 2 t 

u + n e = u + 2 sK, 

e = 2 sKjn. 

This relation is necessary and sufficient for closure of an interscribed line series 
after n steps and the relation is independent of the starting point P, because 4> 
does not occur in it. Indeed if the traverse closes for some Po we have for any 
P with angle 4> :  

L OM Kn/2 = am (u + ne) 

= am(u + 2sK) 

= amu + s n  

= 4> + s n, 

so that Rn - t = P. This concludes Jacobi's proof of the closure theorem. 

6. Miscellaneous remarks 

6. 1 In this section we collect a number of short remarks on the studies of ronc1e1e•• 
and Jacobi and on the further history of the closure theorem. 

Jacobi derived the general theorem and the closure theorem for circles lying 
each other, not for circles that intersect. He was aware that by Poncelet's 
theorem (3 . 1 ,  3 .4.2) the results can be generalized to conics but he did not 
out this generalization as far as possible. He quoted Poncelet's theorem as : 
two conics that have not more than two intersections can be projected on 
circles ([1 828] , p. 28 1). This shows that Jacobi was hesistant to take over the 
which Poncelet gained by applying his principle of continuity. After having 
his results for circles, Jacobi remarked that they can be generalized by pr<)Je<�tlc>Jl 
to the case of ellipses lying within each other. This means that Jacobi here 
real conics in mind and did not consider an extension to complex projective 
At the end of the article he suggested, as a topic for further research, to 
the analytic formulae directly in the case of conics. In that case the integral co 
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sponding to F(cf>) would be more complicated but reducible to F (cf>). Jacobi 
announced that he might return to this matter, but as far as we have been able 
to judge from his published work he did not do so. Perhaps Jacobi did not try 
to work out his approach to this fullest generality because he considered the prob· 
!em of interscribed polygons as belonging to elementary geometry. 

6.3 Jacobi used his analytical approach also to find the relations 

fn (a, r, R) = O  

necessary and sufficient for two circles to have interscribed n-gons. Let C and 
D be two such circles ; we have then, as derived in 5.4. 

c = 2 sK/n, 
where 

K = J d t  , 
o V1 - k2 sin2 t 

k2 = 4aR/(R2 + a2 - r2) 
and 

amc = x = arccos [r/(R + a)] . 

These equations implicitly determine the required relation 

f,. (a, r, R). 

6.4 Before determining fn in this general way Jacobi surveyed these results by 
earlier mathematicians on this question. It is here that he brought the prehistory 
of the Poncelet closure theorem in connection with the closure theorem i tself (cf. 
Section 2.4). He attributed f3 to Euler, mentioned the work of Fuss on symmetrical 
interscribed polygons and stated that, because of the Poncelet closure theorem, 
Fuss's results are indeed general. He also discussed Steiner's results, compared 
them with those of Fuss and deplored the fact that Steiner did not give his derivation 
of the formulas ([J acobi 1 828] pp. 279 - 283). 

6.5 Many mathematicians have taken up Jacobi's results and developed them 
further. The history of these later studies is very complicated ; for surveys of it 
see [Loria 1 889], [Dingeldey 1 903] pp. 46 - 52 and [Kotter 1 90 1 ]  pp. 1 39 - 1 53 .  
We will restrict ourselves here to noting only the main themes within these later 
developments. 

Generalizing the results on fn (a, r, R), mathematicians tried to find the condit ions 
which two conics have to satisfy in order to admit an interscribed n·gon. Here 
invariant theory, which was being developed during the second half of the nine· 
teenth century, proved useful (adm i tting an interscribed n-gon is  an i nvariant prop· 
crty). Cayley reached a significant result here, cf. [Griffiths, Hurris 1 978].  
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The fact that transcendental relations, namely elliptic functions, entered the proofs 
of a theorem which concerned purely algebraic geometrical objects, namely conics, 
led mathematicians to attempt purely algebraic proofs for the closure theorem, 
or to study the deeper reasons for the appearance of transcendental relations in 
this case. 
Finally, mathematicians pursued further generalisations, as for instance to circles 
on spheres, or to surfaces in space. 

6.6 When he prepared the edition [ 1 862] of his geometrical studies before 1 822, 
Poncelet added a note ([1 862] vol. 1, pp. 480 - 488) on Jacobi's proof of the closure 
theorem and on other studies about it. The note is written with bitterness about 
the lack of recognition for his own approach to geometry. Although praising Jaco
bi's proof, Poncelet maintained that the algebraic and transcendental analytic meth
ods for deriving geometrical results were too complicated and sometimes mislead- 1 
ing, and that they could often be avoided, or at least be shortened, by utilizing 
more fully the results of his Traite. 

We learn from the note that Jacobi visited Poncelet in 1 829 and explained his 
methods to him. Poncelet also wrote that Steiner had told him that he (Steiner) 
had induced and encouraged Jacobi to use the theory of elliptic functions to prove 
the theorems from Poncelet's Traite about interscribed polygons. This provides 
an interesting link between the work of Steiner, Poncelet and Jacobi. 

7. A modern proof of Poncelet's closure theorem 
In this section we recall a modern treatment of the proof of the closure theorem : 
of Poncelet ; in the next sections we shall analyse steps in the proofs by Poncelet 
and by Jacobi with the help of modern notation and methods. 
We use algebraic geometry over a field k, which we assume algebraically closed 
and of characteristic zero (the reader may assume k = <C, the field of complex 
numbers). By the word " conic" we understand a smooth plane curve of degree 
2 (hence the union of two lines will not be considered as a conic). When lP = IP2, 
the projective plane, we denote 

lP* := {LI L is a line in IP2} 

and, of course lP* � IP2. When X c lP2 is an algebraic curve, we denote by 

X* c lP* 

the dual curve, i.e., let Ye X be the (open) subset of smooth points of X, then 

Y* := {LI L = Tx. P for some P E Y} 

(where Tx, P  is the tangent line at P to X), and X* is the closure of Y* (we assume" 
we have a topology, the reader may take k = <C, and take the complex topology 
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or we could take the Zariski-topology on IP2, cf. [Hartshorne, 1977], p. 10). Some
times the dual of an algebraic cu rve is not so easy to describe (cf. [Walker, 1950), 
IV. 5 ;  cf. [Griffiths and Harris, 1 978 a], 2.4 ; cf. [Brieskorn and Knorrer, 1981] ,  
pp. 321 - 333), however, 

when D c IP2 = JP  is a con ic then D* c lP* is a conic 

(this is not difficult), and for any algebraic curve X c lP* as above, the map 

X =>  Y--> X* 

P�--+L =  Tx, P  

is bijective outside a finite set (and hence birational because char (k) = O). Further 
note that, 

if C c IP2 is a conic, then C � IP1 

(cf. [Hartshorne, 1 977], p. 30, Exercise 4.4 a ;  cf. [Walker, 1950], 11!. 5 . 1 ;  this really 
is very easy). 

Suppose given C, D c IP2 two different (smooth) conics. We define (see Figure 7. 1 ) :  

c 

Figure 7.1 

E (C, D) == {(P, L) I PE C, LED*,  P E L} c C x D*. 

Lemma 7.1.  If :#: (C n D) = 4  then E is a  smooth curve, and it is an elliptic curve. 

Remark 7.2. The number of intersection points (counted with multiplicity) of C 
and D equals 2.2 = 4  (by Bezout), and the condition :#: (C n D) = 4  is equivalent 
with : if PE C n D then Tc, P # TD, P (i.e. " C  and D are nowhere tangent "). 

Proof of the lemma. Consider the " projection " 

E (C, D) --> C 

(P, L)�--+ P, 

this map is 2 : 1  iff P � C n D  (if P�D, then there exist 2 tangent lines to D through 
P, here we use char (k) # 2). Clearly E c C  x D* is an algebraic curve, and we cla im : 
if (P, L) E E, and P � C n D  then E locally  at (P, L) is isomorphic with C locally 
at P. (If we consider these curves as Riemann surfaces, with the complex topology 
we mean locally in that sense ; if we use the Zariski-topology we mean that  the 
completion of the local ring 011. cP. t.) is natural ly isomorphic with the completion 
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of the local ring Oc, p; the proof of this is not difficult, and it is left to the reader.) 
Conclusion : 

E - {(P, L) I PE C n D} 

is smooth. 

In the same way we conclude that E locally at (P, L) is isomorphic with D* locally 
at L iff L ff C* n D*, and we conclude analogously : 

E - {(P, L) I L E C* n D*} 

i s  smooth. Note that we assumed 

{(P, L) I PE C  n D  and L E C* n D*} = 0, 

thus : E is smooth. Finally we show that E is elliptic, i.e. 

g (E) = 1  

(here g is the genus). We give two proofs ; consider the projection E � C, we have 
seen that this map is 2 : 1 except in the 4 points {(P, L) I PE C n D, L = Tv. P} ; thus 
by the Zeuthen-Hurwitz formula (cf. [Mumford, 1976] ,  p. 142, 7.20 ; cf. [Hartshorne, 
1977] , p. 301 ,  2.4) we have 

2g(E) - 2 = 2 · (2g (C) - 2) + 4, 

and because g (C) = O, we obtain g (E) = 1. We can also argue as follows 

E c c  X D* � 1P1 X 1P1 

and {P} x D* and C x {L} have intersection multiplicity 2 with E ;  thus E is called 
a curve of type (2, 2) on 1P1 x 1P1,  the canonical divisor K on 1P1 x 1P1 is of type 
( - 2, - 2) ([Hartshorne, 1977], p. 188, Exc. 8.4 e), and the ad junction formula on 
1P1 x 1P1 gives (cf. [(Hartshorne, 1977] , p. 361 ,  1 . 5) : 

2 g (E) - 2 = F  · (E + K) = (2, 2) · ((2.2) + (  - 2, - 2)) = 0, 

hence g (E) = 1 .  (We gave this second argument because we shall later see curves 
of type (2, 2) on C x C � 1P1 x 1P1 .) 

Notation 7.3. Suppose given C, D c 1P2, two different conics. We write y :  E � £: 
for the morphism defined by (see Figure 7.2) 

· 

y (P, L) = (P', L) 

i.e. y is the involution on E which commutes with the covering E � C. Analogously 

b : E � E  

b (P, L) = (P, £). 
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Figure 7.2 

Note 7.4 : The fixed points of y are all points 

(P, L) with P = P', i.e. L E C* n D*, 

and the fixed points of b are all points 

(P, L) with L = I'.., i.e. P E C  n D. 

Note 7.5 : Suppose we start with (see Figure 7.3) 

(Po , L0)E E  = E(C, D), 

325 

Figure 7.3 

then take P 1 = P� (the second point of intersection of L0 with C), then take L1 = L� 
(the second tangent line through P 1 to D), then 

this follows immediately from the definition of y and of b. 

Construction and definition 7.6. Suppose given C, D c IP2, two different conics. If 

f>o E C, L0 E D* with f>o E L0 ,  

and nEZ ?:: 3 we construct (the " Poncelet traverse ", cf. Section 1 . 1 ) : 

with 

L; = P;If+ 1 , O � i � n  

(i.e. given P; and L;, we take for P; +  1 the second point of intersection, L; n C = { P;,  
�+ 1 } ;  it may happen that L; touches C, and then P; = P;+ 1 and given f1+ t and 
L; we take for L;+ t the second tangent line to D, thus (P;+ 1 )* n D* = {L; ,  L; + t } ,  
etc.). 

We say that this construction closes after n steps (or that the polygon given by 
Po ,  . . .  , P.. - 1 is interscribed between C and D) if 

P, = Po  
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(i.e. if P.. - 1 Po = L. _ 1). We say that this construction closes trivially (cf. [Van der 
Waerden, 1 973], p. 1 39) if 

� = P.. - i ,  for all j with O �j � n. 

We say that the closing is degenerate if P E C n D, L E C* n D*, P E L :  in that case 
Po = P gives Po = P; for all i (see Figure 7.4). 

L 

Figure 7.4 

D 

Remark 7.7 : The cases of trivial closing are the following : 

or 
if n = 2 k + 1 is odd and Lk E C* n D*, 

if n = 2m is even and P,. E  C n D. 

Figure 7.5 Figure 7.6 

Example 7.8 : It may happen that the n-gon " folds up " without the closing being, 
trivial. Suppose (see Figure 7.7) L0 E C* n D*, Po f/: C, etc., and � E C  n D ;  if � # Po  
the triangle { Po ,  � ,  � }  gives a non-trivially closing construction. 

Figure 7.7 
D 
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Remark 7.9 : If the closing is degenerate then it is trivial. 

Lemma 7.10. Suppose given Po E C, Po �D, and L0 E D*, Po E L0 . The n-construction 
closes non-trivially if and only if 

Proof. Suppose the construction closes trivially, then 

y (b yt - 1 (Po , Lo) = (Po ,  Lo) ; 

by Po � D  we conclude b (Po ,  L0) # (Po ,  L0), thus 

(b yt (Po , L o) # (Po , L o). 

Conversely suppose the n-gon closes non-trivially ; if we would have (b y)" (Po , 
Lo) # (Po ,  L0) then 

y (b y)" - 1 (Po ,  Lo) = (Po , Lo). 

Suppose n = 2 k + 1 is odd, then 

gives 

i.e. the construction closes trivially. Suppose n = 2 m  is even, then 

gives 

i.e. the construction closes trivially. We obtain a contradiction in both cases, thus 
if the n-gon closes non-trivially then ((j y)" (Po ,  L0). 

Theorem 7.1 1. Poncelet's closure theorem ( cf Section 1 .1 ) .  Suppose C, D c IP2 are 
two different (smooth) conics. Suppose for some n EZ<!: 3 there exists a non-trivial 
interscribed n-gon between C and D (i.e. there exists Po E C, L0 E D*, Po E L0 such 
that the construction closes non-trivially after n steps). Then for any S0 E C, and 
for any M 0 E D* with S0 E M  0 the construction closes after n steps. 

Different positions 7.12. We know C intersects D in 4 points with multiplicities 
counted. Thus we can have the following cases (and it is not difficult to show 
that all cases occur) : 

1 ) 4 = 1 + 1 + 1 + 1 , '4F (C n D) = 4, 

3) 4 = 2 + 2, 4) 4 = 3 +  1 , 
2) 4 = 2 +  1 + 1 ,  

5) 4 = 4. 
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. 11: 
'b ::i 2 3 4 5 

Figure 7.8 'A .:� 
Remark 7.13. These situations are self-dual, i.e. if C and D in lP2 have a certain 1l 
intersection behavior, then C*, D* c (lP2)* have the same (proof left to the reader). 

Proof of Poncelet's closure theorem, case (1) (We give arguments which can be .' ' 
found in [Griffiths, 1 976] ,  l .d, and in [Griffiths and Harris, 1 977]; the relation ). 
of this modern proof to those by Poncelet and by Jacobi will be discussed i1,1 ·; 
Section 1 1 .) We have seen that in case ( 1 ), the curve E is an elliptic curve (smooth, ' '1 

of genus = 1) .  It is known that such a curve is a group variety, and that the group) 
structure is unique once O E E  is chosen ([Walker, 1950] , VI.9; [Hartshorne, 1 977], :'1 
IV.4). Note that 

· 'i 
··.;·\.li a = O y : E � E, 

and note that b y has no fixed points, because I 
o y (P, L) = (P, L) : �i 

would imply that L E C* n D* and P E C  n D, which cannot happen in case ( 1). We ? 
write a = o y. 

· ·  

Claim. Choose any O E E, there exist t E E  such that 

a x = x + t  

for all x E E  (and + with respect to OE E). 

First proof of the claim : Let a (O)=: t; the map x �-+ a (x) - t fixes zero, thus 

f3 : (E, O) -+ (E, O), f3x = a (x) - t  

is a homomorphism (cf. [Hartshorne, 1977], p. 322, Lemma 4.9). Suppose - f3 + 
would be non-zero; then 

( - f3 + id) : E -+ E  

is surjective (because dim E =  1 ,  and E being a complete curve, ( - f3 + id) E is closed'
in E; cf. e.g. [Hartshorne, 1977] , p. 103 , Th. 4.9); thus we can choose x0 E E  with 

( - f3 + i d) (x0) =  t. 
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Then 

thus 

a contradiction with the fact that a has no fixed points. 

Second proof of the claim : We choose OEE, let c E E  be a fixed point of y, thus 
c = (P, L) with P E C n D, and let d E E  be a fixed point of <5, thus d = (Q, M) E E  
with ME  C *  n D* .  Let + be the group structure on E with 0 as zero element. 
By [Hartshorne, 1977], p. 322, (4.9) we deduce 

y x =  - x + 2 c, b y = - y + 2 d ;  
thus 

b y x = b ( - x + 2 c) = x + t, t :=2 d - 2 c, 

and the claim is proved. 

Now suppose the n-gon Po ,  . . . P, = Po  closes non-trivially. Then we conclude 

(b y)" (Po , Lo) = (Po ,  Lo) 

(if Po f/=D, use Lemma 7.2 ; if Po E D, then closing implies y (b y)" - 1 (Po ,  L0) = (Po ,  L0) 
and Po E D  gives b (P0 , L0) = (Po ,  Lo)). For any x E E  we have 

b y x = x + t  

thus taking x = (Po , L0), from 

we deduce 

x + n t = x, thus n t = O. 

Take S0 E C, choose M0 ED*, with S0 E L0 ,  and let y = (S0 , M0) E E ;  then 

(Sn , Mn) = (b y)" (So , Mo) =  Y+ n t =  y = (So , Mo), 

thus the n-gon { S0 , . . .  , S
" 
= S0} closes. Q.E.D. 

The closure theorem in cases of tangency 7.14. We sketch the proof of the closure 
theorem in the other cases. We denote by E = E ( C, D) the incidence curve as before, 
and we write E0 for the smooth part of it. Up to choice of a zero-point on E0, 
this has a unique structure of a group variety in  each of the cases and the curve 
E and the group structure on E0 are as follows. 
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Type E Group 

1 4 = 1 + 1 + 1 + 1  Elliptic 
2 4 = 2 + 1 + 1  ex Gm 
3 4 = 2 + 2  � Gm X (7lj2) 
4 4 = 3 + 1 G. 
5 4 = 4  >-< G. X (7l/2) 

Figure 7.9 

where Gm = multiplicative linear group, i.e. Gm = IP1 - {0, oo }  as a variety, and the 
group structure is the multiplication of the coordinates on IP1 ,  and G a =  IP1 - { oo} ,  
and addition. The proof o f  these facts i s  straightforward : E i s  smooth above points 
where C and D are not tangent ; in points where C and D have a common tangent 
we shall determine the singularity of E by a direct computation. 

We choose coordinates such that D is given by the equation 

if Q = (t, t2), then L = TD, Q : 2 tX = Y+ t2 ; 

we take C in the form 

ex Y= X2 + /JX Y+ y Y2, ex ¥ 0, 

P = (ex s/(1 + P s + y s2), ex s2/( 1 + P s + y s2)) on C ;  

note that (0, O)E C  n D, the curves are tangent there, and their intersection number 
at that point is given by the length of the ring 

localized at (0, 0), hence : 

type (2) or (3) if 1 - ex ¥  0, 

type (4) if 1 = ex  and P ¥ 0, 

type (5) if 1 = ex, p = 0, and y ¥ 0. 

Note that D � D*, the coordinates t and s are coordinates on D x C � D* x C, an 
in these coordinates E is given (by PEL  hence) by : 

2 t ex s/(1 + Ps + y s2) = ex s2/( 1 + P s + y s) + t2 

thus by 

(ex s2
- 2 ex s t + t2) + P s t2 + y s2 t2 = 0. 
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The discriminant of the quadratic term is  4cx2 - 4 cx = 4 cx (cx - 1 ) ;  because cx # O  (C 
is  irreducible), and because 4 # 0  (char (k) # 2) we see : 

1 - ex #  0 iff the singularity is a node. 

If 1 = ex, the equation is 

(s - t)2 + {1 s t2 + y s2 t2 = 0  

which is an (ordinary) cusp iff {1 :;6 0. If 1 = ex  and /1 = 0  we obtain 

(s - t)2 + y s2 t2 = (s - t + a ·q/=-;;) (s - t - s q!=-;;) = 0  

and we obtain a tacnode. In case (3) the curve E has two nodes, and E ->  C does 
not ramify outside the nodes ; one concludes easily E to be reducible. 

In each of the cases consider y and o, and ex =  o y  as above. Note that both y 
and o interchange the two components of E in the cases (3) and (5). Hence 

cx E End (IP1 - {0, ro }) in (2), (3), 

cx E End (IP1 - { ro }) in (4), (5). 

This map is birational (bijective) and it has no fixed points. In the last case 

cx u = a u + b ; 

because it has no fixed points, we see a = 1 ,  thus 

cx u = u + b ;  

in the first case 

cx v = a v  or cx v = ajv ; 

if ex v = ajv, then Va is a fixed point, hence 

cx v = a v. 

If { Po ,  . . .  , P, = Po}  is a closing n-gon which closes non-trivially, then this closing 
is non-degenerate (i.e. Po � = L0 rt C*). Thus (Po , L0) is not a singular point of E 
and the proof of the closure theorem is as before. 

Remark 7.15. Note that in cases (2) and (3) the Poncelet n-gon closes if and only 
if an = 1. Note that in cases (4) and (5) (and supposing char (k) = O), the Poncelet 
n-gon does not close : if cxn 

u = u, then n b = 0, thus b = 0. 

Remark 7.16. If we work over a field K with char (K) = p > 2, the whole proof 
works, and we find no closing p-gons in cases (2) and (3), and we find that in 
every situation the cases (4) and (5) have closing n-gons for n = p. 
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Note that the case (3) can be proven much easier than we did : by a projective 
transformation we map the two intersection points to the isotropic points ( 1 : ± i : O), 
with i = tf=l, the conics C and D become concentric circles and rotation-symmetry 
immediately proves the closure theorem in this case. 

Remark 7.17. The morphism E = E (C, D) � c  ramifies above C n D, and one can 
decide the structure of E from this ; e.g. consider C fixed, let D vary such that 
for general position # ( C n D) = 4 (and hence E is elliptic) and for special position 
# (C n D) = 3  (type (2), the limiting curve has a node as is well known) etc. In 
this way we see what happens with closing n-gons under this " specialization " :  
we know exactly what happens with torsion points under specialization, and we 
see that any closing n-gon in situation (2) or (3) be obtained by specialization 
of a closing n-gon in situation ( 1 ) : we sketch a proof for situation (2) as a limiting 
position. Choose C c  IP2 and � ,  Pz ,  � E C fixed. Let � be a variable point on 
C, and let C � C be the family of curves such that Ca. is the curve which is determined 
by � = rx E C  such that 

is a 2 :  1 covering branched in � ,  Pz ,  � and � = rx. Choose a family D c IP2 
x C 

given such that D a. passes through � , Pz ,  � and � = rx (take generic rx, choose 
for that value Da. and specialize). Let V be the variety whose points correspond 
to triples (rx, [3, d) with rx E C, /3EIA1 and D2 , p  is the conic given by fJ C + Da. ,  and ( 
d (depending on rx and /3) is the point .i .·� d = (Q, M) E Ea. = E(C, Da., p) 

with M a common tangent of C and Da., p (cf. Figure 7. 10). We can always choose 
d so that it corresponds to a common tangent not passing through � = rx. Note 
that V� C x /A 1 at the generic point is 4 :  1 (corresponding to the 4 choices of :, 
d). Note that C and Da., p give a Poncelet construction which closes after n steps 1 
if n t = 0 (here t can be constructed from C, D a, p and d). 

"a " 

Figure 7. 1 0  Figure 7. 1 1 
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Now consider the case of tangency � = � = oc:0 • Then the curves E«o./l ,. J<; (C. D 110• p) 
have a node, whereas for general oc: the curves E11. p are elliptic . I t  is  wel l known 
(theory of "vanishing cycles " as developed by Lefschetz, cf. [Lefschetz, 1 924] ; e.g . 
also cf. [Igusa, 1958]) that all n-torsion points of the nodal curve Eo , 

are specializations of n-torsion points of the generic fibre 

E11 [n] ';::; (7Ljn) x (7Ljn) ; 

thus, if oc:0 , {30 is a " closing situation "  we can choose (a, {3, d) special iz ing to (a0 , 
{30 , d0), and the corresponding pair C, D 11., fJ is a " closing situation ". We indicate 
by a figure the theory of " vanishing cycles " :  cf. Figure 7. 1 1 . 

Remark 7.18. We have seen E c C  x D* ';::; IP2 x IP1 ; one can em bed this surface 
as a quadric in IP3 (see Figure 7 . 10), 

]pl x JPl ';:; S c JP3. 

S is the set of zeros of any non-degenerate quadratic polynom ial (homogeneous 
in 4 variables). Choose (J E S, and project IP3 on a IP2 with centre (J (map not 
defined at (J). This projection restricted to S we denote by n = n, " 

1t : s - k} ---+ ]p2 0 

If (J E E, then n (E - {(J}) is a cubic, smooth curve in IP2• If (J E E, then n (E) is a 
quadric curve in IP2 with 2 singular points (the two lines on S through (J collapse 
to points under n" , and each of these lines has intersection multiplicity 2 with 
E. This is the situation described in [Griffiths, 1976], pp. 345/346. 

Figure 7. 12  

Remark 7.9. Another proof of  Poncelet's closure theorem can be given with the 
help of the " correspondence principle " of Chasles, cf. [Van der Waerden, 1973], 
pp. 1 38/1 39. 

8. Poncelet's infinitesimal argument 

Poncelet's proof of the closure theorem contains a beautiful argument about infini
tesimal motions and rotations (cf. Section 4.3 ,  part I l l  of the proof of the lem ma , 
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in particular Poncelet's own text quoted there). In the present section we shall 
formalize his argument, show that it applies not only to conics but to algebraic 
curves in general, and deduce some consequences. 

Modern algebraic geometry supplies some tools for this. Consider the ring k [a]/(a2) 
(the ring of " dual numbers over k", k is a field, and (a + b a) (c + d a) = a c + (a d + b c) 
a). We can formulate geometric " infinitesimal " arguments by using this ring as 
the ring of constants (instead of working over a field). 

Lemma 8.1. Let C and D be algebraic curves in IP2, let P E C, Q E D  be smooth 
points and let L be a line which is tangent to D at Q, with PE L. Suppose : P =f. Q, 
and : Q is not a flex on the curve D. Let P. E C (k[a]) be an irifinitesimal deformation 
of P E C (k) (i.e. P. has coordinates x(i) E k [aj which satisfy the equation for C, and 
under the ring homomorphism k [a} -+ k, Bt---> 0, we have P.�---> P). Let L, be the tangent 
to D deforming L. Let M, be the line joining P. and Q (it "pivots " around Q). 
Then 

L, = M, 

(e.g. as elements of(IP2)* (k [a])). 

Figure 8 . 1  c 

D 

Proof. We choose coordinates in ffi..2 c: IP2 such that P = (O, 1), Q = (O, O), L is given .· 
by X = O ;  let P. = (u a, 1 + v a), with u, v E k. An equation for M, is 

U B  0 X 
1 + v a  0 Y = (l + v a) X - u a Y= O. 
1 1 

Note that 1 - v a  is a unit in the ring k [a] , thus 

( 1 - v a) [(1 + v a) X - u B  Y] = X  - u B  Y 

defines the same line over k [a] . A polynomial defining D reads 

G : r:x. X + f3 Y2 (modX2, X Y) 

with r:x. =f. 0 (because D is smooth at (0, 0) = Q), and with f3 =f. 0 (because Q is not 
a flex of D, so X = 0 intersects with multiplicity 2). If L, is tangent to D at Q, ,  
then 

Q, = (O, w a) 
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(because Q, e D  its X-coordinntc equals zero), and L, is given by a polynomial 

(o Gjo X)Q. X +  (iJ G/iJ Y)u. Y + const, 
thus 

H = a X + 2 /J w e Y; 

by P, e L, we get 

a u e + 2 {J w e ( l  + ve) = O  

because of fJ =1= 0 we can solve w knowing u, 

w =  - a u/(2 /J), 
and 

( 1/a) H = X  + ( 1/a) 2 {J w e  Y= X - w Y, 

thus L, = M, .  Q.E.D. 

Remark 8.2. If fJ = 0 (i .e. D has a flex at Q), and if C is not tangent to X - 0 
at P, then a non-trivial deformation P. on C, over the ring k [e]/(e2) cannot be 
obtained by any deformation of Q and Tv. Q · In fact, if fJ = O  and Q, (O, w r.), the 
corresponding deformation L, of Tv. Q is given by H = a  X ;  by P.e L, we conclude 
a u e = O  in k [e]/(e2) ; by a =I= O  this leads to u = O ; because C is not tangent to X • O  
at P this leads to P. = (u e, 1 + v e) = (O, 1 )  (we need higher order deformations of 
Q and Tv, Q in order to have a non-trivial deformation of P). Note that in the 
rest of the paper Lemma 8 . 1  will be applied in case D is a conic (hence smooth 
and without inflection points). 

Co�struction 8.3. Suppose given (cf. Figure 8.2) a (smooth) conic C c  lP2 and plane 
algebraic curves D 1 , D2 c IP2 (they may be equal). Suppose D 1  and D2 do not 
have components which are a line. We define r c (IP2)* � IP2 and X c P2 (dependina 
on C, D1 and D2) in the following way. For any P e C, and a pair of lines L1 , 
L2 so that P e L; ,  and L; tangent to D; , i = 1 ,2 we write L1 n C = {P, R1} .  Let X 
be the set " enveloped by the chords R 1  R2 ". By this we mean the followina. For 
all P, L 1 , L2 with the properties above, and so that R 1 =I= R2 we define the l ine 
R1 R2 e (IP2)*,  and the union of all points thus defined gives a subset f0 c (P2)•. 
The closure of T2 we denote by r c (IP2)*.  We show that r is an algebraic curve : 
let F0 c Df x D! be the set of pairs (L1 , L2) e Df x D! so that L1  =I= L2 and L 1  11 L2 c 

C, let F be the closure of F0 ; it is easily seen that F is an algebraic curve. If  
(L1 , L2) e F0, then the construction applies with P :=L1 n L2 , P e C, we obtain 
R1 R2 e (IP2)* and this defines a morphism F0 -+ (JP2)* .  The closure of the imaac 
is r, and it is easily seen that all components of r have dimension one, hence 
r is an algebraic curve. We define X =  T*, i .e. for any line contained in r we 
obtain a point in X, and all other components of X are algebraic curves. If Q1eD1 ,  
with Q1 � C  so that L 1 n L2 = { P} c C, and L1 •= PQ1 i s  tangent t o  D1 , l • l ,  2, with 
L1 =I= L2 ,  we construct H •= Q 1  R 2 n Q 2 R 1 and G • =  PH n R 1 R2 (cf. Fiaure 8.2 ; be-
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cause of the conditions the lines Q 1  R2 and Q2 R1 are defined and are different, 
thus H is defined, and P # H  and PH # R1 R2 , hence G is defined). Note that 
the conditions Q ;� C give a dense open subset of F0 (only finitely many points 
have to be omitted). We shall see cases where X actually has a component of 
dimension zero. 

Figure 8.2 

We now formulate the analogon of Poncelet's result on the construction of points 
on the envelope X (cf. Section 4.3, especially parts I and Ill of the proof; we 
do not use that D 1  and D2 are conics). 

Proposition 8.4. Suppose C, D 1 , D2 as in the Construction 8.3,  suppose the points 
P, R 1 ,  R2 , Q 1 ,  Q2 are mutually different (see Figure 8.2), suppose Q; is not a 
flex of D; ,  i =  1 ,  2. Then the point G as constructed, i.e. 

Q1 R2 n Q2 R 1  = H, PH n R1 R2 = G, 

is a point of contact between X and R 1 R2 , and 

G E X  n R1 R2 . 

Proof. Because R 1  # R2 , we can draw the line R 1  R2 = y E (W2)*, y E r. Suppose P. 
is a non-trivial deformation of P E C, B2 = 0. We apply the previous lemma (P # Q; ,  
Q ;  is not a flex of D ; ,  i = 1 ,  2), concluding that the tangent line deformation L;, e 
is the same as J; Q; = M;, . ,  the line through P. and Q; defined over k [e] , i = 1 , 2 ; 
we conclude : 

so we obtain a non-trivial deformation Ye of y E r c n>2• This Ye E Mor(Spec k [B] , 
W2), thus this non-trivial tangent vector Ye to r at y is supported by a line N .l 
tangent at y to r. The situation y E N  c (W2)* corr�sponds dually with y +-+ R 1 R� , 11 
N +-+ G E R 1  R2 . For fixed P on C, the y and Ye m the case that Pe R;, , remam 1 
tangent to D ; ,  are the same as the y and y, that arise if P, R;,, pivot around 1 
Q; (by 8 . 1). Hence the point G of contact is the same in  both cases. In  Lemma 
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8.5 we show that in the latter ( pivot t ing) case the point G is constructed as indicated 
in the proposition. It follows tha t  ulso in the former case that construction applies. 

Lemma 8.5. Let C be a conic, Q 1  and Q2 points not on C, let L = Q 1 Q2 intersect 
C in points I 1 ,  I 2 , assume Q 1 .;: Q2 and 1 1  # 12 . For any point P E C, Pf/;L  we construct 
X1 , X2 E C  as indicated : the line I'Q1 = I ,  2, intersects C in P and Xi . 

(8.5 i) All lines X 1 X 2 (for PE  C variahle) pass through one points iff the pair { Q 1 ,  Q2 }  
i s  harmonic with respect t o  { 1 1  1 2 } ;  i n  this case all lines X 1 X 2 pass through the 
polar point M of L with respect to C. 
(8.5 ii) If {Q 1 , Q2} is not harmonic with respect to {I 1 , I2 } ,  the lines X1 X2 envelop 
a curve B, this is a smooth conic, it touches C in I 1 and I 2 , and it touches X 1 X 2 
in the point G E B  as indicated in Figure 8.3 : H = X  1 Q2 n X2 Q 1  and G = X1 X2 n PH. 

L 
Figure 8.3 

Several proofs can be given, for example a straightforward computation is easy 
(parametrize C, compute the coordinates of X 1 and X 2 , and eliminate the variable 
from the equation giving X 1 X 2 , etc.). However, we prefer to give a proof more 
closely related to Poncelet's original idea ; in (8.6) we indicate one detail in which 
we have to alter Poncelet's argument (and also cf. 4.3). 

Proof. We assume the groundfield k is that of the complex numbers, k = «:. We 
choose coordinates in the projective plane containing C so that 

I I , I2 = (l : ± i : O), i = ti=l, 

the isotropic points. The triple { C, Q 1 , Q2 } is uniquely determined by a poin t  
(a, /3, y, Q1 , Q2) E <C3 x L x L, 

where 

( 1 )  

i s  the equation for C.  Let Tc <C3 x Lx Lbe the subset where thia equation is  i rreduc
ible, and where Q 1 ,  Q2 f/; C. The points in T are exactly all thOMO 111tuations we 
study in the Lemma. 

For any t E  T we obtain 

C, -+ I,'E IP* 
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by the construction, thus for each tE  T the curve r; is irreducible (being the image 
of C1) ; and for each tE  T we obtain C1 -+ B1 c: lP. 

First step. Consider S c: T(IR), where S is the set of points with real coordinates, 
and such that y > 0. We claim that for all points in S the corresponding triple 
{C, Q 1 ,  Q2 } has the properties as concluded in the lemma. In fact, the pair {Q 1 , 
Q2 } is harmonic with the isotropic pair if and only if for every P E C (IR), the lines 
PQ1 and PQ2 are perpendicular. This is the case if and only if for all P E C(IR) 
the line X 1 X 2 contains the centre M of the circle C (cf. Figure 8.4). In all cases 
the angle between PQ W1 and PQ2 is constant, and the point G given by the con
struction is the middle of X1 X2 (cf. Figure 8.5), thus for P E C (IR) this middle 
describes a circle with centre M, and this circle degenerates to the point M iff 
M =  GEX 1 X 2 • We see : if t ES, and {Q 1 , Q2 } harmonic with respect to the isotropic 
points, the map C -+  B maps all the real points of C to M, thus it maps all points 
of C to M, and B = {M} (because y > 0 implies C (IR) consists of infinitely many 
points). In the case { Q 1 , Q2} not harmonic it maps C (IR) to the real points of 
a circle, hence B equals this circle. The condition " G EB"  is a closed condition, 
it holds for all P E C (IR), hence it holds for all P E C. This finishes the proof of 
the lemma for all points t ES. 

Second step. Let T' c: Tbe the set of points where { Q 1 , Q2} is harmonic with respect 
to {I 1 , I  2 } and let T" c: T be the set of points where r; is a line ; the sets T' and 
T" are IR-Zariski-closed in T as is easily seen. By the first step we know T' (IR) n 
S = T" (IR) n S ;  note that these are Zariski-dense subsets of T' and T" ; thus we 
conclude T' = T" ; note that the tangents to C in I 1 and I 2 pass through M. Thus 
we have proved (8 .5 i). 

For all tE T, t� T' = T" the curve r; is not a line. For all t E S  we have seen in 
the first step that r; is a conic, thus in the family 
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for the Zariski-dense set S the fibres are irreducible, hence all r,, t E S, are irreducible, 
and we conclude that all Bt ==(I;)*, t E S, and trt T', are conics. The properties 
" Gt E  B/' and "Bt touches C in I 1 and I 2 " are closed conditions, and they are 
valid (by the first step) for all t ES, thus they are true for all t ES. This finishes 
the proof of the lemma. 

Remark 8.6. If C', Q'1 , Q'2 are defined over the real numbers, and we change coordi
nates (over <C) so that I 1 and I 2 are transformed into the isotropic points, the 
resulting Q 1 , Q2 need not have the property that they have real coordinates. Thus 
the first step in the proof does not show the lemma for all C', Q� , Q� defined 
over the real numbers (cf. also 4.3). 

Remark 8.7. Consider the situation as in 8.4. The line R1 R2 may have other points 
of contact with X. Thus we write " a  point of contact . . .  ". But we should say : 
take the " incidence curve " consisting of triples (P, L� > L2) E C  x Dj x D� ; this point 
(P, L1 , L2) in the situation of 8.4 maps naturally onto G EX by the construction. 

Remark 8.8. In the proof of Lemma 8 .5 we have used the Zariski-topology to 
derive a result which Poncelet reached by means of his principle of continuity. 
It seems worthwhile to pursue further study of this principle of Poncelet : how 
much of it can be put on solid foundation e.g. by using the theory of Riemann 
surfaces or by the methods of modern algebraic geometry (such as the theory 
of schemes and the notion of the Zariski-topology, cf. also the proof of the Main 
Theorem 9.4.1). 

9. A proof for Poncelet's " Main Theorem " 

Let C, D 1 , D2 c: IP2 be three different (smooth) conics, and consider the curve X c: IP2 

as described in Construction 8 .3 and in Proposition 8.4. Poncelet and Jacobi 
described X in the special case that C, D 1  and D2 belong to the same pencil ; 
in this section we study that case. In the next section we determine X in case 
C, D1 and D2 are " in general position ". Let us refer to these cases in the following 
way. 

Situation 1: The three conics are different, I 1 ,  I 2 , I 3 and I 4 E IP2 are 4 different 
points and 

C n D 1 = {I 1 , . . .  , I4} = C n D2 

(the conics belong to the same pencil). 

Situation 11 : The conics are in general position. 

Remark 9.1. By " general position "  we mean the following. Suppose the situation 
is described by parameters (a conic in IP2 is given by a homogeneous equation 
which has 6 coefficients, thus it can be given by a point in JP5, and (C, D1 , D2) 
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corresponds to a point in 1P5 x 1P5 x 1P5). We say the situation is in general position 
if there is a finite union U of proper closed subvarieties Ui of the parameter space 
(this U depends on the problem considered) and the situation in question corre
sponds to a point not contained in U. So, to be correct one should specify first 
the problem, then define U, and after that the phrase " general position " makes 
sense. In our case, we give the construction of the situations we want to exclude 
(i.e. the closed set U) in the next section (and in the following lemma we already 
see one of the conditions). 

Lemma 9.2.11. Suppose * (C n Dd = 4 =  * (C n D2) and 

C n D 1 n D2 = 0. 

Then 

is a smooth curve of genus 5. 

Proof. We have E (C, DJ== Ei --+ C as in Section 7 and 

The curves E 1 ,  E 2 are smooth of genus one, and 

is generically (2 : 1 )  which ramifies only if P E C n D2 ; we conclude F is smooth 
outside these points. The same holds for F and P � C n D 1 .  Thus F is smooth 
be because C n D 1 n D2 = 0. The map F --+  E 1 ramifies in exactly the 8 points (P, 
L1 )  with P E C  n D2 • By the Zeuthen-Hurwitz formula (cf. [Hartshorne, 1977], 
p. 301) we have 

2g (F) = (2g (E) - 2) · n + 8 (n - 1) 

and n = 2, g (E) = 1 yields g (F) = 5. Q.E.D. 

Lemma 9.2.1. In situation I, 

where F1 and F2 are elliptic curves intersecting transversally in 4 points. 
Proof. A point (P, L1 , L2) E F, P � C  n D1 = C n D2 is smooth on F (proof as before). 
Note that 

are smooth curves, covering 2: l over C, and both maps are branched in 
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C n D 1  = {1 1 , . . . , 1,. 1 ... c · n o � .  
<I> 

E\), c 
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Thus there exist exactly 2 il10morphisms over C (the curves E1 and £2 are isomorph
ic, and l/1 = b2 </J) and 

F = {(x, </J x) l x e E  1 !  V l (y, l/J y) l y E E t } ·  

A local computation, which we omit ,  shows that at the points 

these two components intersect t ransversally. Q.E.D. 

Note that in case l l  we obta i n  morphisms 

f: F __. r c (IP2)• 
g : F _. X c iP2 

(these maps are defined on a non-empty open set of F, thus they extend to the 
set of smooth points of F, cf. [Hartshorne, 1977], p. 43, Prop. 6.8, thus in the 
situation as in 9. l . I I  to the whole of F). In Situation I we obtain 

fo : F - { 1'1 ,  . . .  , /�} __. r c (JP2)� 
go : F - {I't , . . .  , /�} _. X c (JP2) 

(and we shall see that g0 does not extend). 

The curve F = F(C, D 1 , D2) defined by 

F == {P, L1 , L2) I P E C n L 1  n L2 , Li E Df}  

i s  reducible in  Situation I ,  F = F1 u F2 (cf. 9. 1 .1), and the curves F1 and F2 are 
smooth ; thus we obtain morphisms 

these give the components of r. 

In Situation I we distinguish three cases. First we fix notation. We write 
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(consisting of four points in IP2, no three on a line). We choose one of the points 
in I, say l 1 el. We choose one of the conics {D1 , D2} , say D 1 e {D 1 , D2} . We 
draw the tangent line L1 to D1 at I 1 ,  write L1 n C = {P, I t } (and note : P tj l, PtjD2). 
We write L2 and 1;2 for the two tangents through P to D2 , with 

L2 n D2 = {Q2} , L2 n C = {P, R2} , 

i;2 n Dz = {Q2}, Lz n C = {P, R2}, 

note that R2 # R2 and that (P, L 1 , L2) and (P, L 1 , !;2) are on different components 
of F. We distinguish the three cases : 

(l.a) We have Q2 # R2 and Q2 # R2 (thus Qdl and Q2 el) (cf. Figure 9 . 1) .  
(I.b)We have Q2 = R2 and Q2 # R2 ,  or Q2 # R2 and Q2 = R2 (cf. Figure 9.2) 
(I.c) We have Q2 = R2 and Q2 = R2 . 

Figure 9.2 

Figure 9. 1 

It seems that we treat the points in I asymmetrically, and also the same for D 1  
and D2 . We show this is however not the case, and it turns out that these are 
all possibilities that can occur. 

Remark 9.3. It is easy to see that cases (l.a) and (l.b) occur. The following example 
shows that (l.c) occurs. Let / 1 , /3 = (0 : ± 1 : 1), and /2 , l4 = (1 : ± i :O) with i =y'=l, 
and 

C :  X2 + Y2 = 1 ,  

D 1  : (X +  1 )2 + Y2 = 2, 

Dz : (X - W +  ¥2 = 2. 

We choose P = ( 1 : 0 :  1 ), we see that the lines 

X ± Y= 1  

touch D 1  in I 1 and /3 , and the lines 

Y= ± i(X - 1), i = y'=l 
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touch D2 in I2 and I4 , and 14 , and P E C  is on all these lines. Hence this is case 
{I. c). 

Theorem (9.4.1) (" Main Theorem ", cf Sections 4.1 and 4.3 ). Let C, D 1  and D2 
be three different conics of the same pencil (i.e. Situation 1). Then 

where : 

X = X  1 u X 2 ,  with X 1 4: X 2 and X 2 4: X 1 , 

in Case ( I.a) : X 1 and X 2 are two conics in the same pencil ; 

in Case ( I.b) : X 1 is a conic in the same pencil and X 2 is a point ; 

in Case ( I.c ) : the component X 1 and X 2 are two (different) points, 
(and below we describe the exact positions of X 1 and X 2 in all cases). 

Before giving the proof of the theorem, we need some preliminaries. 

Lemma 9.5. The symmetric group S4 = S (I) of permutations of the set I acts on ]p2 

and for the subgroup 

v4 � { ( 1 ), ( 12) (34), ( 1 3) (24), ( 14) (23)} c s4 

we have that any r E  V4 maps any conic D containing I to itself Any r E  V4 maps 

(E; = E(C, D;)) and for r # (1 ), r E V4 maps F; and r; to itselffor i = l , 2, and if r # (1)  
it has no fixed points in F; .  

Proof. (Such a symmetry argument was already used by Poncelet in connection 
with pencils of conics, cf. Section 4.4 and the references to the Traite mentioned 
there.) Transform I3 and I4 to the isotropic points ( 1 : ±y=l : O), and I 1  and I2 
to (0 : ± 1 :  1 ) ;  in the new coordinate system r = ( 12) (34) is given by 

r (x : y : z) = (x : - y : z) 

and any D containing I is given by 

thus 

r : D -+ D. 

It follows that r :  E1 -+ Ei ,  i =  1 ,  2. lf(P, Lde E 1  with 

t (P, L d = (P, Ld. 
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then 

P = r P = (a : 0 : 1) E C, 

and L is given by 

either X = 0  or X = a Z. 

However, there is no smooth conic D 1  containing I which is tangent to either 
of these lines. Hence r E  V4 , r # (1 ) has no fixed points on E; . This implies that 
on E1 (and on E2) the map r E  V4 is a translation by a point of order 2 (choose 
a base point in each of the curves, use the same arguments as in the proof of 
Theorem 7. 1 1 ). Moreover we can choose n E El , Ji E E2 as base points and then 
the points IL IL JiEE 1  are the points of order two on Et > and the analogous 
statement for E1 (with the notation : 1] is the pair I} = (lj , L) where L is the tangent 
to D' at I J Thus cp and t/1 :  E 1 -+ E1 commute with r E  V4 , hence every r E  V4 operates 
on the components F1 , F1 of F :  

if (P, L1 , L2) EF';  then (r P, rL 1 , r L2) E F'; .  

The rest follows directly. 

Lemma 9.6. We have C* q: r, and for any line p c  JP* with p <t Ji we have 

# (f - 1 (p n Ji)) .:::;4 for i = 1, 2. 

Proof: If P E C  is not on a common tangent of D 1  and D2 we obtain (P, L1 , 
L2) producing a chord R1 R2 with R1 # R1 ;  thus the intersection is finite. If we 
choose R E C  there are at most 8 points in F, at most four on each component 
F; ,  such that R is the endpoint of a chord K E F  (from R there are at most four 
tangents to D1 or D 1 , hence at most eight such points on F, and permuting L1  
and [;1  or  L2  and [;2 interchanges F1 and F2). As C* q:r a general point R E C  
corresponds to a line r c JP* nowhere tangent to r, we see that a general line 
in JP* gives at most four points on each of the components of r. 

Lemma 9.7. Suppose PI1 = L1 touches D 1  (in I 1 ), let R2 E C, R2 # P, and suppose 
PR2 = L2 touches D1 in Q2 ; we write x0 :=(P, L1 , L2) E F1 •  Assume Q2 # R2 (and 
hence R2 rf;l), see Figure 9.1. Then 

Proof: Note that F1 is a smooth curve. Choose a variable point x1 EF1 with 

(either work over the complex numbers, consider F1 as a Riemann surface, and 
take limits in the complex-analytical sense, or use the local ring of x0 E F1 ,  this 
is a discrete valuation ring, and use specialization methods). For X1 E F1 we have 
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x' = (P', I!I > I!2), and for x' in a n  open neighbourhood of x0, but x' # x0, we are 
in the situation of (8.3) and ( K .4), and we can construct H' and G'EX n R� R'1 
in the way indicated by (!U). Uccuusc F1 i s  smooth 

exist. Because Q 2 # R2 we conclude 

H0 = 11 = Q� R? n Q? R� .  

Because H 0 = I  1 # P, we concl ude 

G0 = 1  1 = PH0 n R� R? . 

Thus 

Lemma 9.8. Each of the maps .1; : F; ->  r; is of degree at least two and deg (T;) � 2 
for i = l ,  2. 

Proof. Suppose there exists i E  { 1 , 2} so that 4 � deg (f;) > 2 ;  then/; : F; ->  r; is biration
al by (9.6), thus the geometric genus of r; equals one (because g (F;) = 1). If deg I; =  3 
we see that -r E V4 ,  -r # ( l)  is a reflection in (1P2)*, hence it has fixed points on I; � F; ,  
contradicting (9.5). If deg (r;) = 4, this curve has at most 2 singularities. Clearly 
V4 cannot operate on J; c (lP2)* so that all -r E V4 ,  -r # (l) have no fixed points outside 
the singularities. Hence deg (I;) � 2. This implies g (F;) = 1 > 0 = g (I;). Thus F; ->  I; is 
not birational. Q.E.D. 

Proof of the main theorem (Case l.a). Suppose C, D1 and D2 chosen in such a 
way that for a choice of I 1 and D 1  we are in case (La). We see that K = 1  1 R2 
and K' = I  1 R� are chords such that K and K' are points on different components 
of r. Thus by (9.7) the two components of X contain I 1 .  Using the action of 
V4 on the whole situation we see that both components of X contain all points 
of I. Hence deg I; = 2 = deg I; ,  and X 1 and X 2 are conics through all points of 
I (and touching K and K' respectively at I 1 ,  etc.). This finishes the proof in the 
Case (La). 

Specialization argument 9.9. We parametrize all possible choices for Situation I, 
e.g. fix I c 1P2, a set of four points, no three on a line, in some standard position, 
take coordinates in the linear pencil of conics through the points in /, then 

(C, D 1 , D2)E Tc lP1 
x 1P1 

x 1P1 

where T is an open set. The subsets corresponding to the cases a, b, c have the 
property : 
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Suppose we have some 

we choose a smooth 1 -parameter family 

{(C, D't , Di)} ,eB • 

parametrized by a smooth curve B so that this is the situation (C0, D? , vg) for 
t = O, and for t E B, t ;i= O  this point is in Ta (B is an open curve, and this is possible 
because Ta is dense in T). In this way we obtain a family 

{P}r e B •  

and each fibre P i s  a plane algebraic curve. Moreover we have seen that for 
t ,.,  0, 

P = I;,' u I;,' , 2 conics. 

Further for t ;i: 0 

X' = (P)* = Xi u Xi , 

two conics which contain the points in I, and which are tangent for chords as 
constructed before. We use the methods of " complete conics " (e.g. as explained 
in [Kleiman 1976] p. 470) : if P degenerates to a (double) line I;0 , then Xl = (I;'')* 
for t ;i= O  degenerates to a pair of lines and in that case X? = (I;0)* is a point. 
Note that in that case 

such a pair of lines and their intersection points both appear in the considerations 
by Poncelet, see Section 4.4. 

Proof of the Main Theorem (Cases I.b and I.c). Suppose we are in one of the 
two special cases, (C0, D? , Dg), and choose a family degenerating to this case 
as above. Fix I 1 E I  and D 1 , and consider K' = I1 Ri and K' ' = I 1 R� . We know 
that X'1 and Xi are conics, containing the points of I, and touching K', respectively 
K' ' at I1 for all t ;i= O. If this situation degenerates to (l.b) the conic touching I Ri 
with R� = Qg = I2 degenerates to the pair of lines I1 I2 u I3 I4 (and (T0)' has the 
point / 1 I2 n I3 I4 as a component), and the conic touching I R'i with R� 0 ;i: Qg 
has a smooth limit. This describes 

X0 = X? u xg, 
X? a conic, 

xg = I1 I2 n I3 I4 , 

in Case (I. b). If we are in Situation (I .c), say 



R� = Q� = I2 

R'zo = Q2o = IJ 

Pnncclet'N closure theorem 

then both components of r' degenerate ,  and 

X0 = X? u X� ,  
X ?  = I I 1 2  f""1 I J I • .  

X� = I 1  I3 f""1 1 2 14 • Q.E . D. 

Remark 9.10. The situation can be clarified as follows. Consider 

h F --+ C X C, h (f't) = /1 1 

defined by 

h (P, L1 , L2) = (R 1 , R2) 

where L; n C = {P, RJ It can be seen that the twist-map 

has the property 

z A ; = A; , i E { l ,  2} .  

347 

This gives a geometric explanation of the fact that each of the maps f: F1 --+ r, has 
degree at least two : if (P, L 1 , L2) gives the chord R 1  R2 E fi ,  then there exists 
a point P' E C and (P', £ 1 ,  £2) giving the same chord (R2 ,  R 1 )e L1 (sec Fiaure 
9.3). Moreover it can be proved that F; --> A ;  has degree 2 if and only if lj la 
a line. Starting with some point in I, and some conic in {D1 , Da} we produce 
chords through the points in I in 16 ways ; it turns out that the number of different 
chords is either 8 = 4 + 4 (in Case La) or 6 = 4 + 2 (in case Lb) or 4 • 2 + 2 (In Case 
Le). 

Figure 9.3 



348 H.J.M. Bos, C. Kers, F. Oort and D.W. Raven 

Remark 9.11 .  We describe the locus X in several degenerated cases (details are 
left to the reader). We still consider I c IP2, # I =  4, no three points on a line. 

(9. 1 1 . 1 ) The conics C = D1 coincide, and D2 # C  is a conic ; in this case X = D2 
(counted twice). 

(9. 1 1 .2) The conics D1  = D2 coincide and D1 # C  is a conic ; in this case X = C u X2 
(and X2 = D 1  if  the Poncelet construction closes for C, D 1  with n = 3). 

(9. 1 1 . 3) The conics C # D, are different, and D2 is a pair of lines, say D2 = I 1 I2 u i3 I4 
(and a line L is said to be tangent to D2 if it contains the point Q2 = I 1  I2 n I3 I4). 
In this case X 1 = X  2 ,  a conic in the same pencil. Let I 1 R2 be constructed as 
before (L 1 n D1 = {I t } , L1 n C =  {P, I t } , L2 = PQ2 , L2 n C =  {P, R2}), then X touches 
I1 R2 in I 1 • It can happen that X =  D 1 (iff Q2 P is tangent to C, in that case 
R2 = P, etc.). 

(9. 1 1 .4) We have a conic C, and two pairs of lines, say 

D1 = I 1 I2 u i3 I4 ,  Q 1 = I 1 I2 n i3 I4 

D2 = I 1 I3 u i2 I4 ,  Q2 = I 1 I3 n i2 I4 ;  

in this case X is the point 

(because the line Q1 Q2 is the polar line of x with respect to C, and this case 
is exactly the special case 8.5 i). 

In all these cases it is obvious in which way a general situation degenerating 
to one of these cases gives a degeneration of the enveloping curve in question. 

Remark 9.12. We have (in Situation I) that 

and on the complement we have 

jO : F - { /'1 , I� , I3 , I�} ....... r c (IP2)* ; 

extending to 

/1 : F1 -> r and /2 : F2 ....... r. 

We show that in Case (La) the morphism /0 cannot be extended on F, by showing 
that for I; E F1 n F2 we have 

In fact I; = (l; , L1 , L2) (cf. Figure 9.4) gives a chord S, this touches X1 and X2 
in different points (because X 1 and X 2 have no points in common outside I,  and 
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in Case (La) the chord S does not contain points in /), thus it corresponds to 
two different points of F. Note that X 1 and X 2 do not meet in the Cases ( l .b) 
and (l.c) so in those cases g0 does not extend. 

Remark 9.13. The situation D1  = D2 = D #- C  as we have seen in (9. 1 1 .2) can be 
considered in two ways. Let Y be the set of (unordered) pairs { L 1 , L2} (cf. Figure 
9.5) so that Q = L1  n L2 , Q E C, and these are the lines from Q tangent to D (and 
hence L1 = L2 iff Q E C n D). The chords R1 R2 produced in this way envelop the 
curve X2 • We have 

Figure 9.6 

We can also start with P0 E C  and begin with the Poncelet traverse construction 
(cf. Figure 9.6) : P0 , L0 , P1 , L 1 , P2 • As there are two choices (P0 ,  L0)e f • E(C, D) 
for a given P0 E C0 ,  P0 �D, this can be done in two ways which however both 
give a point on X 2 ; in fact the map 

E --+ X2 , (P0 , L0)t->P0 P0 P2 , 

obtained in this way is 2 :  1 .  In fact, P0 P2 is the chord constructed from P1 it we 
use the method described above. This second way of describing X 2 in case 0 1  • D1 
comes nearest to the one we find in [Jacobi, 1 828] .  

Remark 9.14. In Situation I, Case (I.a) the con ics X 1 and X 2 described In (9.4. 1) 
have the following properties. Choosing PE C n D1 n D2 we obtain a chord S (lOO 

T 

Figure 9.7 
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Figure 9.4) ; this chord touches X 1 and X 2 in two different points (and in this 
way we construct the 4 different lines in Xf n X!). Let LE Df n D! and PE  Ln C 
(there are 8 such choices possible), let Ln C = {P, R} , and let T be the tangent 
to C at R (see Figure 9.7) ; this line T touches one of the components X 1 ,  X 2 , 
and in this way we construct the 8 common tangents of C and X 1 and of C 
and X2 • 

10. A curve enveloping a family of chords of a conic (Situation 11) 

In this section we study Situation 11, i.e. C, D 1 , D2 c IP2 are three different conics 
in general position, and we determine some properties of the curves X c lP2 and 
r c IP2 (defined in the construction in 8.3). 

We choose the situation so that 

in this case F = F(C, D 1 , D2) is a smooth irreducible curve of genus 5 (cf. Lemma 
9.2.11) ; note that C n D 1  n D2 = 0 is an open condition, and we can choose C, 
D1 and D2 so that 

C n D2 n D2 = f/J. 

Proposition 10.1 (in Situation 11 ; cf Lemma 9.6 and Lemma 9.8 for the case of 
Situation I). Let C, D 1 , D2 be in general position ; then the morphisms f: F -+ F  and 
g :  F --+  X are birational and r c (IP2)* is a curve of degree 8. 

Proof. We show first that for C, D 1 , D2 in general position, the degree f: F --+  r 
equals to one (and hence deg (g : F --+  X) =  1 ). This can be seen by a computation ; 
we prefer a geometric argument. 

We consider C, D 1  and D�0> in Situation I, Case (La). The morphism F)0> --+  r)0> 
has degree 2, we choose a general R1  R2 E F\0> ;  in that case we have two different _ 
points on F mapping onto R 1 R2 , say 

(P, L1 , L2) EF 1 , L; n C = {P, R;} , L 1 n D1 = Q 1 ,  L2 n D�0> = Q2 

and 

with 

We keep C, D 1 , P, R 1 , Q 1 , Q2 fixed, and we consider all conics D�> touching 
L2 in Q2 (a family of dimension three). For all choices of t, we still have (P, 
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L1 , L2) E p<t>, mapping onto R 1 H � t: ru •. For general choice of v�> (still touching 
L2 in Q2) we have C n D 1  n /JY' - 1/1  ( hcm;c F<'> is irreducible), and M1 does not 
touch D�>. This shows that fur l&Cncru l choice of D�> there is exactly one point 
on p<tJ mapping onto R 1 R 1  & J'Ct1, u nd w e  conclude that deg(F<tJ --+ r<tJ) = 1 i n  such 
a case. 

If C, D, and D2 are in gencrul posi t ion and R, E C  is in general position, the 
8 ways to produce R2 e C w i t h  R 1 R 2 El' give 8 different points of r (this follows 
from the argument above). Thus a general line R1 touching C* intersects r in 
a points. Because C* q: r th is shows t hat the degree of r equals 8. Q.E.D. 

Remark 10.2. We define whul we assume for C, D , , D 2 c n>2 to be the property 
of being " in general posit ion ", and we indicate some special positions for P, L 1  
and L2 • We say C, D 1 , D2 tt rc i n  general position if: 

- C n D1 n D2 = 0. 

- the conclusion in I 0. 1 holds, 

and if, moreover, the fol lowing conditions are satisfied (they will be referred to 
later by the codes indicated in the margin) : 

(a. 1)  If L1 E C* n DT .  with PEL 1  n C, and L2 is a tangent through P to D1  with 
L2 n D2 = Q 2 , then 

L1 n D 1  =• Q 1 =F P =  R ,  and L2 n C = {P, R2}  with R2 #- Q2 #- P  

(see Figure 10. 1 ) ;  

(a.2) The same condition as (a. 1 )  with 1 and 2 interchanged. 

L 

0 '  0 
Figure 10. 1  Figure 10.2 

(b) If LEDf n D! (and the symbols as in Figure 10.2), then P #- R = R1 = R2 (this 
is the same as C* n Df n D! = 0), and P #- Q 1  #- R and P #- Q2 #- R and the pair 
(Q 1 , Q2) is not in harmonic position relative to (P, R) ; (there are 2 choices for 
P and R). 

(e. 1 )  If PE  C n D 1 , and the other symbols as given in the Figure 10.3, then 
P =F R t =F R2 =F P, R = Q 1 , and P =F Q2 =F R2 • 
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(c.2) The same conditions as (c. 1 )  with 1 and 2 interchanged. 

Figure 10.3  Figure 10.4 

(d. 1 )  If, with the symbols as in Figure 10.4, P =f. R 1 =f. R2 =f. P, Q 1 = R 1 ,  then 
P =f. Qz =I- Rz . 

(d.2) The same condition as (d. 1 )  with 1 and 2 interchanged. 

Let (P, L 1 , L2) E F  be a smooth point of F (in the case of general pos1t10n all 
points of F are smooth by 9.2.11) ; then we define y E IP

2 
and xEX c iP

2 
in the 

following way ; take the open set F0 of points in F such that the points P, R 1 , 
R2 , Q 1 ,  Q2 are mutually different, and construct for such positions the points 
y and x as indicated in the construction of the points G and H in 8.3, namely 
Q 1  R2 n Q2 R1 = y, and R 1  R2 n Py = x. The maps 

G :  F0 --+ IP
2 

and H : F0 --+ IP
2 

can be extended uniquely to the set of smooth points of F (e.g. in situation (b) 
above, R 1  Q2 = R2 Q 1 , so the intersection of these two lines is not defined, but 
our construction still determines a unique y and x for this situation). 

Lemma 10.3. Assume C, D 1 , D2 in general position. If (P, L1 , L2) E F  then either 
Proposition 8.4 applies (and x � C), or we are in one of the cases (a. l) ,  . . .  , (d.2). 
In these cases y and x E X  are as follows : 

(a . I )  y = R 2 and x � C ;  

(b) x = R ,  the curve X is smooth a t  x and i t  touches C at x (see Figure 10.5) ; 

Figure 10. 5  

(c.l ) y = Q2 and x = R2 ;  

(d. l ) y = x = Q I . 
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Proof. It is easy to see that all cases described give all possibilities ; we omit the 
proof. 

Assume situation (a. 1) .  After a suitable transformation of 1P2 we obtain the following 
situation (see Figure 1 0.6) : 

C :  a X2 + Y( Y- 1) = 0, a # O, 

L1 : Y= O, 

Q2 = (0 :  1 : c), c #  1 .  

· Figure 10.6 
P= ( O  , 0 )  

Because P # Q 1 and P # Q2 we can apply Lemma 8 . 1  i n  both cases (to L 1  and 
L2) ; for R = k [e]/(e2) and 

P. = (e, 0). 

we compute that R1 = (0, 0) deforms to 

R � , ,  = (  - e, 0), 

and that L2 X = 0  and R2 = (0, 1) deform to 

L2 , , : X + e c Y- e Z = O  

R2 , , = (e ( 1 - c), 1 ) ;  

thus y = R 1  R2 deforms to 

y, : X + e  Y(c - 2) + e Z = 0. 

In dual coordinates y is the point ( 1  : 0 :  O)e (1P2)* and y. = ( I  : t; (c - 2) : F.), so this defor
mation is on the line Y' + (2 - c) Z' = 0  (in dual coordinates) and we conclude 

x = (O :  1 : 2 - c) 

thus x rt C. 

For case (b) we dualize, and we choose coordinates such that : 
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p :  Y, 1 = (0, 0) 

r :  X 
C* : X2 + 2 X + 1 + 2  Y+ Y2 

D{ : X - y; Y+ . . .  , parametrization (y; t + b; t2 + . . . , t) ; 

let a3 = 0, consider k [a]j(a3), and let 

u<a> = (  - 1  + a, - a2j2), 

p<a> : 2 a X  + (2 - a2) Y+ 2 a - a2 

we solve : 

and we compute 

r!a> : X +  [Y; a + a2 ( - y; - yf - b;)] Y+ y; a + a2 ( - y, - 2 yf - t5;) ;  

these two lines intersect at 

(a2 y 1 Y2 , - 1 + a (y l + y2)) 

(we use y , # y2). If P, R, Q 1 , Q2 are not harmonic on L, i.e. y 1 + y2 # 0, the curve 
r c (IP2)* is smooth at (0, - 1) with the property that the line X =  0 intersects 
with multiplicity 2, and all other lines through (0, - 1) intersect r with multiplicity 
1 (cf. Figure 10.7). Thus T* = X  passes through R with the same tangent direction 
as C in that point. 

Figure 10.7 p 

Cases (c. l )  and (d. 1 )  are proved by specialization as in the proof of Lemma 
9.7. Q.E.D. 

Theorem 10.4.11. Suppose C, D 1 , D2 c iP2 in general position (i.e. the conditions 
in 10.2 are fulfilled). Then : 

a) r c (IP2)*, and r has no cusps, 

b) X c IP2 has degree 24 ; in case (b)  the intersection multiplicity of X and C at 
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R equals 2 (see Figure 1 0.5 ), in the cases ( c.l ) , ( c.2 ) , (d. I) and (d.2) the curve 
X is smooth at x, and X intersect s  C transversally at that point (see Figures 1 0.8 
and 1 0.9 ) . 

Figure 10.8 Figure 10.9 

Proof: In situation (b) we have 8 choices for P, in situations (c. 1 )  and (c.2) there 
are 1 6  possibilities, and for (d. 1 )  and (d.2) there are 16 possibilities. Thus the total 
number of intersections (counted with multiplicities) of X and C is at least 

8 . 2 +  16 + 16 = 48 ;  

however, the genus of F equals 5, thus the sum of the multiplicities ri of the 
singularities of r is given by 

(8 - 1 ) (8 - 2)/2 - 5 =  16 = [l )i (ri - 1)]/2 

(cf. [Walkers 1 950], VI 5.2, 5 .5). Thus the degree of the dual of r, 

deg(T*) :s; 8 · 7 - 2. 1 6  = 24, 

and the equality holds iff r has no cusps (by the Plucker formulas, cf. [Walker 
1 950] ,  IV.6.3) ; from this we conclude that the total number of intersections of 
X = T* and C is at most 24 · 2 = 48 (by the theorem of Bezout, cf. [Walker 1950], 
IV.5.2, Theorem 5.4). From these two inequalities the statements in the theorem 
follow. Q.E.D. 

Remark 10.5. By local computations we could have proved that the curve r has 
no cusps in Situation 11 .  However, by such computations one cannot find sinaulari
ties like nodes and higher singularities. 

Remark 10.6. Suppose C, Di , D� c IP2 are conics depending on a parameter, such 
that for t # O  we have Situation 11 and for t = O  we have Situation I. We have 
seen that P c  {IP2)* has degree 8 for general t, and it specializes to two double 
conics 
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(as a scheme T0 still has degree 8, and we can take the underlying reduced scheme 
(T0)red). Now 

(lim, .... 0 r
')* i= lim, .... 0 (r')*) ! !  

There should exist a " good theory " for dualizing plane curve (with singularities, 
with multiple components) such that (with that new definition of a dual curve) 
specialization and dualizing commute. Note that for t general, X' = (r')* has degree 
24 ; this curve specializes to a curve X0 such that 

X0 = 2 Xo u 2Xt u(0
1

7J) u(�
1 
2 sk} 

where the lines 1j and Sk are as constructed in Remark 9 . 14. We hope that the 
situation just explained may stimulate a search for a " good theory " for dualizing 
arbitrary plane curves. 

Remark 10.7. We have used the word " component " of a curve ; this may lead 
to confusion. Suppose given an algebraic curve, say Ye IP1, defined by an equation 

F = O, 

where F is a polynomial with coefficients in JR. Then that algebraic curve may 
be irreducible, in the sense of algebraic geometry, and that is equivalent to saying 
that F is an irreducible polynomial, if considered over the complex numbers (some
times we say that Y is absolutely irreducible). The components of a curve Y (over 
<C) are the irreducible curves contained in Y; they correspond to the irreducible 
factors (over <C) of F. However, if we draw pictures (over JR.) of algebraic curves 
it may happen that the real points of the curve form disconnected parts. For 
example it is easy to give C, D 1 ,  D2 c IP1 defined over JR. in Situation 11 such 
that X has several topological components of X(IR) ; we have then : 

- X has one component (is irreducible as an algebraic curve) 

- X (JR.) has several topological components. 
Consequently it is dangerous to decide . (ir)reducibility on the grounds of real
topological pictures. Example (see Figure 10. 10) ;  

Figure 10. 1 0  
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xEX(1R) n R 1 R2 and x'EX(1R) n R 1 R� are on different topological components 
of X (1R), we see X (1R) has more than one (topological) component, and being 
in Situation II, the algebraic curve X is irreducible. 

1 1 .  A comparison of the theorems and the proofs 

1 1 . 1  In connection with Griffiths' proof of the closure theorem it has been sug
gested that the ideas of the modern proof must have been present in the older 
studies of Poncelet, Jacobi and even Fuss. Griffiths wrote : 

" It is interesting to note that the result we shall prove [the closure theorem] 
will be equivalent to the addition law for an elliptic integral, so that the earl y  
somewhat complicated proofs of  the Poncelet theorem must have amounted 
to synthetic derivations of this addition formula, presumably in the same way 
in which the addition formula for the sine function may be derived by drawing 
pictures. " [Griffiths, 1976] p. 345. 

And Griffiths and Harris : 

" . . .  the Poncelet theorem and the addition theorem are essentially equivalent , 

so that at least in principle Poncelet gave a synthetic derivation of the group 
law on an elliptic curve. " [Griffiths, Harris, 1 977] p. 145.  

And Mazur : 

" Griffiths pointed out to me that the data of the classical Poncelet theorem 
( - )  provides one with an elliptic curve and a point of order n on that elliptic 
curve. (As was known, in effect, to Jacobi, see [ref. to [Griffiths, 1976] par. 
1d] .) But judging from hints given in [ref. to [Dorrie, 1 965]],  the mathematician 
Nicolaus Fuss ( - ) may have found rational parametrizations of Ponce/et quadri
laterals, pentagons, hexagons, heptagons and octagons ( - ). " [Mazur 1977] 
p. 108. 

The closure property and the occurrence of elliptic functions, elliptic curves and 
addition laws in the proofs indeed suggest a strong affinity between these results. 
On the other hand, by means of expressions like " must have amounted ", " in 
principle ", " in effect ", the quoted authors allow for (further unspecified) differences. 

The question in how far later ideas can be legitimately recognized in earlier mathe
matical work is indeed a very difficult one. It is also a question with which both 
the historian of mathematics and the mathematician are often confronted. The 
historian will perhaps tend to stress the differences between the historical and 
the modern versions of mathematical theories, while the mathematician may want 
to bring out the similarities ; and the final conclusion on such questions wil l  always 
leave room for personal judgement.  However, we feel that it is not entirely a q ues
tion of taste, and that it is usefu l in these cases to specify and clarify both the 
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differences and the similarities before coming to conclusions. In the present section 
we will do that for the closure theorem, the " main theorem " and the " general 
theorem ", comparing the studies of Poncelet, Jacobi and Griffiths, and concentrat
ing on the theorems themselves, the extent to their validity, the objects introduced 
in the proofs, and the styles. 

1 1 .2 We first recall the relation between the two theorems. The main theorem 
is the special case of the general theorem in which the number of vertices of the 
traverse is equal to three. Poncelet could not prove the closure theorem directly ; 
he needed the general theorem. And in his proof by induction of that theorem 
he needed the main theorem. Jacobi did not use the general theorem to prove 
the closure theorem ; he derived both by applying the theory of elliptic functions. 
His proof of the general theorem is not by induction but direct ; he had no need 
to prove the main theorem first and he did not deal with the case n = 3 separately. 
It seems that he discussed the general theorem primarily because Poncelet had 
stated it and because he could prove it easily. As the title of his article indicates, 
Jacobi was first of all interested in the closure theorem. Griffiths discussed neither 
the general nor the main theorem. 

1 1 .3  Poncelet proved his theorems for circles and used projection and the principle 
of continuity to pronounce them valid for all conics, by which, as we have explained 
in Section 3.2, he meant conics in the real plane. Jacobi proved the closure theorem 
for circles without real intersections, the one lying inside the other. He mentioned 
the projection theorem as a means of generalising the theorems, but he added 
the condition that the circles should have not more than two real intersections. 
That is, he did not rely on Poncelet's principle of continuity and he did not consider 
projections with imaginary centres. He must therefore have considered his theorems 
as proved for real conics without real intersections. Griffiths proved the closure 
theorem for pairs of smooth conics in IP2 (<C) with four distinct intersections. Ponce
let studied the case that the two conics are concentric circles, that is, that they 
are tangent to each other in the circular points. He did not in general study cases 
of tangency ; neither did Jacobi or Griffiths. (A study of the cases of tangency 
is supplied in the present article, Section 7. 14.) 

1 1 .4 The central object in the " main theorem " is the envelope X of the family 
of chords arising in the manner discussed in Sections 4.3 and 8.3 .  Poncelet proved 
the closure theorem by showing that, in the case of closure of one intersciibed 
traverse between C and D, the envelope X coincides with D. Thus it plays an 
essential role in Poncelet's proof. The envelope occurs in Jacobi's proof of the 
general theorem, but not in his proof of the closure theorem. It does not occur 
in Griffiths' proof. Neither Poncelet nor Jacobi discussed the behaviour of this 
envelope in the case that the conics do not belong to the same pencil. (This behav
iour, which is interesting because it supplies a useful example of non commutativity 
of limits and dualizing, is discussed in Section 10 of the present article. In fact 
the complicated nature of that envelope in the general case made us for a long 
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time suspicious of Poncelet's proof of the main theorem with its ad hoc use of 
infinitesimal motions ; ultimately Jacobi's proof convinced us - we should have 
looked at his article earlier.) 

' 

1 1 .5  Both Jacobi's and Griffiths' proofs of the closure theorem involve an addition 
law ; In Jacobi's case the addition law of elliptic functions, in Griffiths' case the 
additive structure of an elliptic curve. Griffiths considers the object 

E = E(C, D) =  {(P, L) I PE C, LED*,  P E L} 

and proves that it has the structure of a smooth elliptic curve (Lemma 7 .1 ). Con
structing a Poncelet traverse corresponds to repeated application of a mapping 
rx :  E --+ E, and it is shown that this mapping corresponds to a translation by an 
element t (determined by C and D in £2) in the group structure on E, 

rx (x) = x + t. ( 1 1 . 1 ) 

Jacobi studied the function W: JR --+ 1R which describes the transition, on the outer 
circle C, from one vertex of a Poncelet traverse to the next, where C is parametrized 
by the central angle. He gave that function explicitly, showing that 

W(amu) = am (u + c) ( 1 1 .2) 

for some constant c; he then used the theory of elliptic functions to complete 
the proof. 

Both proofs relate the closure property to the operation of adding a constant. 
Indeed it is easy to see that, if we introduce the projection n :  E --+ C, n (P, L) = P, 
Jacobi's W is the projection of rx on C. This relation between the proofs strongly 
suggests a similarity. Most mathematicians, after having read Griffiths' proof, will 
experience a sense of recognition when studying Jacobi's proof. Or they will, when 
reading the latter proof unprepared, start searching for the elliptic curve which, 
to them, is the obvious structure suggested by Jacobi's analytic formulas. 

However, the question remains whether, because of these similarities, one can say 
that the elliptic curve E is present in Jacobi's proof. Jacobi himself did not explicitly 
introduce the structure of an elliptic curve. He proved Formula 1 1 .2 constructively 
by direct computation. Griffiths' proof, on the contrary, is not constructive ; it 
first recognizes E as an elliptic curve and then uses existence theorems to conclude 
that there is an additive structure. The crucial argument in recognising E as an 
elliptic curve lies in its behaviour over the branching points C n D. Jacobi, working 
with non-intersecting circles in the real plane, did not discuss this branching process 
in any way ; in particular he did not discuss an analogon of the fact that E is 
a double covering of C. 

Once more, consider the set E introduced in the modern proof. It i s  a geometrical 
object, consisting of pairs of points and lines, and it serves as a model of an 
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elliptic curve. But it does not offer a natural interpretation of addition within 
the elliptic structure ; it does not suggest a construction for finding the sum of 
two elements (P, L) and (Q, M) of E. The only addition that can be geometrically 
interpreted in this model is the translation x -+  x + t, performed by following the 
Poncelet traverse. Jacobi, on the other hand, did offer an explicit geometrical con
stuction of the addition 

(amu, amv) -+ am (u + v) 

(cf. Section 5.4). This suggests, curiously enough, that if there would be an elliptic 
curve structure implicit in Jacobi's argument, it would have a more versatile model 
than the E of the modern proof. Let us recall Jacobi's construction. He fixed 
a modulus k for the elliptic function am. He then considered (cf. Figure 5 .3) a 
circle C with radius R and centre M on the axis MO. He introduced the pencil 
of circles D with radii r and centres m on MO, with mM = a, where a and r are 
linked by 

k2 = 4 aR/[(R + a)2 - r2] .  

He then adjusted to  every point P on  C (with L OMP = 2 cp) a circle Dp from 
the pencil, determined by 

His construction may now be interpreted as follows : Given points P and Q on 
C (with L OMP = 2 cfJ = 2 amu and L OMQ = 2 t/f = 2 amv), draw the tangent from 
P counterclockwise to DQ . Let the second intersection of that tangent with C 
be R, with L OMR = 2 x, then 

x = am (u + v). 

In other words, Jacobi geometrically defined an additive structure on C, which 
indeed coincides with the additive structure on one (real) branch of E lying over 
C. If we introduce the possibility of drawing tangents clockwise as well, we may 
also incorporate the other branch as follows. Take 

and define the addition 

by : 

- R E C, 
- PR tangent to DQ , taken counterclockwise if bp is 1 ,  

clockwise if () P = - 1 ,  

- bR = bp · bQ . 
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M is then the model of the (real) elliptic curve. 

This exercise brings us rather far from what Jacobi did ; it is meant to show that 
if there were an elliptic curve structure underlying Jacobi's arguments, its model 
would be quite different from, and indeed more versatile than E. 

However, Jacobi devoted no attention at all to the specifically structural aspects 
such as the branching points and the double covering. In the modern approach 
attention to these features is essential because from them we conclude that E has 
the structure of an elliptic curve. For Jacobi this is not necessary ; from the outset 
he had all the information about the structure because he started from the elliptic 
function am. 

Surveying the aspects of similarity and difference between the two proofs as dis· 
cussed above, we feel that there is no evidence that Jacobi consciously recognized 
the structure of an elliptic curve in the analytical and geometrical objects he wall 
studying. We also feel that the similarities are not strong enough to justify a state· 
ment that " implicitly " or " essentially " Jacobi was studying such a structure. 

1 1 .6 There are marked differences in style between the three proofs. Griffiths' 
proof proceeds in the way familiar to the present-day mathematician : a specia l 
mathematical structure is recognized in a problem situation ; the general t heory 
about that structure is then fully exploited to settle the problem. Poncelet dealt 
with real figures and their motions, not with abstract structures. He avoided analyti· 
cal arguments, he relied on an intuitive understanding of motion and in particular 
of infinitesimal motion, and he consciously stretched the mathematical rules of 
inference by his principle of continuity. Jacobi also dealt with real figures ; he 
derived explicit analytical relations embodied in the figure and then applied the 
analytical theories and techniques to settle the question. 

These differences of style should not be underestimated. Indeed the conception, 
both of the mathematical objects and of the nature of mathematical reasoning, 
in the studies of Poncelet and Jacobi, contrasts so strongly with the modern concep
tion that, in preparing this article, we have occasionally fel t  the confrontation 
with early nineteenth-century mathematical style as a real culture shock. 

1 1 .7 Contradictory experiences, then, are involved in comparing the theorems 
and the proofs. There are marked differences of style content ; nevertheless there 
is an essential similarity. 

It seems to us that that contradiction should be recognized ; it should not be 
blurred in cheap synthesis or compromise. The recognition of similarities between 
mathematical studies that are so different as the three we are discussing, relates 
to a willingness to consider mathematicians of the past essentially as colleagues 
engaged in the same enterprise of mathematical research. This willingness among 
mathematicians is, we feel , most important. I t  provides an active audience for 
historical studies, and it ensures a link with the past (which may at some occasions 
even lead to new ideas and questions in modern research). For mathematics, as 
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for individuals and nations, it is dangerous to lose or distort the memory of the 
past. The recognition of earlier mathematics as mathematics, despite great differ
ences in style and content, and the willingness to consider past mathematicians 
as colleagues, keep the interest in the past awake. Historical study, stressing and 
articulating the differences, guards against the dangers of distorting the past. 

Note 

The present study ongmates from research undertaken by the second and the 
fourth author as final work for their mathematics degree at the Utrecht Mathemati
cal Institute. That work was supervised by the other two authors, it was inspired 
by the remarks of Griffiths, Harris and Mazur quoted in Section 1 1 . 1  and it was 
completed in 1 98 1 .  At that time already we decided that some of the findings 
of that study deserved to be made public, but that such a publication required 
considerable further work both in understanding the old proofs and in extending 
the modern results. That study was undertaken by the first and third authors 
and the combined results are presented here. A preliminary version of the present 
text was circulated as preprint of the Utrecht Mathematical Institute in November 
1984. 
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