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THE CLOSURE THEOREM OF PONCELET

(Conferenza tenuta il 15 ottobre 1984)

SUNTO. — Si da conto di uno studio effettuato congiuntamente con C. Kers,
F. Oort e D. W. Raven sugli aspetti storici e matematici del teorema di chiu-
sura di Poncelet.

Sono discusse le dimostrazioni di Griffiths (1976), Jacobi (1828) e dello
stesso Poncelet (1822), e si riporta un nuovo risultato concernente una certa
famiglia di curve dipendenti da un parametro.

Questa famiglia di curve scaturisce in modo naturale dagli argomenti usati
da Poncelet nella dimostrazione originale ed offre un caso interessante di non-
commutativitd forte di dualizzare e specializzare.

1. - INTRODUCTION.

In this note I report on joint work done at Utrecht together
with F. Oort and two students, C. Kers and D. Raven. The work
is a combined historical and mathematical study of the closure theo-
rem of Poncelet. It was inspired by the article of Griffiths [1976]
in which the author gave a modern proof of the closure theorem and
made some remarks about its history. The full results of our work
are now available as preprint [Bos, Kers, Oort, Raven, 1984} ; they
will be published in the journal Ewxpositiones Mathematicae. Here I
shall mainly sketch the proofs of the theorem by Poncelet, Jacobi and
Griffiths, and I shall mention some historical and mathematical
aspects that we have worked out in our joint study.

2. THE THEOREM.

In its modern form the closure theorem is as follows. Let (see
Figure 2.1) C and D be two smooth conics in P?= [P2(C). Let P,
be a point of C and L; a tangent to D through P,. From (Py, L,)
we construct a « Poncelet traverse between C and D », that is, a
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X

Fig. 2.1.

sequence Py, Ly, Po, Lg, P, Lg,... with P,€C, L, tangent to
to D, P,=DL;_y1NL,. We say that the traverse closes after n steps
of P,,1=P,. There are trivial cases of closure that occur if, for
some i, P;€ (CND). In that case there is only one tangent to D
through P, so that Ly=L,_4, P, ;==P,_, ; the traverse as it were
returns in itself, and Pg_;==P;. Similarly if L, is a common fan-
gent to C and D, then Pio1=P;, Li,1=L;_, and ultimately Pg==P;.
We now have (see Figure 2.2):

THEOREM 2. 1 (Closure theorem). - If a Poncelet traverse, star-
ting at P, € C, closes non-trivially after n steps then a Poncelet tra-
verse from any point on C will close after n steps.
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If a traverse closes after n steps we have an «interscribed
n-gon » between C and D, that is, an n-gon with vertices on C and
sides tangent to D. So we may formulate Theorem 2.1 also as: If
there is one interscribed m-gon between C and D, then there are
infinitely many such n-gons. Or: two conics have either no inter-
sceribed n-gon, or infinitely many.

3. - HISTORY OF THE THEOREM.

Jean-Victor Poncelet (1788-1867) found and proved the theorem
in 1818-1814 while in captivity as a prisoner of war at Saratov on
the river Wolga in Russia. He published the theorem, with a new
proof, in his Traité des propriétés projectives des figures in 1822
[Poncelet 1822]. Poncelet only considered conics in the real plane.
His proofs involve an argument which he called the « principle of
continuity ». This principle is not acceptable in modern mathematics;
it was already considered doubtful by some contemporaries of
Poncelet. Still in this case (as in many other cases) it led him to
correct results.

In 1828 Carl Gustav Jacob Jacobi (1804-1851) published a proof
of the theorem by means of elliptic functions in Crelle’s Journal
[Jacobi 1828]. He proved the theorem for pairs of circles in the
real plane, the one circle lying within the other; he noted that, by a
projection, it can be generalized to pairs of real ellipses, the one
lying inside the other.

During the period 1830-1930 many mathematicians studied the
theorem. Interest focussed in particular on the conditions for C and
D to have an interscribed n-gon, on finding purely algebraic proofs
(avoiding Jacobi's elliptic functions), on using invariant theory and
on generalizing the theorem. (The problem under which conditions
two cireles admit an interscribed triangle or nm-gon had already
been studied earlier, for instance by Fuss, Steiner and others.) It
seems that after 1930 the interest in the theorem faded. It was
revived by P. A. Griffiths who published a new proof, using elliptic
curves, in 1976 [Griffiths 1976]. Griffiths proved the theorem for
smooth conics in complex projective space; he did not study the
special case that the two conics are tangent to each other.

In the next sections I shall sketch the three proofs mentioned
above, but in inverse chronological order.
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4. GRIFFITHS' PROOF.
For smooth conics C and D in P2(C), #(CND)=4, consider
(cf. Figure 4.1)

=z
ot

]
-
b

E = {(P,L)| PEC, LED* PEL} C ¢ X D*

(* denotes the dual). E is an algebraic curve, it is a double covering
of C and it branches over CND; hence E is an elliptic curve. The
construction of a Poncelet traverse can now be described by two

mappings y and 8, E — E, defined (cf. Figure 4.2) as
?(P, L) = (P:L,)
é (P, L) = (P, L)

Fig. 4.2.
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Clearly y?==42==1id. Cal yd=90. A Poncelet traverse from (P, L)
consists of the successive images o(P, L), o*(P, L) etc. The traverse

closes if
o (P, L) = (P, L).

Now use general theory about algebraic curves and the group struc-
ture on E (having choosen a point 0 € E) to prove that there is a
point ¢ € E such that

o(z) = x4+ ¢

for all z € E. If a Poncelet traverse from (P, Lo) =% € E closes
after n steps, we have

on (Zo) = o + NC = Xo;
SO
ne == 0.
But then for every x € K

o (x) = « 4 ne = w,
hence from any (P,L)€E a Poncelet traverse between C and D
will close after n steps; this proves the theorem.
5. - JACOBI'S PROOF.

Consider (Figure 5.1) two real circles C and D, D within C,
and a Poncelet traverse between them with vertices Py, P, , P; etc.
Let m and M be the centres of D and C respectively; mM —a and
the line mM cuts C in O. For each P let

Cc

2¢
R

a 0
D

Fig. 5.1.
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~OMP, = 2 ¢.
i 1

measured counterclockwise. Use elementary trigonometry to prove
that, for all ¢,

tan [(ng_z -+ (p‘,)/:Z] = (R — a)](R 4+ a)] tan Pigr®

Recognize this relation as a functional equation, satisfied by the
elliptic function am in the following sense: Define

am (u, k) = ¢ (= amu for short)
if
®
dt

u = F(p k) = { S —
l/ 1 — k2 gin?t

0
(F(g, k) is the elliptic integral of the first kind). If now, for some
% and ¢, we write

X = 2 amu

y, = 2 am (u 4 ¢)

Pl

z, = 2 am (w+ (i —1) c)

then it follows from Jacobi’s theory about the elliptic functions am
that

tan [(xt + xt+2>/2] = A tan Z{+1
with

4 = [1 — k2 sin? (amc)]i2.
Hence it is possible to adjust &, ¢ and « such that

4 =[(B—a)/(R+ a)] #and# 2 am = @,

whereby @, ==y, for all ¢; so the construction of a Poncelet traverse
is described by the sequence amu, am(u -+ ¢), am(u 4+ 2¢), etc. (In
fact Jacobi adjusted % and ¢ in such a way that & is constant for all
inner circles D’ which belong to the pencil of circles defined by C
and D. This procedure was advantageous in further arguments of
Jacobi in connection with the theorem which I shall not discuss.)
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Now suppose the Poncelet traverse from P closes after n steps,
and —OMP =2¢,. Then Py=~Pu,1, 80 :

Popr = %1 + Ty
for certain integer r. But also

Pppy = G (v 4+ mc)

for certain ¢ and amu== g, . Now use, from the theory of the func-
tion am, the relation

am (w4 2r K) = amu + rx
where

)2

dt
K =0f — F(n/2,k).

k2 sin t*
This gives
am (0 +ne) = @, ., = @, +ra = am w4 ra = am (u+27rK),

hence
w+ne =u—+2rK,
so that ‘
ne = 2r K.

But now, for a traverse starting from arbitrary Q; €C (setting
""'OMQI'_; 21/’1 = QMmv, ‘—‘OMQn+1 == 2\/)“.;.1) we have

Yy = am (v + nc) = am (v+2rK)=amv +ra =y, 4 rm,

hence Q1= Q:, so the traverse from Q, also closes after n steps.

6. - PONCELET’S PROOF.
Poncelet’s proof of the closure theorem is based on the following

LEMMA 6. 1. - Let (see Figure 6.1) C, D, and D, be circles from
one pencil. Let P, R, and R, be points on C with the chords PR
tangent to D, at points Q.. Each point P thus defines a chord R, R.
of C. These chords envelope a circle D belonging to the same pencil
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of circles as C, D, and D,. Moreover, the points G in which the
chords Ry R» touch the envelope D are constructed as follows:
Draw

H = R Q1 N 1 @2,

then
G = P HN R Rs.

o —

P

4\
,2.3\ Dy
N\

1.

Fig. 6.1.
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Remarks 6.2. - 1 shall not discuss in how far Poncelet dealt
with exceptional cases arising for certain positions of the three cir-
cles (e.g. cases in which D reduces to a single point).

Poncelet considered real circles. His definition of pencils of cir-
cles and conics involved the concept of « ideal chords » which I shall
not discuss here; in effect, Poncelet’s pencils coincide with those
defined nowadays, but restricted to the real case. Thus conics belong
to one pencil if they have four (real, or pairwise complex conjugate)
points in common; circles belong to one pencil if they have two
(real or complex conjugate) points in common other than the iso-
tropic points.

In fact, each point P on C, as in the Lemma, defines four chords
Ry R, , because there are two tangents through P to each D;. The
Lemma applies to each of these chords; thus there arise four circles
as envelopes, but these circles coincide pairwise. Poncelet was aware
of that property of the envelope.

Poncelet’s proof of the Lemma is a brilliant, complicated and
idiosyncratic piece of geometric argument. It involves all the special
concepts which Poncelet developed in his programme of a synthetic
geometry, in particular the «ideal chords» and the « principle of
continuity ». The proof also uses classical theorems as those of Ceva
and Menelaus, infinitesimal motions and envelopes of pencils. A
considerable part of the joint work on which I am reporting was
devoted to translating Poncelet’s arguments into the language of
modern algebraic geometry and checking them.- Although Poncelet’s
style of mathematical inference, in particular his use of the « prin-
ciple of continuity », is not acceptable from the modern point of
view, it appeared that his results are essentially correct. The scope
of this report does not allow further discussion of the proof of the
Lemma; but I shall return (see Section T7) to one aspect of it that
led us to an interesting new result.

Poncelet used the lemma to prove

Main Theorem 6.3 (circles). - Let C, Dy, ..., D, be circles from
one pencil. Consider a traverse Pi,L;,P;, Loy yPoy Ly, Pouiv,
with P,€C and L=P,P;,, tangent to D;. Let P, vary along C.
Then the chord L =P, P,,, will envelope a circle from the pencil.

Proof by induction on n. For m=2 this is the Lemma. By
induction, the chord L’==P, P; will envelope a circle D’ from the
pencil. Now consider the traverse Pi,L’, Pn, Ly, Pyyr. As L/ and
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L are tangent to circles from the pencil, the Lemma implies that
L =P, P, also envelopes a circle from the pencil.

In order to generalize the Main Theorem to the case of conics,
Poncelet invoked a projection theorem which states that every pair
of conics can be considered as the projective image of a pair of
circles. He actually proved this for pairs of conics which have no
more that two intersections (recall that Poncelet worked with real
conics), and he knew that when there are more intersections the
conics cannot be the images of circles under a real projection.
Nevertheless Poncelet claimed the projection theorem valid in ge-
neral, arguing that the validity of the theorem for pairs with no
more than two intersections implies its general validity by the
« principle of continuity ». This argument is a good example of the
use he made of this principle throughout the Traité. Now the pro-
perties in the Main Theorem for circles are projectively invariant,
so, by the projection theorem, Poncelet concluded:

Main Theorem 6.4 (conics). - Theorem 6.3. holds for conics.

The closure theorem now appears as a special case of the main
theorem:

Proof of the closure theorem: For conics C and D admitting
one interseribed polygon P=P,, Ly, Po, Lo, P3,...,Ly_1,P,,L, Py,
apply the Main Theorem, taking D;==D for all i. Conclude that,
if P varies along C, L envelopes a conic D’ from the pencil defined
by C and D. In the positions P—=P;, P=P,, ..., P=P, the tra-
verse coincides with the interscribed n-gon, hence the corresponding
L’s touch both D’ and D. So D’ and D have at least three tangents
in common. As they belong to the same pencil, they coincide. Hence
for all positions of P on C the Poncelet traverse closes after n steps.

7. - HISTORY.

The historical part of our study comprised, apart from the
proofs of Poncelet and Jacobi, a survey of the « prehistory » of
the theorem (notably in connection with interscribed triangles and
n-gons between circles), an analysis of Poncelet’s synthetic geome-
trical style and a discussion of the relation of the three proofs sket-
ched above. In the modern studies on the theorem one finds (e.g.
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[Griffiths 1976], p. 345) statements to the effect that Poncelet's
and Jacobi’s proofs are « essentially the same » as the modern one.
These statements led us to a detailed comparison of the proofs. We
came to the conclusion that, although the proofs are clearly related
as to subject matter and result, the differences in style, method,
extension of the result and conception of the objects, are so marked
that they cannot be called the same. We experienced that the com-
parison of the proofs involved a kind of culture barrier between
styles in mathematics. But such comparisons are central in historical
research and they are challenging. Especially the question in how
far the elliptic curve of Griffiths’ proof is already present in Ja-
cobi’s argument proved very delicate and intriguing.

8. - PONCELET'S LEMMA GENERALIZED, DUALIZING.

Poncelet’s Lemma suggested us to study the case that the three
circles are not from one pencil. Generalizing to conics and taking
into account the four possible positions of the chord R, R., we
describe the situation by a structure akin to E in Griffiths’ proof.
Let C, D, and D, be conics. Consider

F = {PIn, L) | P€EC, L€ D* P¢€ Ly} < CX Di*X Ds*.

The construction of the chords as in Poncelet’s Lemma can be
described by a mapping f : F — ([P?)* defined by

f (P7 IJ] y LZ) == Rl .sz.

This definition is valid except in a finite set S of points of F.
Call f(F —S)=r°c(D»* and let I" be the closure of I I is an
algebraic curve, the required envelope X of the chords is the dual
of I':

X = ['*,

QOur study of F, I' and X has yielded the following results:

Situation I T7.1: the conics C, D, and D, belong to the same
pencil, i.e. CND;=CND. and #(CND,)=4. Then

F = F1 U Fe,

where F; and F. are elliptic curves intersecting transversally in 4
points. Further
=11 UIY
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and the components I, have degree 2. Also
A= X,y X Xy,

and the components X, are conics from the same pencil. (This is the
modern reformulation of Poncelet’s Main Theorem).

Sttuation II 7.2: the conics C, D; and D, are in general position
(and in particular #(CNDy) = #(CNDy) =4, CND,ND; = Q.
Then:

F is a smooth curve of genus 5;

I is a curve of degree 8 without cusps;

X has degree 24.

Moreover, in both Situations I and II Poncelet’s construction for
points on X applies (cf. 6.1); that is, for x=(P, Ly, L,) € F take R, as
explained above, and Q,=L,ND,;. Call R; Q:N R Q; = H, then the
point

G = PH(N R Ry

is the point on X corresponding to z € F.

These results are of interest because they furnish an example .
of complicated limit processes which, because of the availability of
an explicit construction, can in this case be studied in depth. Let
Ct, D¢, D,* be triples of conics, depending on a parameter ¢ such
that for ts<0 they are in general position (Situation II) but C¢,
D,°, D,® belong to one pencil (Situation I). We can now study the
behaviour of I' and X under specialization ¢ — 0. We note in parti-
cular that specializing and dualizing do not commute. On the one
hand

(lim t~o [ = (["* = X 1) = X1 U X2.
But we can compute that, on the other hand,

Hm t—wo ((I')*) = lim ¢—o Xt = X°©

where

8 4
X0=2X5U2X U (U T)U(U28,
J= =

in which X, are the same conics as above (but occurring with mul-
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tiplicity 2), T; are the 2 X 4 tangents which C has in common with
either D, or D,, S, are the common tangents of D, and D,.

The strong non-commutativity in this case suggests that it may
be rewarding to work out a « good theory » for dualizing plane cur-
ves such that (with a modified definition of a dual curve) specializa-
tion and dualizing do commute.

8. - CONCLUSION.

In conclusion I would like to mention that all four authors
of the study have experienced the confrontation of old and new
mathematics (with a time distance of over 150 years) as most in-
spiring and rewarding.

SUMMARY. — A report on & joint study together with C. Kers, . Qort and
D. W. Raven on historical and mathematical aspects of Poncelet’s closure theo-
rem. Proofs of the theorem by Griffiths (1976), Jacobi (1828) and Poncelet
himself (1822) are discussed and a new result is reported concerning a certain
one-parameter family of curves. This family of curves arises naturally from
arguments in Poncelet’s original proof and it offers an interesting case of strong
non-commutativity of dualizing and specializing.
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