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Calculus in the Eighteenth Century - the Role of Applications.

H.J.M. Bos

[This is the slightly revised and annotated text of an invited
talk on the influence of applications on the development of the
calculus in the eighteenth century. It was delivered on december
14th, 1976, at a one day conference on the history of applied
mathematics, organised jointly by the Institute of Mathematics
and its Applications (Northern Home Counties Branch) and the
British Society for the History of Mathematics.]

2. The influence of applications on the development of the
calculus in the eighteenth century is a most complex and also a
rather elusive process. The elusiveness of the process lies at
least partly in the vagueness of the idea of "applications".

This idea concerns boundaries of disciplines, which are crossed
if knowledge from one discipline is "applied" in another.

Such boundaries are never clearly marked. Moreover, the sub-
divisions of science, the names and boundaries of the various
disciplines, have varied much in the course of the last four cen-
turies. Consequently, the idea of "applications" is not only vague,
but also strongly time-dependent.

I shall not be able to give more than a very global survey of the
applications of the calculus in the eighteenth century and a
discussion of some aspects of their influence. In connection with
the time-dependence of the idea of "applications" I have found

it useful to take contemporary eighteenth century accounts of the
calculus and its applications as starting points of my survey.
Two accounts, which appeared in prestigeous encyclopedias in the
1730's and the 1780's respectively, are useful for this purpose.

The first account I take from the Grosses Vollstandiges

)

!
Universallexikon’which Johann Heinrich Zedler saw through the press

in the years 1732-1750. The 64 well sized volumes of this Lexikon
are still much valued by historians, especially for biographical
information. It is also a valuable source for the history of

mathematics. For instance the Lexikon contains a remarkable early
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2)
definition of the concept of function (1735) which is not mentioned

in the usual accounts of the history of that concept.

The articles on differential and integral calculus are in volume
6, which appeared in 1733. In Zedler's Lexikon we have, therefore,
a view of the calculus and its applications as seen in the 1730's.
The other enclyclopedia is from the 1780's. It is the Encyclopédie

Méthodique{ a regrouping and extension of the articles contained

in the famous Encyclopé&die of d'Alembert and Diderot. The Ency-

clopé&die M&thodique started to appear in 1782 and was completed in

1832, comprising 166 volumes. The articles on mathematics were
grouped together in three volumes Mathématiques which appeared in
1784-1789.

The dates of these encyclopedias are very conveniently spaced
in the period we are concerned with. If we put the beginning of
the story of the calculus at the first publications, by Leibniz
(I 1684], [1686] ) and by Newton (the Principia [1687]), we find
Zedler's Lexikon 50 years later, at the close of the period of
Newton, Leibniz, Jakob and Johann Bernoulli and 1'Hépital. In these
first fifty years the differential calculus of Leibniz and the
fluxional calculus of Newton became recognized as the most powerful
tool for the study of curves and of problems relatable to curves.
At the end of the period it had also become clear that Newton's
fluxional version of the calculus was less versatile than the
differential calculus, so that the further developments in analysis
occurred on the Continent rather than in England. On the Continent
here means mainly in Germany and Switzerland, so that it is fitting
that we gain our view of the period from a German encyclopedia.
The 1730's are also the beginning of a new period, lasting till the
1780's. This is first and foremost the period of Euler. He,
together with mathematicians as Daniel Bernoulli, d'Alembert and
Clairaut, consolidated analysis as an organised body of mathematical
knowledge - especially Euler's great textbooks ({1748}, [1755],
[1768] ) had this function.
With Euler first working at St. Peterburg, then at Berlin and then
back at St. Petersburg, mathematical activity had these two towns
as main centres, but at the end of the period France, or to be
precise Paris, was in the rise as as mathematical centre. The



-3-

1780's indeed are the beginning of the great French half century
in mathematics (to be succeeded by a German hegemony in the 19th
century) with mathematicians as Lagrange, Legendre, Monge and
Laplace.

2. So the dates of the encyclopedias coincide nicely with a
periodization of the history of the calculus in the eighteenth
century. Let us now look how these encyclopedias presented the
calculus and its applications to an informed but not specialist
public.

The article on the differential calculus in the LexikonQGives
the rules of differentiation of algebraic expressions; the inverses
of these rules are mentioned under integral calculus. There is a
not very illuminating explanation of differentials and higher order
differentials. There are examples of a quadrature (calculation of
the area under a curve), a rectification and a cubature. Also there
is a short note on inverse tangent problems, that is, problems in
which it is required to find a curve from a given property of its
tangents. These problems lead to first order differential equations,
but that term does not occur in the articlesf)

In addition the articles deal with the utility of the calculus, with
its history, in particular with the question of priority between
Newton and Leibniz, and with the most important writers and books
on the subject. The calculus is
"one of the most magnificent discoveries in mathematics,
which has not only brought geometry to its highest summits
but also has extended the other disciplines so far that one
would have to write whole books if one wanted to spectify
the utility of this caZcuZus".é)
Not having the length of books at his disposal, the writer had to
be rather concise on the utility of the calculus, but he still
takes a full column, and it is instructive to list here the topics
which he mentions?J

First there are the applications of the calculus in higher geometry

the study of curves, their tangents, extreme values, quadratures,
cubatures, rectifications, the inverse method of tangents, exponen-
tial calculus and higher order differentiation. Then follows

mechanics, where "the most hidden secrets of nature have been
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revealed" by the calculus, because a great number of curves

like catenaries, velaries and elastics are found (I shall return
to these below). In the study of motionz)the knowledge of the
differential calculus has made it possible to find curves with
the "wunderbarsten" properties, like tautochrones, brachystoch-
rones, and the motion of compound pendulums. In optics the caus-
tics and the refraction of lightrays in air are found. Finally

in astronomy "we can sufficiently show the utility of the
calculus if we mention only the work of the great Newton, the
Principia".

What these various curves are, is explained in the pertaining
articles elsewhere in the Lexikon. I shall give a few particulars
about each of the problems listed, in order to make clear what
sort of applications the writer had in mind.

The catenary is the form of a chain or flexible rope suspended on
two points. The problem to determine this form has a complicated
history culminating in 1690/91 when it was publicy proposed and led
to a series of articles by Leibniz, Johann Bernoulli and Huygens.
Mastering the catenary problem was the first great public success
of the differential calculus. The problem was generalised in the
eighteenth century to catenaries with non uniform load.

The velary is the form of a sail blown by the wind. The problem
leads to a second order differential equation; the brothers
Bernoulli studied it in the early 1690's.

The elastica is the form of an elastic beam, fixed at one end and
bent by a perpendicular force at the other end. It was studied in
a grand article by Jakob Bernoulli, which was most important for the
mechanics of elasticity as well as for analysis, because it con-
tained a root of the theory of elliptic integrals.

Tautochronous curves have to do with pendulum motion: if the

pendulum bob is forced to move along a path such that its period
does not depend on its amplitude, that path is called a tautochro-
nous path of curve. The problem arose through Huygens' interest in
pendulum clocks; Huygens found the tautochrone in vacuo to be the
cycloid.

The brachystochrone is the curve through two given points A and B

along which a body, under the influence of gravity, falls in shortest
time from A to B. The problem was publicly proposed in the 1690's
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and it led to most important studies which contained the roots of
the later calculus of variations. Many variants of the last two
problems were studied in the eighteenth century as for instance
tautochrones and brachystochrones in resisting media, or in relation
to other than the Galilean law of fall.

The motion of simple and compound pendulums, a subject of research
since Huygens' work on the pendulum in the 17th century, involved

integration in order to find the centre of oscillation of pendulums.
Caustics in optics are the envelopes of families of reflected or
refracted rays. They were an inspiration for the study of envelopes
of families of curves in general.

Finally, the reference to Newton's Principia in the case of astronomy,
should suffice indeed, because I can refer here to dr. Whiteside's
paper.

As to the literature of the calculus, the Lexikon mentions 1'H&pital's

Analyse des infiniment Petits ([ 1696]) (which only treats differation)

and a number of other sourcegqon quadratures and integration, but the

list of those sources makes clear that by the 1730's the calculus was
still in need of comprehensive advanced textbooks.

To summarise, we get the following picture of the calculus as seen
in the 1730's: It was recognized as the summit of mathematical
knowledge. Its greatest achievements were seen in its application to
singular problems in mechanics, optcs and celestial mechanics (most
of these problems yielded curves as solutions). As to its methods
(especially of integration and differential equations), however, the
calculus had not yet found a unified presentation.

Let us now turn to the 1780's. The Encyclopédie Méthodigque
does tell us more about the calculus and its applications than the

Lexikon. This first of all because there is more to tell in the
1780's, but also because the Encyclopédie Mé&thodique gives more space

to it - three volumes mathematics, with the articles relevant for
our subject mainly by d'Alembert“%whose habit it was not to spare
words) and with a long historical introduction by the Abbé& Bossut.
In the articles Calcul Différentiel and Calcul Intégral?)we find the
mathematics of the calculus explained. Here a significant difference
with respect to the Lexikon is that the problem of the foundation
of the calculus, the then so-called "metaphysics of the calculus",
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is recognised. There are substantial separate articles on

differential equations and partial differential equations. There is

also a separate article "Maximum" which contains an explanation

of the problems and methods of the calculus of variations (though

it does not use this term).

Furthermore, the lack of textbooks, still evident in the Lexikon,

is now remedied; there are Euler's textbooks, and those for whom
these may be too far reaching may turn to others, like the textbooks
of Bougainville [1754] and Agnesi [1748].

As to applications of the calculus, Bossut's introduction to the

volumes is illuminating?)Bossut is very concerned about applications.
He writes, at the beginning of a long survey of the development of
the calculus after Leibniz and Newton:

"Of all the discoveries that have ever been made in the

sciences there is none as important and as fertile in
applications as that of the infinitesimal analysis."'y)
He also stresses the dual role of these applications, namely that
they serve the calculus itself as well as the fields in which they
occur:

"the new geometry (i.e. the calculus) was applied in all

the other parts of mathematics and all these have forced

it to perfect itself, by continually offering problems,

which eventually become problems of pure anaZysis."'r)
It is revealing to look in some more detail into Bossut's rendering
of the progress of analysis in the 18th century. First of all it
is noteworthy that he orders his account not according to subjects
within analysis proper, but according to the fields which supplied
problems for analysis. After giving about the same list as the
Lexikon for the applications in the period till ca. 1730, Bossut
deals successively with mechanics, dynamics, hydrodynamics,
hydrodynamics applied to navigation, astronomy, optics, and lastly
analysis itself, or rather the study of curves. Under each of these
headings he mentions special problems which analysis helped to solve,
or at least to deal with successfully. Rather than giving here the
full list?)I shall mention some remarkable aspects of Bossut's
presentation of the calculus.

The first striking aspect of the list is the increasing importance

and scope of the problems over the period. In the early period we
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have for instance catenaries and tautochronous motion in resisting

media. More exciting is the problem of the figure of the earth, a

problem within hydrodynamics, as the earth is considered a fluid
under influence of its own gravity and the dynamics of rotation.
This problem was much discussed in the first half of the century,
it had philosophical implications, and expeditions were sent out

to far countries in order to check the results of theories by
direct measurements. Then, directly relevant to astronomy and navi-
gation, there are the problems of planetary motion, especially the

calculation of the perturbances caused by other planets. The theory
of the moon's motion, to which Euler contributed the decisive

mathematical tools, belongs under this heading.
Secondly, there is the greater generality of the topics treated. This

was made possible by the formulation, in terms of analysis, of
"general laws" and "fundamental principles" of mechanics and hydro-
mechanics. Many separate problems could thereby be recognised and
treated as special cases of a more general problem situation. Put
otherwise: the field of rational mechanics, of general, strongly

mathematical theories of mechanics, hydromechanics, elasticity and
celestial mechanics, expressing the fundamental principles in terms
of differential equations, was created in that period!7)

Thirdly, the sections on the applications are more informative on
the mathematics involved, than the last section "Analysis".

Partial differential equations, for instance, are mentioned under
"Analysis", but Bossut gives more information about them (especially
on the role of the arbitrary functions) in connection with the
problem of the vibrating string (under Mechanics) and the problem
of the cause of the winds (under celestial physics)ﬁ

Finally, it should be remarked that, however exciting the list of
applications is, the list of names in this story is utterly tedious:
it consists essentially of four: Johann Bernoulli, Daniel Bernoulli,
Euler and d'Alembert.

3. This last point in fact, presents us with a problem. We looked
for applications of the calculus. We have found long lists of such
applications but it appears that these applications were performed
by the same people (and a very small group of people too) who
created the analysis that was applied.
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No doubt these people saw their own work as a unity, not as a
realm of activity with a boundary in the middle dividing pure
analysis from its "applications". So we must ask the question:

are these "applications"? If, with the term applications, we think
about crossings of boundaries between disciplines, we should
hesitate to call them applications. Within eighteenth century
science, rational mechanics and analysis were seen as one whole;
the interaction between the problems was seen as normal and quite
self-evident.

This is by no means a new observation; it is well recognized in the
more elaborate accounts of the history of mathematics. It should,
however, be stressed, because the shorter presentations of the
history of the calculus usually take as their organising principles
an interest in the foundations of the calculus?”or at least they
are organised according to subdivisions of analysis itself. This
tends sometimes to obscure the roots which analysis has in these
fields of rational mechanics which we now consider as separate,

but which, at the time, were interwoven with analysis.

Though natural and much to be expected, the interrelation of analysis
and rational mechanics did determine the development of analysis

in a special way, which it is instructive to characterise a bit
further.

I want to mention three aspects of this interrelation.

First, rational mechanics provided the language to formulate

challenging problems for the new methods in analysis. Especially in

the decades around 1700 the traditional stock of problems of the
geometry of curves, as tangents, areas, cubatures, rectifications,
curvature, etc. was too narrow to supply enough problems.

So it was enriched with mechanical conceptions: centres of gravity,
motion, centres of oscillation., elasticity, motion, gravity, central
forces, resisting media etc. Indeed the term "applications" does

not suggest the most significant direction of influence in this case.
Mechanics suggested problems and analysis worked out new theories

and methods to solve them. These methods and theories are the lasting
results, not the solution of the original mechanical problems.

Bossut said it quite clearly: the problems eventually become problems
of pure analysis.

Secondly, in addition to providing a language for the formulation
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of problems, rational mechanics supplied image and prestige for

the new methods in the calculus. For, as we have seen in the
encyclopedias, the progress of the calculus is shown and explained
by means of the problems it can solve. And the problems in

rational mechanics can be explained and their importance conveyed
to a general public, whereas such explanation is much less feasible
for the mathematics itself.

Finally, the fact that analysis was developed in the 18th century
in close relation with problems from rational mechanics determined
in a very deep way the concepts of analysis in that century. This

is especially the case with the concept of variable. Throughout

the eighteenth century, analysis was primarily the science of
variable quantities. This concept is natural for a theory of physical
problem situations. It is less natural for a purely mathematical
theory for a purely mathematical theory of analysis; there the
concept of function, which is quite something different, is the
natural onef”The rise of the concept of function occurred in the
eighteenth century precisely for purely mathematical reasons -
especially in connection with Euler's shaping of analysis as a
unitary structure. But the function concept took over very slowly,
just because of the use of analysis in physical problem situations.
The tension between the two concepts explains much of the story

of the foundation of analysis in the eighteenth and nineteenth
centuries, as for instance why it took so long for the limit concept
to be recognised as the appropriate foundationf”

The same tension between the concepts of variable and function
accompanies the drifting apart of pure and applied mathematics in
the nineteenth and twentiest centuries - in which the function con-
cept became the fundamental concept of pure mathematics (and
consequently the derivative function became the fundamental concept
in analysis) whereas the applications in science and engineering
still needed and used variables and their differentials.

4, So far about the aspects of the interrelation between analysis
and its "applications" within rational mechanics. But we have noted
that these involved no clear crossings of boundaries, that in fact
they are called "applications" with some doubt. So the question
arises: were there any "real" applications of the calculus in the
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eighteenth century?

There were indeed such crossings of boundaries. The boundary in
question was the boundary between rational mechanics and the rest
of what was called "mixed mathematics"?Jarchitecture, navigation,

geography, warfare, machines and technology in general.

Clear examples of such crossings of boundaries, of applications or
uses of calculus methods, combined with mechnanical theory, in the
fields of mixed mathematics, are not numerous. This is not sur-
prising because the simplifications and abstractions which were
used in rational mechanics to arrive at mathematically tractable
problems were so considerable that the application of the results
on practice was often not feasible. For instance, the current hydro-
dynamical theories disregarded viscosity and internal friction

of the fluids. Still, crossings there were. The most spectacular
one occurred in connection with the problem of longitude, that is,

the problem of determining a ship's position at sea. For this,
accurate tables predicting the position of the moon were needed. To
calculate such tables required good observations of the basic para-
meters and a good theory of the very complicated motion of the

moon. It was the calculus, combined with Newton's mechanics, that
eventually supplied such a theory. Many mathematicians worked at it
but it was especially Euler's theory of the moon, combined with most

accurate observations by Tobias Mayer, which provided, in the 1750's,
tables accurate enough for effective determinations of ships

positions at sea - a very spectacular result recognized as such when
they came in general use in the l760'sfu

A second example is ballistics, where the theory of projectile

motion under resistance proportional to the square of the velocity
supplied, in combination with experimental data on the velocity of
projectiles shot from canon, the so-called quadratic theory of
ballistics, which in the second half of the eighteenth century was
adopted by artillery. How much this theory, and the artillery tables
that could be calculated with help of it contributed to the
effectiveness of artillery in the 18th century is difficult to
assess, but certainly quadratic ballistics provided the beginning
of theoretical ballistics which in the nineteenth century was one

of the bases of greater effectiveness in artillery.“d
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5. I want to say something more about the crossings of boundaries
in the case of hydrodynamics. At first sight this may seem not a

very appropriate example because hydromechanics was notorious in
the eighteenth century for the lack of accord of its theories
with experimental results. Newton's Principia [1687], Daniel
Bernoulli's Hydrodynamics [1738], Lagrange's Analytical Mechanics

[ 1788] and a number of other books and articles in the learned
journals promoted theoretical hydromechanics in a magnificent way,
but the results were of little use in practice.

Especially the theory of resistance of bodies moved in water (and
hopefully ships moving in the sea) proved of little value for the
practitioners in the shipbuilding trade. Still there were crossings
of boundaries in the case of hydrodynamics.

To illustrate this I follow an argument by professor R. Hahn, pre-
sented in a lecture "Hydrodynamics in the eighteenth century -
scientific and sociological aspects" [1964b]. Professor Hahn notes
that before the appearance of the above mentioned great books on
hydrodynamics there was already a discipline called hydraulics.

This was the knowledge of the crafts of the builders of waterworks,
of shipbuilders and of navigators.

There was treatises in which this knowledge was comprised. In the
first half of the seventeenth century the treatises on hydraulics
were organised as books of reference, often alphabetically organised,
surveying the known techniques within the tradesfﬂ&hey reflected a
static knowledge, the combined experience of shipbuilders, navigators
and constructors of waterworks.

But after the middle of the seventeenth century a change occurred

in the style of these treatises, they began to be organised as a
theory, starting with basic principles, from which - it was claimed
- the rules of the craft could be deduced. This change of style',‘éJ
which occurs also in the treatises on architecture, was related to
the requirements of education; it may also have been related to
changes in philosophy. In the second half of the seventeenth century
there arose military and civil engineering schools. However, not
surprisingly, the principles professed in the new treatises were
very feeble. Here was a topic of dispute, and thus of contact, be-
tween the teachers in the craft of hydraulics and the scientists.
Thus Huygens entered a controversy with Renau d'Eligagaray on the
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mechanical principles which the [1689] latter had professed in his text-

book on the manocevring of ships. The same discussion is taken up

by Johann Bernoulli is his Essay of a new theory of the manocevring

of ships [1714]. Later writers of textbooks - like Bé&lidor and
Bouguer - offered little higher mathematics and mechanics in their
treatises, but they were keenly interested in the development of
the theoretical side of hydrodynamics. Euler's Naval Science [1749]
was translated [1773] from the latin and adapted to the level of
the well educated engineer (which meant leaving out most of the

calculus).

These textbooks in hydraulics were used at the military and civil
engineering schools which, especially in the eighteenth century
France, had become very prestigeous centres of education; they were
the forerunners of the famous Ecole Polytechnique.

Around these institutions there arose the scientifico-technical
professions of teachers and, more important, examinerswaossut, whom
we have met, was such an examiner. These people formed a link be-
tween the analytical science of hydrodynamics, or rational mechanics
in general, and technology.

In 1775 the discrepancy between the theoretical hydrodynamics
and the experimental results led to an effort, especially supported
by the French minister Turgot, to close the gap, through a
theoretical and experimental research program. It is not surprising
that it was again Bossut who was asked to carry out the program?”
This resulted in his theoretical and experimental treatise on hydro-
dynamics [1786], meant for an engineering public, in which he com-
bined the mathematical theory and the experimental side of the sub-
ject. As it happened, the experiments made the gap between theory
and practice only much clearer, but work in the same style was
continued and in the nineteenth century the gap began to close,
through the work of Navier, Coriolis, Saint Venant and others.

What occurred in the case of hydrodynamics occurred to rational
mechanics in general. It acquired an increasing role in education
at the French technological schools of artillery, shipbuilding,
engineering, architecture etc. Over the century the knowledge of pure
mathematics required for entry in these schools, and the mathematics
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taught there was extended. By the 1750's there were occasional
courses in the calculus at some engineering schoolsgoin the Egglg
Polytechnique of the 1790's calculus had become an established
part of the curriculumﬁu

The prestige of teachers and examiners increased - and these
people were interested in the theoretical sciences. Thus there was
created a public of engineers with at least some knowledge of the
techniques of the calculus and of their use in the abstract
theories of mechanics.

6. To conclude: the example of hydrodynamics shows that once
applications are seens as crossing of boundaries, there is much more
to it than simply taking a piece of mathematics and using it some-
where. There is more to fertilizing relations of fields of scientific
and technological activity than the too restricted term of
"applications" suggests. There are the social relations, the sociology
of the groups involved, professional functions, jobs, styles,
education etc. This implies that even if in the eighteenth century
the tangible applications of the calculus over the boundary between
rational mechanics and mixed mathematics or technology were not

very great in number, these other aspects were important enough, both
for the development of the calculus itself as for the fields in

which it was, with more or less success, applied.

For analysis itself the importance of these crossings of boun-
daries lay primarily in education: in the second half of the
eighteenth century analysis became a teachable subject, teachable
to engineering students. This implied an additional interest, for
didactical reasons, in questions of foundation and inner organisation
of the subject. The great tradition of the french "Cours d'Analyse"”,
courses of analysis,originated in the eighteenth century awareness
that students of engineering can usefully be taught calculus.

For technology the eighteenth century crossings of boundaries were
important because they prepared the ground for an increasing role
of the calculus in technological applications in the subsequent

centuries.
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Notes

Zedler [Lexikond; according to Zischka ([1959) p. XL), the writing
of the Lexikon was supervised by Johann Christoph Gottsched,
Johann Heinrich Rother and (later) Carl Gilinther Ludovicij but
the names of the nine editors for special disciplines are not
known.
"Functio Lineae heisset in der Analysi Mathematicorum eine Grdsse,
welche die Beschaffenheit einer Linie ausdriicket, so entweder aus
ermeldeter Linie oder einer Potenz von ihr bestehet, oder aus
derselben Linie mit andern bestandigen Grodssen auf alle mdgliche
Art zusammengesetzet ist. (...) Die allgemeine Expression der
Tunction einer Linie A ist

Y ¥ d

mA%+ na® ete: + pAd+ qA® etc: + sA®+ Al 1

etc: + xAt+ yA~ etc: etec:

+ ete. " (Zedler [Lexikonl vol. 9 (1735),col. 2308-2309).
fEncycl. méth.J; this reworking and systematic rearrangement of
the articles in the [Encyclopédiel of d'Alembert and Diderot was
organised by Ch.F. Pancoucke.

Zedler lLexikonl vol. 6 (1733), col. 185-195 ("calculus differen
tialis") and col. 199-204 ("calculus integralis").

There is a short article "Differentialgleichung" in Zedler [Lexikonl
vol. 7 (1734), col. 892, which mainly refers to the article

on integral calculus.

"...einer der allerherrlichsten Erfindungen in der Mathe-

matic, welche nicht nur die Geometrie fast bis auf den hdchsten
Gipffel erhoben, sondern auch die andern Disciplinen dergestalt
erweitert hat, dass man ganze Blicher schreiben miisste, wenn man
den Nutzen von diesem Calculo specificiren wollte." (Zedler
{Lexikon] vol. 6 (1733), col. 190).

Zedler [Lexikond vol. 6 (1733), col. 191.

"In der Mechanic sind uns dadurch die verborgensten Geheimnisse
der Natur erdffnet worden." (Zedler [Lexikonl vol. 6 (1733), col.
191).

There is an apt description of the method used in this study of
motion: "In der Abhandlung de motu variato ist man durch die
Erkdntnis derer DifferentialGrdssen in den Stand gerathen, die
theorie desselbigen auf das hdchste zu poussiren, und curvas von
denen wunderbarsten Eigenschaften zu finden; indem man eine solche
veranderliche Bewegung in motus elementares resolviret, solche
alsdenn als uniformes betrachtet, und aus denen conditionibus
virium, velocitatum, temporum &spatiorum, ihre mutationes entdecket,
und die curvas darinnen sich dergleicehn Bewegungen zutragen
ausflindig gemacht" (Zedler (Lexikonl vol. 6 (1733), col. 191).

The textbooks on the calculus mentioned in the Lexikon articles on
differential and integral calculus are: Carré [1700d, Cheyne [17031,
Craig [16851, [1693), 1'H6pital [16961, Manfredi [1707), Wolff
f17043, [Elem. Math.J]. In addition to these, there are references
in general to the articles of Newton, Leibniz,Tschirnhaus,
1'H6pital, Huygens, the Bernoullis, Craig, Varignon and Hermann

in the journals Acta Eruditorum, Philosophical Transactions,
Histoires et Mémoires de 1TAcadémie Royale des Sciences,and
Commentarii Academiae Petropolitanae.

1t 1s not quite clear how far d'Alembert, who died in 1784,

has himself updated his encyclopédie articles for the encyclopédie
méthodigue. Such updating has taken place, but the fact that most
articles were originally written in the 1750's is apparent in

the encyclopédie méthodigue; it explains, for instance, why there
are fewer references to Euler's textbooks than one would

expect in the 1780's.
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lEncycl. méth.l Math. vol. 1, article "différentiel - Calcul
Différentiel" pp. 520-526; ibid vol. 2, article "Intégral -

Calcul Intégral" pp. 21u-228,

The articles on differential and integral calculus do list a
considerable number of applications, but Bossut's list is more
extensive and detailed.

"De toutes les découvertes qui se sont jamais faites dans les
Sciences, il n'y en a point d'aussi importante, ni d'aussi

féconde en applications, que celle de l'analyse infinitésimale."
({Encycl. méth.J Math. vol. 1, p. LXXII).

"La nouvelle Géometrie a &té appliquée & toutes les autres

parties des Mathématiques, & toutes l'ont forcés de se perfectionner
elle-méme, en offrant sans cesse des problémes qui finissent par se
reduire & de pures questions d'Analyse."([Enc. méth.J Math. vol. 1,
p. XCVI).

The full list (for which a footnote may be an appropriate place)
of the topics which Bossut mentions in his historical survey of
analysis since Leibniz and Newton is as follows:

Fundamental concepts of the calculus; Leibniz on tangents and
extpeme values; Newton on motion in conic sections, central forces,
1/r®, perturbation of planetary motion, tides, precession of the
equinoxesj isochronous curve; paracentric isochrone; catenary;
rectification of parabolic and logarithmic spirals, quadratures
and cubatures of these; loxodromes; catenary with non uniform
weight; sailcurve; tended arc, elastic beam; quadrable parts of

a sphere; Bernoulli's inverse tangent problem (curve OP through
origin, whose tangent PQ meets X-axis in Q, PQ:0Q given);
exponential calculus; 1'H&pital on tangents, extreme values, points
of inflexion, cusps, radii of curvature, evolutes, caustics by
reflection and refraction; brachystochrone; isoperimeters;
brachystochrones towards a given curve; synchronous curvej
differentiation with respect to a parameter; curve of equal
pression, solid of least resistance; orthogonal trajectories,
reciprocal trajectories; vibratiag stﬁings; path of a projectile
in medium with resistance :v, :v°, :v'; probability; the
"equations of condition" (cf. note 18); homogeneous differential
equations. Mechanics: principles of mechanics; general catenaries;
elastica under influence of its own gravity; tautochronism in
medium with resistance; rotation among a variable axis; oscilla=
tions of a hanging chain; motion resulting from excentric per-
cussionj; momentaneous centre of rotation; general principles

of dynamics; vibrating strings and arbitrary functions; oscilla-
tions of a column of air, sound in organ pipes. Hydrodynamics:
efflux from a vessel through a hole; general equations of
hydrodynamics; form of the earth. Applications of hydrodynamics

to navigation: stability of floating bodies; motion of ships

in water. Astronomy: catalogue of visible stars; determination

of fundamental constants; aberration of stars; nutation of the
earth's axis. Celestial Physics: universal gravitation; per-
turbation of planetary motion; tides; tidal effects on the atmos-
phere; general theory of planetary motions; lunar theory; comets;
precession of the equinoxes; nutation of the earth's axis.

Optics: chromatic and spherical aberration; achromatic lense
systems. Analysis: equations of higher than 4th degree; binomial
equations; series; reduction of equations; analytic geometry;
third order curves; interpolations; quadratures; algebraic curves;
rectifiable curves on surfaces; reciprocal trajectories; curvature
of surfaces; calculus of sines and cosines; general solution of
isoperimetric problems (i.e. variational calculus); rectifications
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of ellipses and hyperbolas (i.e. elliptic integrals);
partial differential calculus; integral calculus with
finite differences. ([Encycl. méth.l Math. vol. 1, pp.
LXXII-CXIV). -

17) In illustration, I list chronologically the principal works
which appeared between 1735 and 1755 shaping rational mechanics
into a recognizable discipline: Euler's Mechanics £17361, D.
Bernoulli's Hydrodynamics [17381, Clairaut's Theory of the
figure of the earth [17431, d'Alembert's Treatise of dynamics
£17431, Johann Bernoulli's Hydraulics [1743], d'Alembert's
Treatise on the equilibrium and motion of fluids {17441,
Euler's Naval science [17491, d'Alembert’s The resistance of
fluids (17521.

18) Partial differential equations are a good example of the close
interaction between analysis and rational mechanics. The first
article to deal with the solution of partial differential
equations is usually considered to be Euler {17u0bl. Here,
and in [17u0al, the problem is indeed not directly connected
with mechanics. Euler treats families of curves in whose
equation an integral occurs; he wants to find an equation
in finite terms. This leads him to the problem of finding
solutions (in finite terms) of partial differential

equations of the form 5% = f(x,y). Euler does not seem to

be aware here of the special nature of such differential
equations; in particular he is not aware of the great

variety of pssible solutions, arbitrary functions do not
occur in the article.

There are several instances of the occurrence of partial
differential equations in rational mechanics studies around
1740. Thus for instance the '"equations of condition"

%% = %g » for a differential Adx + Bdy to be exact, are used
in Clairaut's study {17431 on the figure of the earth,

and in d'Alembert's treatise of dynamics [1743] partial
differential equations occur as expressions for conditions of
motion. However, in these cases only special solutions of the
partial differential equations are involved. The first

general solutions of partial differential equations, clearly
exhibiting the role of arbitrary functions, occur in two
treatises of d'Alembert, [1747al on the general cause of the
winds (in which this cause is sought in tidal movements in

the atmosphere), and [1747bl on the vibrating string. In both
cases d'Alembert reduces a physical problem to the mathematical
problem of chosing two functions & and (3 ,occurring

in two differential forms, such that these forms become
simultaneously exact. In the case of the vibrating string
these forms are such that the problem is equivalend to solving

2 2
the partial differential equation %—% = czg—% ; in the other
X t
case he gives a more general approach equivalent to solving
a (hyperbolic) second order homogeneous partial differential
equation with constant coefficients.
There evolved a long discussion on the nature ahd acceptability
of the arbitrary functions introduced by d'Alembert; in this
discussion Euler stressed the acceptability of all functions,
regardless of their representability by means of analytical
formulas or the occurrence of singularities.
Manwhile d'Alembert, Euler, Daniel Bernoulli and Lagrange
developed the theory of partial differential equations further
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in connection with the many examples of such equations which
they encountered in mechanical studies. Indeed, in
Truesdell's words: "... the great gift of continuum mechanics
to analysis is the theory of partial differential equations"
(£19601, p. u418). Euler's textbook [17683 has an extensive
section on partial differential equations; Cousin's lectures
[17771 deal with them and afterwards a number of textbooks
devoted more or less attention to the subject. Stilly throughout
the 18th century it remdined a subject which only few
mathematicians could master. (I am indebted to Mr S.B.
Engelsman for calling my attention to a number of the
references cited above.)

19) This applies especially to Boyer [1949], whose original title
(the concepts of the calculus) stresses that it does not
pretend to deal with other aspects of the calculus than its
fundamental concepts. However, as Boyer's book is now the
standard reference for the history of the calculus, its
special point of view should not be overlooked.

20) On the tension between the two concepts see Bos [197ul, p. 6,
and Freudenthal [19731, pp. 553-559.

21) Cf Bos [19751, pp. 28-30.

22) Cf: "Mathematicks is commonly distinguished into pure and
speculative, which consider quantity abstractedly; and mixed,
which treat of magnitude as subsisting in material bodies,
and consequently are interwoven everywhere with physical consi-
derations. Mixed mathematics are very comprehensive; since to
them may de referred Astronomy, Optics, Geography, Hydrostatics,
Mechanics, Fortification, Navigation, &c...", (IEncycl. Britt.d,
article "mathematics")

The '"systeéme figuré des connoissances humaines™ in vol. 1
of d'Alembert's and Diderot's Encyclopédie arranges under
"mathématiques mixtes": mechanics (with further subdivision),
acoustics, pneumatics, art of conjecture, analysis of chance,
geometric astronomy (with further subdivision) and optics
(with further subdivision).

Another illustration of the extent of mathematics in the
eighteenth century is the contents of a standard compilation
as Wolff's [Elem. Math.], whose edition Geneva 1735-17u43
deals with: arithmetic, geometry, plane trigonometry, analysis
(of finite and infinite quantities), mechanics, statics,
hydrostatics, aerometrics, hydraulics, optics, perspective,
catoptrics, dioptrics, theory of the sphere and spherical
trigonometry, astronomy (both "spherical" and "theoretical),
geography, hydrography, chronology, gnomonics, pyrotechnics,
and architecture (both military and civil).

23) The tables came in use at sea in the 1760's. The Nautical
Almanac was published since 1766 to reduce the calculations
involved in using the tables. In 1765 the british parliament
rewarded £3000 to Mayer's widow (Mayer had died in 1762 )}
for his contribution to solving the longitude problem;
£300 went to Euler for his part in the theoretical foundation
of Mayer's work. £5000 was given to Harrison, for the
invention of the chronometer, which provided an alternative
method to determine longitude. See Forbes [19731.

24) Cf. Charbonnier [19281 and McShane [1953].

25) Cf Hahn [1964bl, pp. 7-8.
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30)
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Hahn (l1964bl, p. 11) mentions as an example Hoste (16971.

On the history of these schools see Taton [1964]).

The list of mathematicians who in some way or other served
the french system of technical schools as "examinateurs"
includes Camus, Bézout, Bossut, Monge and Laplace.

On this research program, and on the chair of hydrodynamics
which formed its institutional base, see Hahn [1964al and
£1964b), pp. 22-25. Bossut got the chair, d'Alembert and
Condorcet were connected with the program, which included
extensive experiments on resistance of bodies moving

in water.

At the Ecole Royale des Ponts et Chaussées, founded

in the 1740's, "on enseigna aussi, et des les premiers temps,
le calcul différentiel et intégral, mais il n'est pas certain
que les &léves aient été dans 1l'obligation de suivre les
legons" (Taton {19641, p. 358). When Bossut started teaching
at the Ecole Royale du Genie at Mézig&res in 1753, he improved
the mathematics program by, among other things, introducing
the elements of the calculus. His reforms, however, were
hampered by the more conservative requirements set by Camus
as examiner (cf. Taton [1964), p. 587). Cf. also: "Dans cer-
taines écoles royales militaires, on peut apercevoir quelques
nouvelles tendances qui démontrent que l'enseignement

n'était pas trop en retard sur les progrés scientifiques de
1'époque. D'abord, il faut signaler la présence des questions
de calcul intégral et différentiel dans plusieurs exercises
publics, tels que ceux de Brienne en 1782 et de Soreze

en 1784. Pour cette étude, le livre de Mlle Agnesi (i.e.
(17483) semble avoir &té utilisé. Mais il faut remarquer que
peu d'éléves étaient en état de répondre & ces questions qui,
pour 1'époque étaient de haute mathématique." (Taton (196u],
PP. 534-535).

From its foundation in 1794 the Ecole Polytechnique planned
the calculus as part of its curriculum. Lagrange taught
analysis at the Ecole from 1795 til 1799; he was succeeded by
Lacroix. Lagrange's teaching lent much prestige to the school.
It was advertised for instance in Prony ({17951, whereit is
proudly announced that Lagrange will present his own
demonstrations of the fundamental principles of the
differential and integral calculus, avoiding the disadvantages
of both fluxions and limits. (p. 208). It seems, however,
that his lessons were rather too abstract and did not fit in
well into the curriculum (cf. Fourcy (18283, pp. 190-191).
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