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Bos, Henk J.M.,, State University of Utrecht, Netherlands,
THE CONCEPT OF CONSTRUCTION AND THE REPRESENTATION OF CURVES IN

SEVENTEENTH-CENTURY MATHEMATICS.
EXAMPLE 1: AN EXPONENTIAL CURVE

My topic is best introduced by an exampie. 1 take it from the
correspondence between Leibniz and Huygens in 1630-1691. Leibniz wrote
about his new differential and integral calculus. Huygens was very
sceptical and proposed problems for Leibniz to solve. In the course of this
exchange Leibniz came i{o use an exponential equation to represent a curve,
This was entirely new; the only curve equations used till then were
algebraic ones. Huygens was even more sceptical about this novelty, he
thought that Leibniz boasted, using fancy but empiy symbolisms. So Leibniz
explained further. He tock as example the curve representing the relation
between the time t and the velocity v of a body falling in a medium with
resistance propcrtional to v¢, That curve, he said, was given by the

following exponential equation:

Huygens was still puzzied. He wrote:
“I must confess that the nature of that sort of supertranscendental
lines, in which the unknowns enter the exponent, seems toc me so
obscure that I would not think about introducing them into geometry
unless you could indicate some notable usefulness of them." ([11], vol.
9, p. 537)

And somewhat later he wrote:



"I beg you to tell me whether you can represent the form of that curve
by marking points on it or by whatever method™ (111, vol. 9, p. 570)
Leibniz’ answer was affirmative. The equation, he wrote, implies the

construction of points on the curve, and he gave the following
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Construction ([11], Vol. 1O, pp. 14-15) Draw (see Figure 1) parallel lines
AA" and CC' with distance AC = 1. Take B on AA" with AB = 1. Take BD of
arbitrary length b, perpendicular to AA’. Draw the LogaritAmica through C
and D with axis AA'. The Logarithmica i5 the curve with equation y = b* It
was known to Huygens; not, of course, by {15 equation, but as the curve

with the property that for every sequence of equidistant points on the

axis, the corresponding ordinates are in geometrical progression. Hence if
G is the middle of AB, then GH = A~AC.BD, which is constructible by ruler

and compass. Again if AB = BI, then 1J = {BD)E/AC, which is constructible
as well. Thus this property implies a method to construct arbitrarily many
points on the curve (by successive halving and doubling of segments on the

axis and constructing the corresponding crdinates). It is to this pointwise



construction of the curve that Leibniz refers in his explanation to
Huygens. With the logarithmica thus constructed, take F arbitrary on that
curve, draw the ordinate PT, intersecting CC' in K, prolong to Q with
TQ = 1. Take QS = ! horizantally to the left, and connect 5 and P. SP
intersects CC" in R. Take V on TP such that TV = KR. Then V is on the
required curve. To find more points repeat this construction from other
points F on the Logarithmica. &

Clearly, this is a rather complicated procedure to represent a curve.
The more surprising is it that for Huygens this method to mark peoints on
the curve was much more enlightening than Leibniz’ exponential equation.
Indeed he wrote back:

"1 have locked at your construction of the exponential curve which is

l+y
1-v

very good. Still T do not see that this expression bt - is a great

heip for that; I knew the curve already for a long time.™ ([11] vol
10, pp. 20-21)
Huygens’ reaction shows that for him the exponential equation was not
a sufficient representation of the curve; he only could understand, and
indeed recognise, the curve when a construction of it was given. For him
ihe canonical way of giving (and understanding) a curve was by a
construction procedure to mark points on it. The example, then, is about

different views on the proper way of representing curves.

THE REPRESENTATION OF CURVES

I use the term "representation of a curve” as a technical term to
denote:

A description of a curve that is sufficiently informative to consider

the curve knrown.



In the 17th century, mathematicians were often confronted with tihe
problem how to represent curves, because they came upon many problems in
which it was required to¢ find hitherto unknown curves. Many of these
probiems were so-called "inverse tangent problems”, equivalent to first-
order differential equations and often arising from mechanical problems.
Solving such problems required a convincing representation of the curve
sought. As the analytical methods (analytic geometiry, the calculus) were
still very new, representation of a curve by its equation was often not
considered sufficient {especially in the case of transcendental curves),
and more geometrical ways of represeniation were required.

The representation of curves was an informal practice, without fixed
criteria of adequacy. There was, at that time, no universally accepted
definition of the concept of curve on which a formally determined way of
representing curves could be based (nor, apparently, was a need for such a
definition felt). Because it was an informal practice, it was subject to
much debate; opinions about the proper representation of curves differed
among mathematicians; and they changed over the period. These differences
of opinion and the ensuing debates are interesting because they reveal much
about the changing conceptions and aims within the mathematics of that
period. In particular they reveal the complex process of the replacement of

geometrical ways of thinking by analytical ones.

GEOMETRICAL CONSTRUCTION

The example of the exponential curve illustrates that in the 17th
century the representation of curves often relied on procedures of
geometrical construction. At the beginning of the century this concept of
construction had been central in a debate occurring within what may be

called the early modern itradition of geometrical problem solving. The



century between 1550 and 1650 was the time in which ihe classical Greek
mathematics was taken up, understood and elaborated. In particular the
early modern mathematicians took over ithe Greek interest in geometrical
problems and their solution by construction.

In this practice they were confronted with two questions of method.
The first was: Whaat means of construction shouid be used (f problems cannot
be consiructed by ruler and compass? Many problems (the classical ones as
foremost cases) could not be constructed by ruler and compass. Obwviously,
they had to be solved, but by what means? More sophisticated instruments
than ruler and compass? More complicated curves than straight lines and
circles? Or ihe adoption of new postulates in addition to the Euclidean
ones that are the basis of ruler and compass constructions? All these
possibilities were considered and debated by early modern geometers.

The second methodelogical issue was the search for analytic methods.
From the classical Greek geometirical works as they were known abcut 1600
mathematicians inferred that the ancients had had a special method, called
analysis, for finding proofs of thecrems and constructions of problems, but
that they had kept that method secret, or at least that works about the
method had been lost. So the early modern geometers set ihemselves the task

o recreate or to create such analytic methaods.

EXAMPLE 2: TRISECTION

Rather than discussing geometrical construciion and the related
methodological questions abstractly, I shaill illustrate them by an example.
It is taken from Descartes’ Géoméirie (1637) [9], and it concerns a

classical problem, the trisection of the angle.
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Let, see Figure 2, ZNOP, be given, so that the chord NP = g within

the circle (radius 1) is known. It is required to construct XNOQ %&NOP.

Figure 2

Descartes proceeded in two steps. He called 1 the chord NQ of the
required angle, and he derived the equation for x. He found, by applying
elementary Euclidean geometry:

x3 - 3x + g =0 (2}

The second step was to geomeirically construct a root x of the equation.

Descartes gave the following

Figure 3

Construction ({8], pp. 396-397) With respect to perpendicular axres (see

Figure 3} through O, draw a parabola with vertical axis, vertex in O and



passing through the point U with coordinates of length 1. Take D on the

vertical axis below O such that 0D = 2. Take DM = horizental to the laft.

[N e

Draw a circie with centre M and radius MO; the circle intersecis the
parabola in O and in three other peoints. Call the one nearest to: G. Draw
GK horizontally with K on ihe vertical axis. Then K is the required root
X; taking NQ = GK in Figure 2 gives the required trisection. {The remaining
roots occur as the ordinates of the other points of intersection of the
circle and the paraboia.] &

According to Descartes, this kind of constiruction was the canonical
solution of an equation if it arose in & geometrical context. An
algebraical solution {by a Cardano-type formuia) would not be sufficient;
the problem was geometrical and hence the solution had to be geomeirical
too. The example illustrates Descartes’ particular answer to the
methodological quesiions outlined above: Construction beyond ruler and
compass was to be effectuated by the intersection of higher curves (here

the parabola and the circle); the analytical method was algebra.

WHEN IS A PROBLEM SOLVED?

At this point the two examples enable me to state, somewhat slogan-
like, the ceniral theme of my research. It concerns the questions: When was
a problem considered solved? When was an object considered known? In other
words:

What were the criteria for adequate solution and representation in

17th-century mathematics?

Such criteria evidenily played a role in the mathematical practice of
the period (as in fact in any period). They were not forralized, and they
were controversial. Studying ithese criteria, the debates about them and the

changes they underwent, often brings to light ways of mathematical thinking



that were common and self-evident at the time but are very unfamiliar to
us.

The criteria of adequacy have been little studied before by historians
of mathematics. The reason for that neglect of an important part of 17ih
century mathematics is that these criteria concern contemporary practice,
whereas historical research has often concentrated on the origin of modern
ideas. Also the criteria concern the mathematical material, the objsects
(like curves) and the probiems (construction problems or inverse tangent
problems), whereas historical research has tended to concenirate on the
theories and the methods (analytic geometry, calculus) that were developed
to deal with those objects and problems.

1 have found a study of these criteria of adequacy very revealing and
rewarding. In the remainder of this lecture 1 would like to mention some
results of the investigations around the theme outlined above, and give

some examples.

DESCARTES' GEOMETRIE

Let me begin with Descartes’ Geomeélrie of 1637 {cf. [7]). This was
without doubt the most influential book in 17th-century mathematics; for
one thing, it marked the beginning of analytic geometry. Through it,
Descartes’ particular choices {mentiioned above) with respect to the
methodological issues in geometry, his criteria of adequacy, became
paradigmatic for mathematicians after him. These choices largely determined
the structure of the book and the conception of geometry behind it, for
instance the restriction of geometry to algebraic relationships which
Descartes advocated very sirongly. His methodeological choices explain in

particular what may be called Descartes’ programme for geometiry:



Given a geometrical problem, one calls x one of the linesegments that

have to be constructed. One then derives an equation

H(x) = O (3)
for x, where H is a polynomial. Then, to determine x, the geometer's task
is to find acceptable, simpie curves ¥ and %, such that the roots of
H(x) = 0 are equal to ordinates of intersection points of ¥ and $. These
curves are then the constructing curves by which the problem is solved.

In Descartes’ view of geomeiry, these curves should be algebraic. So,
if we write F(x,y) = O and G{x,y) = O for the equations of these curves,
the requirements are that H(x) is a factor of the resultant of F and G:

Res(F,G) = A(x)].H(x]}, (4}
and that # and ¥ are in some sense acceplable and simple. The procedure to
find such F and & for given H was called the “construction of the
equation”,

Descartes treated the construction of equations in general for
equations H{x) = O of degree 2 - 6. He showed that equations of degree |
and 2 can be constructed by circles and straight lines, equations of degree
3 and 4 by the intersection of a conic and a circle (in fact, he showed
that one fixed parabola is enocugh), and equations of degree 5 and & by
intersection of a circle and a special third-degree curve, the later so
called "Cartesian Parabola”. Descartes did not proceed to higher degrees,
he simply stated at the end of his book that it would be easy to go on. So
he left a programme for his successors: te work ocut a theory of

constructing equations.
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A FORGOTTEN THEORY

Around 1650, the Construction of Egquations (cf. [8]) was generally
considered a sensible subjeci, a natural and legitimate interpretation of
the programme of finding exact constructions for geometrical problems of
any degree of complexity. The theory attracted consideratble attention: many
books and articles about it appeared and mathematlicians of first rank
contributed to it, such as Descartes, Fermat, Newton, I'Hepital, Riccati,
Cramer, Euler, Lagrange. Descartes’ opinion that the constructing curves
should be algebraical was generally (though not universally) accepted, but
there was much debate on the requirement that the curves be “simplest
possible”. Should the equation be simple? Or the shape of the curve? Or the
movement by which it can be iraced? Descartes had given little guidance
here, he had only stated, without further argument, that a curve is simpler
in as much as its degree is lower. (1)

The debates about these questions shew how mathematicians struggled to
formulate and fix the motivation and the alms of the theory. They coften
felt strongly sbout it, wilness the legitimatory, almost moralistic
overtones in the debate. Some quotations may illustrate this. Here, for
instance, is Fermat:

"Certainly it is an offense against the more pure geometry if one

assumes too complicated curves of higher degrees for the sclution of

some problem, not taking the simpler and more proper ones; for it has
often been declared already, both by Pappus and by more recent

mathematicians, that it is a considerable error in geometry to solve a

problem by means that are not proper to it.” ([10], vol. I, p. 121)

And Newton:
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"Yet it is not its equation butl its description which produces a

geometrical curve. (-] It is not the simplicity of its equation but

the ease of its description which primarily indicates that a line is

to be admitted into the construction of problems. (-] Either, then,

we are, with the ancients, to exclude from geometry all lines except

the straight line and circle and may be the conics, or we are to admit
them all according to the simplicity of their description." ([14], vol.

5, p. 425-427)

Many similar statemenis occur in ithe literature on the construction of
equations. They use remarkable metaphors: geometiry is seen as a lawful
territory that has to be protected and from which certain practices have to
be excluded, or it is seen as a person, who can be offended and whose
purity, one would almost say whose chastitly, has to be defended. The issue
was: to shape the proper rules of the subject and thereby to secure its
status as a meaningful and sensible subject. The metaphors indicate that
mathematicians felt strongly about it. 5till, despite the strong words the
debaies remained inconlusive, the questions about the aims of the field,
and its proper procedures, could not be answered. After some time the
debate died and so did the theory iiseif; after 1750 it quickly fell into
oblivion,

The phenomenon of a theory that starts off as an evidently sensible
enterprise and later dies amidst inconclusive discussions on its aims and
motivations is a most interesting one. Why did the subject die? The answer
turns out to be ithe following: The construction of equations originated as
a sensible procedure within geometry. Purely algebraically, however, it
does not make much sense. If a problem consists of a polynomial in one
unknown, why should two polynomials in two unknowns constitute a solution?

As the theory progressed, the techniques to find consiructing curves became
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more and more algebraic. But the geometrical meaning of the subject - exact
construction - and the geometrical criteria of adeguacy - simplicity of the
curves - refused translation into algebra in a natural way . The subject

had a tendency io become algebraic but its aims, criteria and meaning
proved untranslatable into algebra - it succumbed to this internal
contradiction.

In the case of the construction of equations we can follow in detail a
process of development and decline of a mathematical field, a process whose
causes were in the sphere of motivation, sense and meaning. Such processes
are little studied, although they are of evident interest for understanding
the development of mathematics. The case also provides an informative
example (or counterexample) with respect to theories about the historical
development of scientific “research programmes™ as proposed by I. Lakatos

and other recent philosophers of science.

EXAMFLE 3, THE ALASTICA AND THE PARACENTRIC [SOCHRONE

I now return to the representation of curves, about which
methodological questions were raised remarkably similar to the ones
discussed in conmnection with the construction of equations. Again, I can
best illustirate these questions by an example. The example concerns two
curves, the £lastice and the Paracentric fsochrone. In 1684 Jakob Bernoulli
published in the Acte Eruditorum an article [2] about the form of elastic
beams under tension. The beams (cf. Figure 4) are fixed vertically at the
one end: a weight is attached such that the other end is bent horizontally.
Bernoulli considered arbitrary relations between extension and force, but
he devoted special attention to the case in which Hooke's law - extension
proportional to force - applies. The £lasfica is the form of the beamn In

that case.



Figure 4

Bernoutli derived the differential equation of the Flastica:

x2dx

at-xd

dy = (5)

where a is the horizontal distance between the two ends of the beam. He
represented the solution curve by means of the following

Construction. Take 0OA = a along a horizontal X-axis (see Figure 4, positive
values are taken to the left). Construct above the axis the curve with

ordinates z satisfying the equation

z = _ax? {6)
at-xd
[Bernoulli assumes his readers to be familiar with the construction of
algebraic curves.] For any abscissa 0X = x, determine y such that ay is
equal to the area 0XZ (XZ = z(x)). Take XE = y veriically downwards. Then E
is on the £lagstica. More points on the curve are found by repeating the

construction for other values of x. &

The construction is the geometrical equivalent of the analytical
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forrmula

rﬁ {7}

Bernoulli could have written the solution of (5) in such an analytical
form; it is important to note that he did not do so, but chose to represent
the curve by this geometrical construction. It is a so-called "construction
by guadrature", assuming (without explanation} that it is possible to
determine a rectangle {ay) equal to an area under a given curve.
Construction by quadrature was a common way io represent transcendental
curves in the 17th century, but it was not considered the most desirable
kind of representation.

Bernoulli further calculated the differential of the arclength s = OE

of the Klastica:

2
ds = —B dx (8)

Nad-x*
This formula provided the link between the £lasficae and the Paraceniric
Isochrone. The Paracentric [Isochrone {see Figure 5) is the curve through a
point O with the property that, in a vertical plane, a body moving under
influence of gravity along the curve, recedes uniformly from 0. That is, if

r(t) is the distance of the body to O and t the time, then r{t) = t

Figure 5 r
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Leibniz had challenged mathematicians to determine this curve. In an
article [3] published together with the one on elastic beams Bernoulli gave

his solution. He derived the differential equation:

dlar) = _a“du

2408 | JiAgA

{with a depending on the initial velocity, r and v as in Figure 5, and

(9)

ué = av). Bernoulli could now give a construction "by quadraiures", the
geometric equivalent of writing
u _2
ar - [ (10)

) 34_1_!4

Significantly, he did not do so. He recognised the right-hand differential
in (9) as the arclength differential of the £lasfica and he concluded that
this enabled him o give a construction by rectification™ It is as

follows:

Figure 6 "

Construction. Assume (See Figure 6) an £lasiicd RQC given. Draw a circle

arcund O with radius OB = a. Take E arbitrary on OB and draw EQ wvertically
with Q on the Elastica. Take U on the circle such that UV = OE%/a. Take W
on OU such that OW = (arc0Q)?/a (here it is assumed that the rectification of
the £lastica can be performed). Then W is on the Paracentric Iscchrone.

Repeat the construction for other points E to get arbitrarily many points

cn the required curve, ¥



THE Z£57 REPRESENTATIONS

The remarkable thing about Bernouili's construction is that according
to him this was the besi way of representing the solution of Leibniz’
problem, better than the construction by quadratures which is implied in
formulas (9-10). And this was not mersily a curious idiosyncrasy of one
mathematician. Shortly afterwards three further articles appeared, by
Leibniz [13], Johann Bernoulii [6} (Jakob's brother) and Jakob himself [4],
each containing reductions of the integral in {10) to an arclength of a
curve. Indeed, while searching for a comparatively simple algebraic curve
to which to reduce the integral, Jakob and Joham independenily found the
same curve. It was the Zlemniscate, whose origin, therefore, lies in a
preference for rectifications over quadratures in ihe representation of
transcendental curves.

In the course of this exchange of solutions Jakeh Bernoulli came to
explicitly formulate ([4], p. 608) his view on the proper representation of
transcendental curves. He wrote that one should at feast glve a
construction by quadrature of an algebraic curve. It was betfer to give a
construction by rectification of an algebraic curve, or a "pcintwise
construction” {such as Leibniz’ construction of the logarithmice, see
above). The bes?i way to represeni a curve, however, was a construction by
curves "given in nature" (as the Elastica or e.g. the Catenary). Bernoulli
preferred rectifications over quadratures because, as he said, measuring
length is easier than measuring area. He gave top preference to curves
"given in nature" because if these can be found, all laboricus construction

of algebraic curves and their gquadratures or rectifications could be
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avoided. These views of Jakob sollicited several reactions which I shall
not further discuss; I use his statements here primarily to show that there
was a debate and to illustrate its nature.

The debate shows striking similarities with the discussions sbout the
construction of equations. In both cases analytical representation was seen
as insufficient, a problem was considered solved only when a geometrical
construction was given. The crucial point was the interpretation of
"simplicity"; the constructing curves were considered better in as much as
they are “simpler"; rectifications were preferred over guadratures because
they were considered “"simpler” to effectuate; construction by curves “given
in nature”, was advocated by Bernoulli because it provided "simpler”,
easier, constructions. There were legitimatory overtones in both debates;
Johann Bernoulli, for instance uses terminology like "to sin against the
laws of geometry” {[6], p. 121). And finally in both cases the debate
remained inconclusive. With hindsight we can understand this; the relevant
theories (equations, differential equations) became more and more
analytical, but the concepis of geometrical simplicity could not be
convincingly translated and formalized into analytical terms. The
discussions were resolved by forgetting the problems.

Although these issues of construction and representation of curves
were later forgotten, at the time they had a decisive influence on the
development of mathematics. Analytic geometiry originated in the context of
geometirical construction by the intersection of curves. The first
techniques for solving differential egquations were elaborated with the aim

of finding appropriate geometrical representations of the solution curves
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of inverse tangent problems. And for instance the early studies on elliptic
integrals by Jakob Bernoulli, Fagnani and others were a result of the

effort to interpret integrals as arclengtihs.

CONCLUSION

I hope I have shown that the question of the criteria of adeguacy of
representation and solution provides an intriguing and fruitful way of
looking at the mathematics of the seventeenth century. It provides new
insights on three different levels.

On the fechnical level, an interest in these issues leads to a better
understanding of the terminology and the mental images of 17th-century
mathematical practice. Curves were studied intensively in that period, but
most of them (in particular the transcendental ones) could not be
represented by equations. An understanding of the alternative ways of
representation, of the reasons behind them, and of the mental images of
mathematical objects which they presuppose, is essential for understanding
the texts of the period.

On the level of the development of mathematics, the approach helps in
understanding certain directions and tendencies in 17th-century
mathematical research, which would otherways merely seem peculiar or
superfluous, such as the interest in the geometrical construction of roots
of equations or in representing integrals as arclengths .

Finally, on a more general level, a study cof the criteria of adequacy
is useful in understanding the processes of change in mathematics caused by

the introduction of radically new methods (as analysis in the 17th
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century), and the process of habifugiion to new ways of mathematical
thinking. These processes operate both on the level of technique and on ihe
level of motivation, meaning and sense of the mathematical enterprise. They
are not special to the 17th century, they belong to the mathematics at all
times. They have received little attention until now; the research on which
1 am reporting may be of interesit as an experiment in how these processes

can be studied.



FOOTNOTE
(1) Around 1700 mathematicians had come to the following consensus about
the degrees of the “best possible” constructing curves for an equation:
1f the degree of H is n, then constructing curves Flx,y) = 0 and
Glx,y) = O can be found with degrees that are integer approximations
of V.
The consensus was based on experience. Newtion and I'Hepital gave proofs,
but these were incorrect. Euler and others accepted the result without
gquestioning the proof. In modern terms the question is this:
Given HI[X], a polynomial of degree n = k.; are there polynomials
FIX.Y] and G[X,Y] with degrees k and |, such that H = Res(F,G)?
It seems that this question is still open. I would be very thankful to any

colleague who can give me more definite information about it.
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