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I Introduction

I-1

Seventeenth-century mathematics saw the creation of two analytical
methods whose descendants still dominate mathematics at the present day:
the analytic geometry of Fermat and Descartes and the calculus of Newton
and Leibniz. These methods were developed to solve problems in geometry,
and in particular problems about curves. The foundations of that part of
mathematics were exclusively geometrical. If a proof were to be con-
vincing, it had to be in the geometrical style of Euclid and Archimedes.
If a new mathematical object (as for instance a curve) had to be intro-
duced, it was necessary to explain how it could be geometrically con-
structed. If a problem had to be solved, the ultimate answer had to have
the form of a geometrical comstruction., Mathematicians often preferred not
to work out the ultimate proofs or comstructions in detail, but they were
aware that the certainty of their arguments could be secured only by
basing them on geometrical foundations.

Not only were the foundations of the field in which the new methods
were developed geometrical, also the material studied in that field
was geometrical. In fact a whole new world of geometrical objects was laid
open to mathematical study in the seventeenth century, namely higher-
order algebraic curves and many new transcendental curves.

However, the new methods, analytic geometry and calculus, were
algebraic, or analytic, rather than geometrical. That is, they consisted
in the manipulation of formulas. In the earlier phases of the development
it was still felt that the equations of amalytic geometry were representations
of curves that had to be constructed geometrically, and that the theorems
or the solutions of problems found by means of the analytical formulas
of the calculus, had still to be proved correct by geometrical proofs.
But the interest of mathematicians turned more and more to the analytical
methods as such, whereby the attention for the geometrical origin and
foundation of the entities, methods and proofs was gradually lost. Thus
occurred a process which I shall call "de-geometrization". De-geometrization
had strong effects; it implied deep changes in the mathematicians'
conception of the objects they were dealing with and the aims they set for
their research. Hence programmes and directions in research changed, old
questions became meaningless and other questions acquired new meaning.

I am convinced that many developments in seventeenth- and eighteenth-

century mathematics cannot adequately be understood without taking into



account the deep changes in the conception of mathematical objects, aims,
methods and proofs that were caused by the loss of attention for the
geometrical foundations.

In the present article I shall discuss an example of the effects of
de-geometrization in a separate branch of mathematics, namely the so-
called "construction of equations'". In this case the effect was extreme:
in losing its geometrical basis the subject also lost its sense, and,
after a flourishing period in the seventeenth and early eighteenth century,

it fell into oblivion.

I-2
The construction of equations was a well defined area of research from

the publication of Descartes' Géométrie (1637) until some time after 1750,

For Descartes it was a central part of the technique of solving geometrical
construction problems. He taught that in order to solve a construction
problem one had to derive the algebraic equation which the length of the
required linesegment had to satisfy. The problem was thereby reduced to
finding a geometrical construction of the roots of a given equation. This
was called "to construct the equation". Descartes gave general rules

for constructing equations up to the sixth degree, and he gave suggestions
about how to proceed for higher-degree equationms.

The roots of equations of degree higher than two cannot, in general,
be constructed by ruler and compass. Descartes, therefore, was confronted
with the question of how to construct geometrically those linesegments that
cannot be constructed by ruler and compass. In working out the theory of
constructing equations Descartes gave a well-considered answer to that
question.

Thus the construction of equation emerged as a crucial technique in
geometry. Soon the subject acquired a more independent status and became a
standard approach to the solution of equations, whether or not these
equations had their origin in a geometrical construction problem.

In a process of further de-geometrization, the subject developed into a
collection of algebraic techniques, whose geometrical origin was taken

less seriously or ignored.
For Descartes, the construction of equations was a central part of the

programme for geometry which he presented in his Géométrie. The subject did
not keep the prominent a place in mathematics that it had for Descartes.

Nevertheless, many mathematicians, among them Fermat, Sluse, Wallis, Newton,



Jakob Bernoulli, 1'HGpital, Euler and Cramer, wrote about it, devised new
constructions and debated the criteria with such constructions had to
satisfy. Thus in the seventeenth centurythe construction of equations was
a field of serious interest for mathematical research, and until well into
the eighteenth century it was a respectable standard part of textbooks

on algebra and analytic geometry. Still, after 1750 the subject fell into
oblivion. Indeed, so marked was the loss of interest in the construction
of equations that one may speak here of the death of a mathematical

theory.

I-3
There is few secondary literature about the construction of equations.
1 . . . . . :
Zeuthen ) mentioned it very briefly as a method which was losing its

3)

meaning. Wieleitnerz) and (in somewhat more detail) Boyer™’ discussed it,
stressing mainly the emergence of the idea to consider the roots of an
equation as the points of intersection of the graph of the polynomial with
the X-axis. These writers hardly touched the arguments on method and
motivation which guided the research in this field.

The construction of equations deserves more serious attention from
historians for several reasons. Construction was a crucial concept in
l7th~century mathematics. In solving problems or introducing new mathematical
objects, the solutins and objects had to be constructed. Indeed the words
"construction" and "solution" were almost synomynous - Euler still spoke of
the "construction of differential equations" to mean finding the solution
of differential equations4). The construction of algebraic equations was
the prototype of constructional practice; it covered those cases in which
the object to be constructed was a point in the plane, or equivalently a
length determining that point. The construction of curves and the construction
of differential equations, which were the objective of most of the newly
developed techniques of the calculus in the later 17th century, cannot be
adequately understood without knowledge of this prototype theory of con-
struction.

Moreover, the construction of equations concerned a mathematical problem
of evident importance: how to construct objects (lengths in particular)
which cannot be constructed by ruler and compass. The development and
decline of the construction of equations was in fact the story of serious
but ultimately unsuccessful attempts to find convincing solutions to this
problem. In view of the great importance which ruler-and-compass constructions
have had in mathematics from antiquity to the present day, the discussions

about this complementary question deserve more attention than they have



received until now.

A third reason for studying the subject was already mentioned above;
it concerns the process of de-geometrization which occurred in mathematics
in the 17th and 18th centuries. The historical development of the
construction of equations presents an illuminating example of this
important process.

Finally, it is possible to give a fairly complete description of the
development of the construction of equations in the somewhat more than
hundred years of its existence as a distinct mathematical theory. The
development of separate sectors of science, designated as paradigms,
research programmes or otherwise, has attracted much interest from
philosophers of science in recent decades. The programmatic aspects and
the processes of degeneration that sometimes occur, have been especially
discussed. Both features are clearly present in the case of the construction
of equations. A study of its development may therefore contribute to the
understanding of these processes by providing a fairly fully documented
case-study and by an assessment of how well this particular case conforms
to the patterns which philosophers of science have suggested for the

development of branches of science.

I-4

The arguments of my present study can be summarised as follows. I
shall be interested in the development of the theory of comstruction of
equations from 1637 till ca. 1750, and particularly in the causes of its
initial flourishing and later decline. I shall argue that the principal
factors determining the developments of the theory did not lie in the
sphere of mathematical technique, but rather in the sphere of method and
motivation. Consequently I shall be brief in explaining the technical
aspects of the subject and I shall devote attention especially to the
arguments on method and motivation. These arguments concerned the
acceptability of algebraic methods in geometry and the criteria of
adequacy for constructions of equationms.

Many mathematicians involved in textbook writing or research about the
construction of equations expressed opinions on the motivation of the
subject and on the reasons for preferring certain constructions over
others. I shall claim that these arguments, and the ensuing discussionms,
were an essential part of the mathematical activity concerning the construction
of equations, and that, indeed, the subject declined because on this level
of motivation and method the arguments ultimately failed to carry con-

viction.



The causes of the decline of the subject were not primarily a lack
of success as a theory or a lack of usefulness in applications. Rather,
as the arguments on motivation and method reveal, the subject declined
because it lost sense and meaning. As their geometrical origin was less
and less understood, the constructional procedures came to appear as
meaningless. Old arguments in support of the sense of the subject proved
unconvincing in the long run, better arguments failed to turn up, and so
the construction of equations lost the interest of mathematicians.

I shall support this analysis of the development of the construction
of equations by a detailed study of the arguments on method and motivation,
and I shall deal particularly with the question why the arguments ultimately
failed to be convincing. I shall find an explanation of this failure in
the effects of the process of de-geometrization.

Thus my study will concentrate on a kind of question which until
now, perhaps, has been too little studied by historians of mathematics,
namely the role of motivational arguments in the development of mathematical

theories.

I-5

I structure my further argument as follows: Section II deals with
Descartes' Géométrie, the programme for geometry which he expounded in it,
the origins of that programme and the role of the construction of
equations within it, the results Descartes reached and the questions he left
open. In section III, I formulate explicitly the central problem of the
construction of equations, I explain the techniques that were elaborated
to solve that problem and I discuss a central result on which mathematicians
came to agree. Section IV is a rapid survey of the relevant primary sources,
serving as a sketch of the factual development of the subject. Section V
concerns the arguments on motivation and method that were put forth in
connection with the construction of equations. I return in Section VI to the
reasons of the initial flourishing and later decline of the subject. I add
a few remarks about the implications of this development for general
theories about the development of research programmes and on the role of
constructions in general in seventeenth- and eighteenth-century

mathematics.



II The construction of equations in Descartes' Géométrie

I1-1

. Descartes' Géométrie (1637) is a book with a programmes). Descartes

wanted to reform geometry by providing it with a new and powerful method,
and by clarifying its aims. The method was algebra, the use of equations
to represent relations between known and unknown linesegments. The aim
of geometry was to solve geometrical problems, primarily construction
problems. Descartes thought that aim needed clarification because it was
not clear what precisely was required for the construction of a problem.
In classical Greek mathematics the conviction emerged that con-
structions should preferably be performed by ruler and compass6). But it
was also known (although not proved) in antiquity that certain problems
cannot be constructed by ruler and compass. Mathematicians did not feel
that geometry should renounce such problems and restrict itself to ruler
and compass; consequently they were confronted with the question: What are

the means of construction that we are to allow in geometry in addition to

ruler and compass? According to Descartes this question had not been satis-—

factorily answered and hence the aims to geometry were insufficiently
clear; in his Géométrie he provided an answer to the question.

In order to understand Descartes' answer it is necessary to mention
earlier practices of conmstructing in geometry. Constructions by other
means that ruler and compass were given in classical Greek mathematics,
and two directions can be discerned in the choice of the additional means
of construction. One was to accept a new class of curves as constructing
curves in addition to the straight line and the circle: the conic sections.
We find an example of their use (in fact probably the earliest example) in
Menaechmus' (ca. 350 B.C.) construction of two mean proportionals between

7)

two given linesegments °. Let the given lengths be a and b; it is required
to construct two lengths x and y such that
a:x=Xx:y=y :b.

Menaechmus' construction is as follows (see figure 1):



figure 1

Construct two perpendicular lines £ and m intersecting in 0; construct
points P and Q in one quadrant such that the distances of P to £, P to
m and Q to m are a, and the distance of Q to £ is b. Draw a parabola
through P and O with main axis m. Draw a hyperbola through Q with m and £
as asymptotes. Determine the point of intersection R of the two conic
sections. Draw perpendiculars RS and RT to £ and M respectively. Then
x = RT and y = RS are the two required mean proportionals. (The construction
is easily checked by analytic geometry: the parabola has equation ay = xz,
the hyperbola xy = ab, hence a : x =x : y =y : b.)

It is essential in this construction that Menaechmus, to overcome
the restrictions of ruler and compass, allowed new means of construction;
he allowed to draw conic sections and to determine their points of inter-
section. After Menaechmus, the most common approach to constructions beyond
ruler and compass seems to have been this use of conic sections and their
intersections. At any rate this approach 1is the basis of the classification
of construction porblems which Pappus explained as standard and which was
accepted, with some terminological modifications, until well into the

8)

seventeenth century. According to this classification °, problems constructible
by ruler and compass were called "plane" and those constructible by conic
sections (and not by ruler and compass) '"solid". All other problems were

called "linear", because for their constructions new and more complicated
curved lines had to be introduced.

However, there was also another way of introducing additional means for
solving construction problems, namely to accept a certain standard con-
struction as possible, and to reduce the problems to that construction.

This approach is evident in ;he so-called "neusis" constructions that were
9

developed by Greek geometers” . In a neusis construction it is assumed that

it is possible (see figure 2) to construct a segment AB of given length ¢



figure 2

such that A is on a given straight line £ and B on a given straight line
m and the line AB (extended if necessary) passes through a given point P.
In other words, it is assumed that a segment AB of given length can be placed
between £ and m such that it "verges" towards P. This also explains the name
of the construction, neusis derives from the Greek verb for verging. There
were variants of neusis constructions in which the segment was placed
between a straight line and a circle or between two circles.

Pappus records a neusis construction for the trisection of an arbitrary
anglelo); it may serve here as example of such constructions. Let (see
figure 3) o be the given angle. Make a triangle ABC with ZABC = a and
LBCA = 90°. Draw AF through A parallel to BC. Insert a segment DE of length
2AB between AF and AC such that it verges toward B. Then LEBC = %LABC. (To
prove this, let G be the middle of DE, and draw AG. Then ZABG = LBGA = 2LAEG =
2/DBC, hence LDBC = %LABC.

figure 3 D

These neusis constructions cannot, in general, be performed by ruler and

compass. Pappus describes an instrument, invented by Nicomedes, for neusis

1))

. 1 . i . .
constructions . The instrument (see figure 4) consists of a ruler ST with

figure 4 m




an adjustable pin R ot it. The pin is adjusted such that RS = §. Then

the ruler is made to slide along the given point P while the pin R is
guided along the line m. The movement is stopped the moment that S coinci-
des with £; SR is then the required position for the segment AB.

The instrument can be considered as a generalized compass. In that
sense the neusis constructions are based on allowing a new constructing
instrument in addition to ruler and compass, rather than allowing new
constructing curves (namely the conics) in addition to straight line and
circle, as exemplified in Menaechmus' construction. However, neusis con-
structions can also be interpreted in terms of constructing curves. In the
process of using Nicomedes' instrument the point S describes a curve and
the construction is performed by intersecting this curve with £. Hence
accepting neusis constructions is equivalent to accepting this particular
curve as constructing curve in addition to circles and straight lines. The
curve is a fourth-degree curve, its equation (with respect to m as X-axis
and the Y-axis perpendicular to m through P) is

v’ = @+ 2% - v,
where a is the distance from P to M, and § is the length of the segment.
Nicomedes discussed the curve (which came to be called the '"conchoid of
Nicomedes') in connection with his neusis instrument and proposed that it
should be used for performing neusis constructions.

Pappus explained how neusis constructions can be performed by inter-

2)

section of conicsl (a circle and a hyperbola in this case). It seems

likely that this was known to classical geometers. Still, comnstruction
problems were often reduced to a neusis without further reducing this neusis
to a construction by intersection of conics - this occurs for instance in
Archimedes' works. A neusis apparently was a sufficient construction, perhaps
because its reduction to construction by conics was standard and uninter-
esting, or because a neusis was considered equally acceptable as, or even
better than construction by conics.

Besides these two types of construction, by conics and neusis, others
were considered as well in antiquity. They used special curves, such as the
quadratrix, the cissoid and others, which were often specifically created
for solving a particular construction problem.

Thus the sources about classical mathematics, such as they became
known in the sixteenth and seventeenth centuries, did not provide an un-

equivocal answer to the question how to construct when ruler and compass

are insufficient; but they did suggest that the question was an important



one and that ancient mathematicians had considered it seriously.

II-2

Let me stress that the question which means of construction should be
accepted in addition to ruler and compass is a non-trivial methodological
question. Accepting a new means of construction implies that one singles out
one particular construction problem (as for instance to determine the inter-
section of two conics, or to perform a neusis) and postulates that that
problem is already "solved". There is a danger in doing so; by postulating
too many problems as solved, the solution of the others may become trivial

2a)

and uninteresting1 . Hence in Greek mathematics there was a clear tendency
to introduce as few means of construction as possible. Moreover, mathema-
ticians required that problems should be constructed by the simplest possible
means. In cases where construction by ruler and compass was possible it was

2b)

a considerable errorl to use conics; again, if construction by comics
was possible it was not permitted to use more complicated curves. The
requirement of using the simplest possible means of construction underlies
Pappus’ classification of problems mentioned in the previous section.

There is another reason why accepting new means of construction in
geometry is a non-trivial matter: the arguments for or against accepting
certain means rather than others are "meta-mathematical"™, they cannot be
based on axioms or proved results. For instance (to quote some arguments
from the seventeenth-century debates) one may prefer neusis constructions
because one considers the relevant instrument simpler than instruments for
tracing conic sections. Or one may prefer them because one considers that
the motion involved in tracing the conchoid is simpler than motions that
trace conic sections. Conversely, one may prefer conic sections because
they have a lower degree than the conchoid. Whatever the choice, the
arguments do not prove that it is right; the correctness of the choice cannot
be deduced from geometrical axioms. Even to accept ruler and compass as
fundamental constructing instruments is a choice; it cannot be proved correct,
rather it is a matter of tradition and general consent among mathematicians.
So, in working out theories of construction, mathematicians are confronted
with questions that have to be answered but cannot be answered by deductive
arguments. Hence those mathematicians who are not content with merely

following tradition are forced to consider the "meta-mathematical

motivations for their procedures.



I1-3

For Descartes, geometry was the art of solving geometrical problems,
in particular construction problems. That art, as Descartes could find it
in classical and contemporary works, was in some state on confusion: there
were different opinions on what means of construction were to be allowed
beyond ruler and compass, and also there was no general method to find
best possible constructions. Descartes saw that a programme for geometry
was needed which should clarify its aims and provide general methods. In
his Géométrie he presented such a programme13).

As to the aims of geometry, the programme laid down which constructions
were acceptable and which were not, and it gave an order of simplicity (and
thereby of preference) among the acceptable means of construction. This
clarified the aim of geometrical construction: it was to find, for any
proposed problem, a construction using the simplest possible means.

As to method, Descartes' programme provided a unification through
algebraical techniques. By these techniques all construction problems could
be reduced to a set of standard problems, and for these Descartes set out
to provide standard constructions.

Working out his method further, Descartes explained that, if a con-
struction problem was proposed, one should first give names (letters) to
both the given and the unknown quantities involved. Then the data and the
requirements of the problem should be translated into equations expressed
algebraically in terms of the assigned letters. (Descartes was convinced
that in all truly geometrical problems the resulting equations would be
algebraical, that is, they would involve only the operations +, =, X, i,
and 5’(k>’l, integer). (ALl mathematicians using analytic geometry in the
seventeenth and eighteenth centuries seem to have assumed as a matter of ex-
perience that radicals can alwaysbe removed from equations by reordering the
terms and raising to a suitable power. Hence the equations in Cartesian
geometry were in principle always polynomial equations.) Then the unknowns
should be successively eliminated from these equations; this procedure
should ultimately result in one equation, involving one unknown onlyl3a).
The problem was thereby reduced to solving this equation; that solution
would provide the value of the one unknown, from which the values of the
other unknowns, if necessary, were to be obtained by solving further
equations.

This translation of geometrical properties into algebraic equations
has received much attention from historians of mathematics. The emphasis on

this part of Descartes' programme has tended to obscure the importance of



the other parts. However, merely translating into algebra does not solve
a geometrical problem. For instance, the problem to construct two mean
proportionals between given lengths a and b (cf II-1) is readily reduced

to the equation

x3 = azb
which can be solved algebraically:
X = 3 azb.

But that solution is insufficient for the geometrical problem because it
does not tell how the length x =~& a2b should be geometrically constructed.
Claiming to do geometry, Descartes could not leave it at algebraic solution of
equations. The application of algebra had provided a reduction of problems
to the solution of equations in one unknown; the next step had to be to

give rules how the roots of such equations should be constructed. This
procedure was the "construction of equations". Descartes devoted a
considerable part of his Géométrie to this construction of equations, and

in doing so he had to explain which constructions were acceptable and how
they should be ordered as to simplicity. Descartes stated that constructions
by intersection of algebraic curves were acceptable in geometry and that

the curves used in such constructions should have lowest possible degree.
That is, he introduced algebraic curves as means of construction beyond
ruler and compass, and he ordered these curves as to simplicity by means of
their degree. I shall illustrate his construction procedure by reviewing

his standard constructions for equations of degree < 6 in the next sdctions,
and in section III-4 I shall return to Descartes' opinions on the aims of

geometrical construction and on the proper way to construct equations.

I1-4

Let us suppose that a construction problem has been reduced, by using
algebra as explained above, to an equation in one unknown. Descartes taught
that then first it should be checked whether this equation could be reduced,
that is, whether the equation, say

H(x) = 0,
could be written as

H(x) = U(x).V(x) = 0,
in which the coefficients of U and V could be constructed by ruler and
compass from those of H. Descartes provided some methods for checking thisla).

(The methods in fact only cover the cases that the coefficients in U and V

are rational in those of H.) If such a reduction was possible the problem



- 13 =

was solved by solving either U(x) = 0 or V(x) = 0. Proceeding this way the
problem is ultimately reduced to an irreducible equation.

Descartes now classified problems according to the degree of that
irreducible equation. If that degree was 1 or 2, the roots could be con-
structed by ruler and compass. Descartes gave such a constructionls) and
explained (taking over the classification mentioned in II-2) that such
problems were "plane".

If the degree of the equation was 3 or 4, Descartes asserted that its
roots could not be constructed by ruler and compass. He gave a general rule
by which the roots of any third- or fouth-degree equation could be con-
structed by the intersection of a circle and a parabolal6). Such problems
therefore were "solid"; they required a conic section for their comstruction.

To illustrate Descartes' procedure, let

x3 +px+q=20
be the equation to be constructed. Applying Descartes' rule leads to the

following construction (see figure 5):

FaS
R 2/ P 17
€3 0 1
figure 5 .
S T

Draw a pair of perpendicular axes intersecting in 0. Draw a parabola with

the vertical line as main axis and with its top in 0. Adjust the unit length

such that the parabola has equation y = x2.16). Take OP = 2 ; ! along the
vertical axis, upwards if P ; ! is positive, downwards otherwise. Take

PR = %-horizontal, to the left if %~is positive, otherwise to the right.
Draw a circle with centre R and going through O. The circle intersects the
parabola in another point (or points) S. Draw ST horizontal with T on the
vertical axis. Then ST is the required root, to be taken negative if S lies

on the left of T, positive otherwise. (The proof that the comstruction is
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correct is easy; I leave it to the reader; an analysis by van Schooten of
the construction will be discussed in III-5.) In the case of a fouth-degree
equation Descartes' construction was a bit more complicated as the circle
no longer passes through O.

It was known that solid problems could be constructed by conic sections,
but Descartes was the first to show that all problems leading to third- or
fourth-degree equations could be constructed by circle and parabola only.

If the equation was of degree 5 or 6 Descartes called the problem
"supersolid". For these also he gave a general construction rule]7),
introducing as additional means of construction a new curve, namely the
(later so-called) ''Cartesian parabola". He considered this curve as described
by a special kind of tracing movement (which I shall discuss in III-4). It
is a third-degree curve; its equation is

axy = y3 = 2ay2 = azy + 2a3.

Descartes explained how, given any fifth- or sixth-degree equation, its roots
could be constructed by the intersection of a circle and this curve. The

construction is complicated but basically correct.

II-5
These constructions of equations of degree up to six are discussed in

the third and last book of the GEométrie, and they form the conclusive

results of the treatise. Descartes thought that these constructions showed

sufficiently how one should proceed in constructing equations of higher

degree that 6. He wrote:
"... having constructed all plane problems by intersection of a circle
and a straight line, and all solid problems by the intersection of a
circle and a parabola, and, finally, all that are but one degree more
complex by intersecting a circle by a curve but one degree higher than
the parabola, it is only necessary to follow the same general method to
construct all problems, more and more complex, ad infinitum for in the
matter of mathematical progressions, whenever the first two or three
terms are given it is easy to find the rest. I hope that posterity will
judge me kindly, not only as to the things which I have explained, but
also as to those which I have intentionally omitted so as to leave to
others the pleasure of discovery" (1637 p. 413, tr. Smith & Latham).

In fact, Descartes' legacy was more problematical than he suggested here.

I shall deal with the problems he left open in the next chapter.
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IIT Construction of Equations: the problem and the techniques

III-1

At this point it is necessary to formulate more precisely what was
the problem of constructing equations. This will be done in sections III-2
and III-3. On the basis of that formulation I shall discuss Descartes'
opinions on the proper ways of constructing equations (III-4), the
techniques that were developed after Descartes for finding constructions
of equations (III-5, 6, 7), and a central result concerning the
construction of higher-order equations on which mathematicians came to agree
in the course of about 75 years after the publication of the Géométrie

(111-8).

II1-2
In modern terminology and notation the problem of constructing an

equation can be formulated as follows: Let
xn-l + + ax+a =0
n~1 e 1 0

be the equation which has to be constructed. This means that two constructing

n
HEx) = aXx +a

curves F and G have to be found such that the roots of the equation H(x) = O
occur among the x-coordinates of the points of intersection of F and G. Let
the equations of F and G be

F(x,y) = 0 and G(x,y) = 0
respectively. The x-coordinates of the points of intersection of F and G
are the roots of an equation

RF,G(X) =0,
which is formed by eliminating y form F(x,y) = 0 and G(x,y) = 0. RF,G is
called the resultant of F and G.

There are now two requirements for the curves F and G.

Requirement |
The roots of H(x) = 0 should be roots of RF G(x) = 0, that is,
L]
Rp G(X) = AH(x),

in which A may be a constant or a polynomial in x.

Requirement 2

The curves F and G should be acceptable as constructing curves in

geometrical constructions, and they should be the simplest possible

for the construction of H(x) = 0.
Descartes' construction of
3
x" +px+q-=20,

discussed in II-4, provides a good illustration of the role of the two
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requirements. We have there
H(x) = x3 + pxX + q;
F : the parabola F(x,y) =y - x2 = 0;
G : the circle G(x,y)
_ A 2
RF,G = X + px + gX

y? + (p-Dy + x> + qx = 0;

x(x3 +px + q) = xH(%);

so that requirement | is satisfied. According to Descartes, the circle and
the parabola are acceptable mean of construction, so the first part of
requirement 2 is also satisfied. The sense in which Descartes considered
these curves as the simplest possible for constructing the equation will
be discussed in III-4.

The formulation of requirement 1 shows that, algebraically, the problem
of constructing equations is an inverse elimination problem. In a direct
elimination problem the equations F(x,y) = 0 and G(x,y) = 0 are given and
it is required to eliminate y, that is to determine RF,G' Here H(x) is
given and F(x,y) and G(x,y) have to be found such that RF,G(X) = H(x), or
RF,G(X) has H(x) as a factor. Algebraically, such an inverse elimination
problem seems to have little sense. The required equations F(x,y) = 0, and
G(x,y) = 0 are more complicated than the given equation H(x) = 0 because
they involve two unknowns. Moreover the problem is trivially solvable. A

first solution that suggests itself is to choose
F(x,y) = y - H(x)

and

G(x,y) = v,
that is, to take the graph of H(x) and the X-axis as constructing curves.
There are many other choices possible.

Because requirement ! leaves so much freedom, requirement 2 becomes
crucial. Its function is to restrict this freedom and to give sense to a
problem which purely algebraically has little sense. But the requirement is
not clear: what are acceptable curves and when is a curve simple enough?

It was about these questions that mathematicians argued when debating the
construction of equations. Before discussing requirement 2 further, however,
something must be said about an additional requirement namely that H(x)

should be irreducible,

III-3

There are two ways in which the construction of an equation can
sometimes be reduced to that of two equations of lower degree. One of
these was discussed by Descartes (cf II-4); it occurs in the case that

H(x) can be written as
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H(x) = U(x).V(x),
in which the coefficients of the polynomials U(x) and V(x) can be con-
structed by ruler and compass from those of H(x). The construction of
H(x) = 0 is thereby reduced to that of U(x) = 0 and V(x) = 0. In connection
with the construction of third- and fourth-degree equations Descartes
suggested methods to check if equations are reducible in this sensele).
Later mathematicians took up this topic; Hudde, for instance, wrote a long
treatise (1659) about it.

However, these studies were not pursued in direct connection with the
construction of equations, and, conversely, writers on the construction of
equations after Descartes did not devote explicit attention to the
reducibility of the equations they dealt withlg).

The second kind of reducibility occurs when H(x) = 0 can be written as

H(x) = U(y),
with

y = V(x),
in which U and V are polynomials of lower degree than H. In that case a
construction of H(x) = 0 can be performed in two steps: first construct
U(y) = 0,then, inserting the value of y thus found, comstruct y = V(x).
This kind of reducibility occurs for instance in connection with Cardano's
rule for solving fourth-degree equations, which leads to a sixth-degree
equation in y which is a third-degree equation in yz. In his discussion of

20)

this case Descartes is obviously aware that the sixth-degree equation is
solved in two steps. He does not, however, develop tests for such stepwise
reducibility of equations, nor does he state explicitly that before construc-
ting an equation it should be checked whether such a reduction is possible.
Fermat dealt explicitly with stepwise reducibility in a particular
case, In his Dissertatio he discussed construction of equations of the
form
X' = ap_]b
for certain prime values of n. He chose prime degrees because he wanted to
show his method of construction in the case of an irreducible equation and
he realized that for n not prime the equation would be reducible and con-
structible stepwise. (The primes are in fact the first five "Fermat numbers"
22k + 1, k =0,...,4; cf IV-2 where I discuss these arguments in more detail.).
De la Hire gave a passing reference to stepwise reducibilityzoa. Allother
writers onthe constructionof equationsdid not separatelyconsider the case inwhich

the equations were reducible in any of the two senses discussed above. I shall

quote this fact in V-] as a sign that from the very beginning the motivation



of the subject in the actual practice of geometrical construction was not

fully understood.

III-4

I now return to requirement 2, on the acceptability and the simplicity
of the constructing curves. In their discussions of this requirement most
later writers based themselves on what Descartes had written in the Géométrie.
According to Descartes, curves were acceptable in geomety if they could be
traced by certain continuous motions. In particular he claimed that, if two
acceptable curves are made to move with respect to each other, their
motions being connected by certain linkage mechanisms, then their inter-
sections trace new curves that are also acceptable in geometry. For instance,
the "Cartesian parabola', used for the construction of fifth— and sixth-degree
equations, is traced by the combined motion of a straight line and a parabola

21)

as follows (see figure 6): IH

7N\

figure 6

\8

The parabola AVB moves in vertical direction along its axis. The straight
line PL turns around the fixed point P and is linked to the parabola in such
a way that its intersection L with the axis keeps constant distance from the
vertex V. The intersections I then trace the "Cartesian parabola" PIK,HIJ.
As the parabola itself is acceptable in geometry, the "Cartesian parabola"
is also acceptable.

Which curves are traceable in this way and thereby acceptable in
geometry? In the GEométrie Descartes came to the conclusion that all algebraic
curves can be so traced. That conclusion is by no means evident. I have
discussed Descartes' arguments on this issue, and their relation to his

overall programme for geometry, in my 1981. For my present purpose it
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suffices to state that the readers of the GEométrie could conclude that
all algebraic curves were acceptable in geometry as constructing curves,
and that this acceptability had somehow to do with the possibility of
tracing these curves by a continuous motion. Most mathematicians followed
Descartes in accepting all algebraic curves as geometrical and did not
think much about the reason for this. The first part of requirement 2 was
therefore considered satisfied if F and G were algebraic, i.e. if F(x,y)
and G(x,y) were polynomials in x and y. The result of this was that,
algebraically, the construction of equations became a theory about
polynomial equations.

On the second part of requirement 2 Descartes had been more explicit:
a constructing curve is as simple as possible if it has lowest possible

22)

degree "’ . As I shall show (cf V-8), this interpretation was not generally
accepted, but it did guide most of the studies on the construction of
equations.

To restrict the constructing curves for an equation to algebraic ones
of lowest possible degree still leaves freedom for the choice of the curves.
Descartes himself had made definite choices: he constructed third- and fourth-
degree equations by cicle and parabola (any pair of conics would have
satisfied the requirements), and fifth- and sixth-degree equations by circle
and Cartesian parabola. He had written that "it is only necessary to follow
the same general method to construct all problems, more and more complex,

2a) (cf. II-5). It seems likely that Descartes had the

ad infinitum"2
following general method in mind: Equations of degree 2n-1 and 2n belong to
the same class; they should be constructed by the intersection of a curve

Fn of degree n and a circle. F, is the parabola, F, is the Cartesian

parabola. Fn is generated fromZFn_1 by a motion anilogous to the motion of
FZ which generates F3.

This interpretation of Descartes' programme can be found for instance
with Kinckhuysen, de 1la Hire and Jakob Bernou11i23). It seems that none of
the mathematicians involved actually tried to work out this programme. The
reason of this was probably that onme felt that the requirement of lowest
degree was better satisfied it F and G were of approximately the same degee,
than if, as Descartes suggested F was of degree n and G (the circle) of
degree 2. Also Descartes had not explained why he choose the Cartesian
parabola, with its particular generation from the parabola, as F3, so that
choice remained unconvincing because of its arbitrariness.

In his Dissertatio Fermat suggested that to construct equations of
degree 2n-1 Descartes needed a curve of degree 2n-1, and that in the general

24)

case he could not do better . This interpretation is clearly wrong
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(Descartes' construction of fifth- and sixth degree equations contradicts
it).

These, then, were Descartes' opinions on the requirements for comstructing~
curves as they were formulated in the Géométrie and interpreted by later
mathematicians. I shall return to the further debates on these requirements

in III-8 and in V.

I1I-5

Descartes did not explain in his G&ométrie how he had found the
constructions which he presented for equations of degree up to six. He did
give proofs that they were correct, but from these proofs the method of
finding the constructions was not obvious. Later writers developed and
published techniques to find, for a given equation H(x) = 0, the equations
F(x,y) = 0 and G(x,y) = O of the constructing curves F and G. It will be
useful to explain these techniques separately.

The techniques can be distinguished into three types, which I
shall call "undetermined coefficients techniques", "insertion techniques"
and "geometrical techniques" respectively.

The undetermined coefficients technique starts with choosing the two
constructing curves F and G, while leaving the parameters of these curves
undetermined. Then, either algebraically or by geometrical arguments with
respect to a figure, one derives the equation for the x coordinates of the
points of intersection of these curves. The coefficients in this equation
depend on the parameters. These parameters are then adjusted such that the
coefficients coincide with the coefficients in the proposed equation H(x) = O.
The values of the parameters thus found determine the constructing curves F
and G.

As an example of this technique I paraphrase the note which van Schooten,
added to Descartes' conmstruction of thjird- and fourth-degree equations by
parabola and circle in the 1659 Latin edition of the Géométrie. Explaining
how such constructions can be found, van Schooten argued as followszs):

Let a fourth degree equation be given which we want to construct by a circle

and a parabola (see figure 7). The parameters involved are: the latus rectum

a of the parabola, the coordinates AD = b and BE = ¢ of the centre E of the

circle, and the radius d of the circle. Let x = GK be the ordinate of a
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point of intersection G; then AK = xz/a. We have

a? = BG? = eM® + M6 = (x%/a - b)% + (x + ).
This gives the following equation for x:
x4 + (a2 - Zab)x2 + 2a2cx + az(b2 + c2 - d2) = 0.

Hence to construct a fourth—degree equation in this way we must first

remove its second term (which can be done) and write the equation as
4 2 2 3
X —apx +aqx-ar=0,

(a is used as unit). We then adjust the coefficients:

b=4Ga+p), c=4ad=v(da+ 0%+ ()2 + ar.

These values determine the constructing curves (the parabola and the circle);
in particular they show how the centre and the radius of the circle can be
constructed. Van Schooten stated (correctly) that Descartes' rules for

constructing third- and fourth-degree equations conform to these formulas.

ITI-6
The second type of technique, that by insertion, can be described as

follows: Given H(x) = 0, one chooses for F a curve whose equation is of the
form

£,(x) = £,(x,y)
(the most common approach is to choose xk = y). Then one "inserts" this
equation in H(x) = 0 by locating terms or factors fl(x) in H(x) and replacing
these by fz(x,y). The result is an equation

glx,y) =0
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of a curve G. F and G are constructing curves for H(x) = 0. In case F or
G are not satisfactory, one may perform the insertion in a different way

to arrive at mew curves Gi and one may form combinations
G(x,y) = aF(x,y) + zBiGi(xay) = 0.

Then one chooses any two of the curves thus found which have the required
form.

This technique was first described by de la Hire in his 1679. One
example he gave there26) is as follows: Let the proposed equation be

x6 + azx4 - asz3 - azbcx2 - azbcd2 = 0.

De la Hire takes for F the equation

ay = X,

and inserts in two ways, finding equations G1 = 0 and G2 =0

34 ay? B3 _be2 e g
a a a
g2+ ay? - bay - 2P - 2% -0,

these are curves of the "second kind" (i.e. third degree curves). De la Hire
notes that by subtracting 02 = 0 from G1 = 0 one gets an equation G3 = 0,
namely

ay - x2 = 0,
which is in fact the original F, the equation of a parabola. The proposed
sixth-degree equation can now be constructed by any two of the curves Gi;
if one wants to have lowest possible degree ome should use G3 and one of the

others.

I1I-7

In the third, geometrical, technique for constructing equations the
equation is interpreted as a geometrical problem. For a given equation in
x, the second unknown y is introduced in such a way that the equation
becomes equivalent to two or three simultaineously valid proportionalities
between linesegments that are linear in x and y. Each proportionality then
defines a conic section and these can serve as constructing curves. The

method was devised by Sluse who used it in his Mesolabum (1659) and explained

it in the second edition (l§§§) of that book. He saw the method as a
generalization of determining mean proportionals (Mesolabum was the term
used in antiquity to designate instruments for constructing mean
proportionals.) In the case of two mean proportionals x and y between a
and b27), we have (cf II-1)

a:x=x:y=y:b.

The three proportionalities each define a conic section:
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The three porportionalities each define a conic section:

a:x=xX:y ay= x2 a parabola
a:x=y:b xy=ab a hyperbola
X:1y=y:b y2 = xb a parabola,

any two of these can be used as constructing curves.

Sluse was able to work out similar methods for all third- and
fourth-degree equations. To illustrate them I give his constructionzs) of
the third degree equation

3
X = px + q.

He rewrites the equation as a proportionality

/p ¢ x2 x @ (x + %).

Introducing y as the mean proportional between x and x + %;we can write

pixXx=x:y=y: (x+ %9,

which gives three conic sections

x2 = /By a parabola
y2 = x(x + %J a hyperbola
xy = /p(x + %J a hyperbola,

any two of which can be usedas constructing curves for the equation
3
X = px + q.
The method has the drawback that it cannot be extended so as to serve

for equations of degree greater than four.

III-8

The techniques mentioned above were used to find the best constructing
curves for a given equation. This meant, for most of the mathematicians
involved, the constructing curves with lowest possible degree. This led to
a general question, namely, given an equation, what are the lowest possible
degrees for its constructing curves? In the course of the development of
the subject there grew a consensus among mathematicians about this question.
For the sake of clarity I shall state the essence of that consensus in the

form of a theorem, and refer to it as the "main result". It is as follows:

"Main result"

Let H(x) = 0 be an equation of degree n. Let k be the smallest integer
such that (k - 1)2 < n Skz. Distinguish two cases: (k - 1)2 <n<k(k-1)
(case a), and k(k - 1) <n <§k2 (case b). It is possible to comstruct

the equation H(x) = 0 with curves F and G, of degrees k and k - 1 (in
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case a) or k and k (in case b). Moreover, as far as the degrees of F
and G are concerned, this is the best possible choice.
The degrees in the best possible constructions, according to this "main

result" can therefore be tabulated thus:

degree of H(x) = O degree of F degree of G
2 2 ]
3, 4 2 2
5, 6 3 2
7, 8, 9 3 3
10, 11, 12 4 3
HEPEP G 4 4
750000740 5 4
etc.

Thus in the best construction of an equation of degree n, the degrees of
the constructing curves are integer approximations of vm.
The "main result" occurs explicitly in print for the first time in

29)

1707 in 1'HOpital's Traité ~’. Newton had formulated it as early as 1665
in a manuscriptso) (to be discussed in more detail in V-4), which, however,
remained unpublished at the time.

The acceptance of the "main result" was based on a mixture of argument,
conviction and experience which was usually not stated explicitly. For my
later discussion of the development of the theory of construction of
equations it will be useful to make these arguments, convictions and

experience explicit here. I shall separate them in different steps and

comment upon them.

Step 1
If F(x,y) and G(x,y) are polynomials of degree p and q respectively,

the equation Rp G(x) = 0 resulting from the elimination of y from
>
F =0 and G = 0, has degree pq.
This statement has later become known as the "theorem of Bezout'", after

E. Bezout who, in his 1779 gave the first reasonably satisfactory proof of

31)

it 7. However, it was already known in the 17th century as a matter of

32)

experience . Apparently it was considered so evident that only in the

18th century were the first attempts made to prove the theorem, for

33)

instance by MacLaurin, Euler and Cramer . Earlier writers on the con-

struction of equations all considered step 1 to be obvious.
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Step 2
If H(x) = 0 has degree n it cannot be constructed by curves the

product of whose degrees is smaller than n.
If one disregards (asmost writers on the construction of equations did,
cf III-3) the possibility that H(x) = 0 is reducible and thereby
constructible by lower-degree curves, step 2 is an obvious consequence of

step I,

Step 3

If the degrees p and q of F and G have to be chosen lowest but such

that pq 2 n, and if k is as in the "main result", then the best

choice is, in case a: p =k, q = k - 1; and in case b: p =k, q=k.
Note that here a further interpretation of the requirement of lowest degree
is introduced, namely that the degrees of F and G should be approximately
equal. This interpretation underlies the studies of Fermat and de la Hire
(cf IV-2). Although some mathematicians questioned this interpretationm,

it was mostly accepted.

Step 4
If the degrees p and q are chosen according to step 3, F and G must
be chosen such that RF,G = x(pq - n)H(:v:).
That is, if pq > n the factor A(x) (cf III-2) is chosen to b a power of x.
This technique of increasing the degree of H(x) by introducing new roots 0
was applied already by Descartes (¢f II-4 and III-2); before construction,
a third degree equation is transformed into a fourth -degree one, and a
fifth-degree equation into a sixth-degree one. In fact, this technique is
behind Descartes' classification of equations into classes each consisting

of equations of degree 2n - 1 and 2n.

Step 5
With H, n, k, p and q as in step 3, it is actually possible to find
constructing curves F and G, of degree p and q. That is, it is possible
to find polynomials F(x,y) and G(x,y) of degree p and q such that
their resultant RF,G is equal to x(pq - n)H(x).
Disregarding the special choice of p and q, this statement is a kind of
inverse of Bezout's theorem (step 1). It says:
For every polynomial H(x) of degree pq there exist polynomials F(x,y)

and G(x,y) of degrees p and q respectively such that Rp ¢ = H.
?
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The conviction that this is true arose in the seventeenth century as a
matter of experience; if the degree of H is not too high it is indeed
very easy to find such F and G. 1'HOpital gave an attempt to prove the

35)

it in the special case of the construction of a 20th-degree equation by

statement™ /. The idea of that proof is a dimension argument. He formulated

curves of degrees four and five, but he certainly meant it more general.
His argument can be summarised as follows:

In a polynomial F(x,y) of degree p there are (p * l£(p *2)

coefficients. Hence chosing constructing curves F and G of degree p and q
respectively involves the free choice of 4{(p + 1)(p + 2) + (q + 1)(q + 2)}
coefficients. 1'HBpital claimed that "by the rules of algebra" it is
certain that the resultant of F and G is of degree p.q, and therefore
involves pq + | coefficients. Now pgq + 1 < 4{(p + 1)(p + 2) + (q + )(q + 2)},
so if we want to adjust the coefficients in F and G such that the resultant
becomes equal to a given equation H = 0, we have more coefficients free to
choose than coefficients to adjust, hence, 1'HOpital stated without further
argument, this will be possible.

The proof is remarkable for several reasons. First of all it is a
general, non-constructive existence proof. This is a type of argument
which at the turn of the seventeenth century was seldom made explicitly,
Then it is notable that 1'HSpital took for granted both Bezout's theorem
(step 1) and the solvability of a system of equations in which the number
of unknowns is larger than the number of equation. Both apparently were
facts of experience which, for the algebrists of the time were self-evident.

This proof was considered satisfactory by later writers on the subject
(Euler, Cramer cf. V-11). It is, in fact, insufficient, because it is not
at all clear that in this case the system of equations for determining the
coefficients is actually solvable. In fact, the inverse of Bezout's theorem
is a by no means trivial statement. I do not kmow if it is true or not; it

. . 36
seems that the question up to now has not been studied ).



IV A survey of the sources

IV-1

Having summarised the main mathematical themes concerning the con-
struction of equations in the previous chapter, I shall now give a rapid
survey of the relevant publications from the 1640's to the 1750's. The
survey is meant as a chronological sketch of the development of the subject,
listing the writers and works involved, and the main ideas that were put
forth. The sketch should serve as background information for my discussion
in Chapter V of the arguments on motivation and method concerning the
construction of equations.

I shall not give a complete list of works dealing with the comstruction
of equations; in particular I have left out works that only treat linear
and quadratic equations. The list includes at least the sources that were
considered important at the time, as far as can be judged from contemporary

references to them.

Iv-2

Twelve years after the publication of the Géométrie, van Schooten
brought out a Latin translation of Descartes' text with annotations.

This was the Geometria (Descartes 1649). As to the construction of equations
this edition did not offer more than the Géométrie itself had done; van
Schooten stressed the importance and the novelty of Descartes' constructions,
but he did not comment upon them, in particular he did not explain how they
were found.

In 1657 Wallis published a treatise on proportions37) in which he also
discussed the cubical parabola, i.e. the curve with equation y = x3. He
explained how third-degree equations can be constructed by the intersection
of this curve and a straight line. (The idea is to construct x3 +px+q=0
by intersecting y = x3 with y + px + q = 0.) Wallis discussed the merits
of this construction as compared with construction by conic sections and he
hinted that the approach could be extended to higher-order equations.

Two years later appeared the first work to devote considerable space
to the construction of equations up to degree four by all sorts of

combinations of conic sections. This was Sluse's Mesolabum (1659) in which

many such constructions were geometrically presented and proved, but no
explanation was offered of how they were found. Sluse promised to explain
this later, and he did so in an appendix to the second edition of Mesolabum
(1668) .

In the same year 1659 the first volume of van Schooten's much enlarged

edition of the Geometria appeared (Descartes 1659). Van Schooten added new
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edition of the Geometria appeared (Descartes 1659). Van Schooten added new
notes, and the two-volume edition (the second volume appeared in 1661) con-
tained supplementary treatises by van Schooten himself and other mathema-
ticians. Volume 1 constained the first explicit analysis of a general method
to construct equations up to degree four, namely in van Schooten's note

in which he deduced Descartes' circle-and-parabola construction by an
undetermined coefficient method; I have explained that method in III-5.
Moreover, van Schooten added several variant constructions of equations, for

38)

instance one (due to Hudde) by a hyperbola and a circle” ', and a con-

struction for third-degree equations by parabola and circle for which it was
not necessary first to remove the quadratic term39).

The 1659/1661 Geometria edition was in fact a survey of the most
advanced and recent results in Cartesian geometry, together with intro-
ductory treatises. On a more elementary level Kinckhuysen published in the
years 1660~1663 a series of textbooks in Dutch which formed an introduction

to Cartesian geometry. They were Grondt der Meetkonst (Fundament of Geometry)

(1660), Algebra (1661) and Geometria (1663). In the two geometrical works

Kinckhuysen discussed construction of equations. In Grondt der Meetkonst

the undetermined coefficient method is used to find constructions by
parabola and circle, cubical parabola and circle, Cartesian parabola and

40)

circle and even higher order curves and circles . Kinckhuysen here claims

explicitly that Descartes had found his constructions by means of undetermined

coefficients. In his Geometria Kinckhuysen treated some geometrical problems

that lead to third degree equations which he constructeg in Descartes' manner
1

by parabola and circle or by another conic and a circle 7.

In 1679 Samuel de Fermat published the Varia Opera Mathematica of his

father Pierre de Fermat, who had died in 1665. One of the studies contained
in that volume is of special interest for the construction of equations,
namely the Dissertatio. This short work (it takes six pages in the Varia
Opera) had been circulating in manuscript before. Its date of writing is not
known precisely; recent studies have put its origin in the years 1641-4342).
In the Dissertatio Fermat gave a general method to find, for an equation of
degree 2n, constructing curves of degree n. The method used the technique of
undetermined coefficients. Fermat saw his results as an improvement on
Descartes', who, he thought (wrongly, as I have noted in section III-4),
would always need a curve of degree 2n - 2 for constructing an equation of
degree 2n - 1 or 2n. Fermat went on to deal with special equations which he

constructed with curves of even lower degree. In particular he considered

equations
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(the root x is the first of n mean proportionals between a and b) and
found, for certain values of n, constructing curves of degree approximately
equal to n. In a sequel to this argument Fermat introduced the (later
so-called) Fermat numbers 22" + 1, which he claimed to be prime (wrongly,
as Euler was to find later), and considered equations

22 1, a2 b.

He showed that these equations can be constructed by curves of degree
2277 1, and he claimed that they are irreducible because their degree
is prime (cf III-3). He concluded that in this way

"We can construct a problem whose degree has to the degree of the

curves that serve its solution a ratio greater than any given ratio"

(Dissertatio p. 131)

a result by which Fermat meant to show how feeble were Descartes' results
on the construction of equations.

In the Dissertatio we find a number of ideas which later were
incorporated in what I have called the "main result" (cf III-8): the
degrees of the constructing curves should be approximately equal; the
best result is to have these degrees approximately equal to the square
root of the degree of the equation. Fermat showed little interest in the
geometrical motivation of the subject; he accepted without question that
the degree is the measure of the simplicity of a curve and presented his
further arguments as purely algebraic manipulations.

In the year in which Fermat's Dissertatio appeared in print, de la

Hire published his Nouveaux Elemens (1679). The book contained a substantial

. . . : 43 .
section called La construction des equations analytiques ), which can be

considered as the first textbook treatment of the construction of equations
of arbitrary degree. De la Hire had earlier received, through Huygens, a
copy of Fermat's Dissertatio, to which he referred. De la Hire used the
method of insertion which he explained at considerable length. He derived
by that method the constructions of equations of degree up to four with
conic sections; he worked out the case in which one of the conic sections
is prescribed, and he stressed that one of the constructing curves should
preferably be a circle.

For equations of arbitrary degree de la Hire explicitly formulated the
programme to find constructing curves of lowest possible degree. With the
insertion method he found better results than Fermat (whose general method

he mentioned), but the degrees in his construction were not yet as low as
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. % . n+l .
in the "main result". For the equations x = anb, which Fermat had

constructed for special n, de la Hire presented a general construction

in which the degrees do conform to the requirements of the '"main result”.
Rules for constructing third- and fourth-degree equations by a para-

bola and a circle were called "Baker's rules” in the eighteenth century.

This was because Thomas Baker had published such rules in his The

geometrical key or the gate to equations unlock'd (Baker 1684). These

rules did not require that the second term of the equations should first

be removed. Baker considered this a great advantage over Descartes' con-
struction. Moreover, he treated separately all the different cases that
arise as to whether the coefficients in the equations are positive,
negative or zero. In each of these cases he spelt out the construction rule
explicitly.

Baker's Geometrical key is a rather grotesque piece of mathematical

writing. It is both in English and in Latin. Baker wrote with a strange
mixture of modesty about his mathematical abilities and exaltation about
his results. He was an amateur mathematician and in distinguishing all the
different cases according to the signs of the coefficients he was decidly
oldfashioned. Foreseeing critique on the prolixity of his treatment he
wrote that his book was meant for beginners, and

"Are not Homer's Iliads written in capital letters and enlarged into

a Folio, better legible (and therefore the more intelligible) and

John Tredescant's common silver house-spoons more useful, than when

the one are crammed into a Nut-shell, and the other into a cherry-

stone." (Baker 1684, preface)
The passage is a fair specimen of his style. Nevertheless the book acquired
a prominent place in mathematical literature. Wallis referred to Baker's
work already in his Algebra of 1685. Sturm and Harris explained and praised
Baker's rules, Halley and an anonymous published proofs of the rules,
Hermann criticised them, Wolf and Zedler mentioned them, and as late as

1748 Euler still wrote of the "well~known rule of Baker".44)

1v-3

After Sluse's Mesolabum, de la Hire's textbook-version of the con-
struction of equations, and Baker's rules, the construction of equations
of degree up to four became a standard topic in expository writings on
algebra and analytic geometry. Sections on the subject can be found in the

following books: Wallis' Algebra (1685 1693), Sturm's Mathesis enucleata

(1689, tr. engl. 1700), Ozanam's Dictionaire Mathématique (1691), and
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Nouveaux elemens d'algdbre (1702), Harris' Algebra (1702) and Lexicon (1704),

Guisnée's Application de 1'algébre 3 la géométrie (1705), 1'HGpital's

Traité (1707), Newton's Arithmetica universalis (1707) and Reyneau's

Analyse dimontrée (1708) - to name only works from the two decades around

1700, and the list in by no means exhaustive44a).

In general, these writings did not bring much new to the technical
mathematical side of the subject. By 1710, the theory of construction of
equations up to degree 4 had more or less reached its definitive form. It
offered algebraic techniques, namely insertion and undetermined coefficients
(geometrical techniques were mentioned less often), to find constructing
curves for any second-, third- or fourth-degree equation. There was some
preference for construction by a parabola and a circle, but most writers
discussed variant constructions by any combination of conic sections. There
were a number of side-issues, as for instance construction with one
prescribed conic section, construction by means of the cubical parabola
or by means of the conchoid. I shall return to the motivation of these
side-issues in section V. Although the techniques to find the constructing
curves were entirely algebraical, the subject kept something of its
geometrical setting, witnessed by an interest for the position of the
curves in the plane and the preference for circle and parabola con-
structions., It is noteworthy that the idea of using the graph of the
equation (cf V~10) did not occur in these writings on the construction of

lower~-degree equations.

V-4

Most writers mentioned in the previous section did not discuss the
construction of equations of degree higher than four. This topic came to
constitute a separate part of the construction of equations. As we have
seen, Fermat and de la Hire had attacked the problem of constructing
equations of arbitrary degree. 1'HOpital took up the subject in his

Traité analytique des sections coniques (1707); his treatment was followed

by most later writers.

In the long (70 pages) ninth book of the Traité&, entitled De la con-
45)

struction des egalitez "7, 1'HOpital first gave a by that time customary

account of the construction of lower—degree equations, including Descartes' con-
construction of fifth and sixth-degree ones. For higher-degree equations he
first explained the insertion method, and derived the constructions, as de

la Hire had done earlier, by taking y = x* as first constructing curve. He

showed that the constructing curves thus found have a too high degree. For
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instance for a sixteenth-degree equation de la Hire's method gives curves
of degree four and five, whereas one would think that two fourth-~degree
curves could be found. 1'HOpital then stated the "main result" and gave
the proof by a dimension argument which I have skteched in section III-8.
1'HOpital also mentioned the possibility of constructing an equation H(x) = a
by intersecting the graph y = H(x) with the horizontal line y = a (I shall
return in V-10 to this use of the graph in constructions of equatiomns).

Books on algebra and analytic geometry that appeared after 1'Hépital's
Traité occasionally mentioned the construction of higher-order equations.

Wolff devoted some space to it in his Elementa matheseos (1743) for instance.

There is also an interesting example of a university-based study of the
construction of equations. This is a dissertation written by J. Kraft
while studying at Kopenhagen university, and published in 1742 (Kraft 1742).
It concerned mainly lower-degree equations, but it did containt a statement
of the "main result", though without proof. The book brought nothing new
and it treated the subject without elegance. But, as a student's work, it
did show competence in handling an advanced mathematical subject.

In the 1740's, Euler still considered the subject important enough to

devote a full chapter of his Introductio in analysin infinitorum (1748)

46)

to the construction of equations . He gave the subject a new place with
respect to other topics of algebra and geometry, namely as an application
of the theory of intersections of algebraic curves. He had treated this
theory in the previous chapter, which also contained methods of elimination.
Thus Euler formulated the main problem of the construction of equations
explicitly as an inverse elimination problem. He treated the construction of
lower-degree equations by an undetermined-coefficient method; for higher-
degree equations he explained insertion, and gave, without proof, the "main
result".

The last major algebra book in which a substantial section was devoted

to the construction of equations was Cramer's Introduction a l'analyse des

47)

lignes courbes algebriques (1750). Like Euler, Cramer dealt with the subject
after having treated elimination theory. He explained the insertion method
for finding constructing curves; he quoted 1'HOpital's formulation of the
"main result” but he did not offer a proof. The last part of his chapter on
the construction of equations was devoted to the graphs of polynomials H(x)
and their use in estimating the positions of the roots of H(x) = 0 on the
X-axis. Cramer also added comments on the various procedures for constructing
equations. The gist of the comments (to which I shall come back in V-8) was

that mathematicians had different opinions on what the best constructions are,
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but that the whole enterprise, apart from studying the graphs of polynomials,
had little use.

Iv-5

Cramer's treatment of the constructionof higher-degree equations epit-
omizes the final state of the subject. The construction of equations was
recognized as an inverse elimination problem, thereby it had become a purely
algebraic technique. As method insertion was used. There was the conviction
that construction according to the requirements of the "main result" was
possible, but the requirement that the constructing curves should be of
lowest possible degree was questioned. Indeed the motivation of the whole
subject was in doubt.

After 1750 the construction of equations quickly fell into oblivionm.
Apart from reprints of earlier works, no books appeared that devoted
considerable space to it. For some time the subject was still mentioned
in lexica and encyclopedia48), but even there the suggestion was given that

it was no longer of contemporary interest.
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V_The arguments on motivation and method

V-1

I now come to the arguments on motivation and method that were put
forth by mathematicians with respect to the construction of equations.
From these arguments will appear the causes for the flourishing of the
subject and for its later decline and death.

For Descartes, the construction of equations was the necessary final
step in his programme for dealing with construction problems; it was the
general method for finding the constructing curves. Its importance was
thereby evident. In later textbooks on algebra and analytic geometry we
often find Descartes' programme formulated explicitlyag): give names to
the known and unknown quantities, derive equations, eliminate to get one
equation in one unknown, construct that equation by the intersection of
curves., Some mathematicians even considered these constructions as the

main raison d'étre of curves. Newton, for instance, wrote in his treatise

on the classification of third-degree curves: "the use of curves in
geometry is that by their intersection problems can be solved"; that
opinion was expressed more often in the contemporary literatureso).
Nevertheless, later presentations of the construction of equations
showed a decreasing attention for the original geometrical motivation of
the subject. For instance: Descartes had stressed the necessity first to
check whether the equation to be constructed was irreducible, because other-
wise one would not find the simplest possible geometrical construction.
Later writers usually did not mention this requirementSI). Descartes had
given explicit attention to the way the constructing curves were actually
traced. Most later writers were satisfied when the equations of the con-
structing curves were known and did not consider how the curves could be
traced in actually performing the construction. That is, they considered
the constructing curves merely as loci, to be defined by an equationsz).
This conception of the constructing curves as loci could be misleading,
as is shown by a curious argument of de la Hire. In an article (de la Hire
1712) on the construction of loci and of equations he claimed that
quadratic equations can be constructed by straight lines only, without
using a circle. Hir arguments was as follows: A quadratic equation can be
considered as a special fourth-degree equation, it can therefore be con-
structed by the intersection of two conics. In this case one has much free-
dom in choosing the conics and one can choose them as degenerated hyper-

bolas, that is, pairs of straight lines. Thus the equation
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ax2 +bx+c=20

can be rewritten as

(x - 2)° = 1(b2 - 4ae),

and as constructing curves one can choose

b .2 2
F:(X-Z) =Y

that is, a pair of straight lines, and

G : y2 = %(b2 - 4ac),
another pair of straight lines. Each of these lines is a locus of the first
degree, so, if we chose one line out of each pair, we have constructed the
quadratic equation by two loci of degree one. De la Hire presented this as
a paradoxical result: apparently a compass was not necessary to comstruct
guadratic equations.

Now de la Hire knew that the compass is necessary for actually drawing
these straight lines in the plane: one has to draw perpendicular axes, one
has to mark off lengths along them and one has to determine the length
34 b2 - 4ac ; all these operations require a compass. De la Hire admitted
this, but did not accept it as objection to his argument. For him this use
of the compass somehow did not belong to the construction of the equation
proper. He wrote "one does not use it (i.e. the circle) as a locus in the

2a)

construction"5 and, in his view, Descartes' method only required that
the loci are of lowest possible degree.

The argument shows that de la Hire did not fully understand
Descartes' original geometrical motivation of the comstruction of equations,
and that he was prepared to consider it as a purely formal manipulation of

formulas.

V-2

Those mathematicians who did understand Descartes' programme encoun-
tered other difficulties. One of these was that the conviction of a strict
correspondence between algebra and geometry, which underlay Descartes'
approach, proved doubtful. One example of how mathematicians came to question
this correspondence occurred in van Schooten's commentaries in his latin
editions (Descartes 1649, 1659) of the Géométrie. It concerned Descartes'
statement that if a problem leads to an irreducible third-degree equationm,

then that problem is '"solid", that is, it cannot be constructed by ruler
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and compass. Van Schooten saw a difficulty here which he illustrated by

53)

cerned the construction of a normal to a parabola through a given point

means of an example provided by Christiaan Huygens . The example con-

outside the parabola (see figure 8):

figure 8

Let a parabola be given with vertical axis and top in 0. Let P be a given
point outside the parabola with coorinates a and b as indicated in the
figure. It is required to find the line through P which cuts the parabola
perpendicularly. Let PQ be this line, with Q on the parabola. Let Q have
coordinates x and y and let the unit be chosen such that the parabola has
equation y = xz. Huygens calculated, using the known tangent-properties of

the parabola, that x must satisfy the third-degree equation

3

x+ (3 -ax-==0

| o

This equation is irreducible, and therefore according to Descartes' recipe
for the construction of third- or fourth- degree equations (in fact this is
precisely the case discussed in II-4) one needed in the comnstruction a
circle and the parabola y = x2. But in this case that parabola was already
given, so one actually only needed a circle, and therefore the problem
might with equal right be called "plane". Van Schooten asserted that indeed
every construction problem in which a conic section is given and which leads
to a third- or fourth-degree equation, can be constructed by using the given
conic section and a circle, and consequently could be called "plane". (The
assertion is true, it can be proved by algebraic manipulations.) Van
Schooten ultimately decided to keep to Descartes' classification on the
basis of the equation, and decided to call these problems "solid"; Huygens,
however, kept his doubts.

Indeed doubts were justified because, contrary to the belief under-

lying Descartes' programme, here the geometrical classification of problems
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as to their constructibility does not coincide with the classification of
the corresponding equations as to their degree. Geometrically, the

problem is plane, algebraically it is solid. The reason of this discrep-
ancy is that essential information can be lost when a construction problem
is translated, in the manner prescribed by Descartes, into an equation. In
the case of the perpendicular to the parabola, the lost information is the
fact that the parabola is given.

Van Schooten's and Huygens' arguments did not give rise to much dis-
cussion among mathematiciansg. However, throughout the seventeenth and early
eighteenth centuries one finds echoes of these arguments in the treatment
of construction problems in which certain curves are given. Several math-
ematicians explicitly tried to use the given curve as constructing curve,
aiming in that way to choose the other constructing curve as simple as

54) and Newtonss)

possible. Thus van Heuraet put much algebraical effort
into finding a construction of the points of inflexion of a conchoid,
using only a circle and the conchoid itself. And, in another field of

56)

research, 1'HOpital found a construction of the arc-length of segments
of the logarithmic curve by using only circles, and the logarithmic curve
itself; and his construction was praised precisely because of this con-
structional simplicity and economy. In both cases the calculations can only
be understood in the context of geometrical constructions; if one only sees

the algebraical side of the problem, the efforts do not make sense.

V-3

Jakob Bernoulli also expressed doubts about the direct connection
which Descartes had supposed between geometrical construction and algebraic
calculation. He criticised Descartes' procedures in the notes which he
wrote for the 1695-edition of the latin text of the Géométrie (Bernoulli
1695). He formulated his critique with respect to a special construction
problem, namely: given a triangle, to find two perpendicular straight lines
which divide the triangle in four equal parts.

57)

details of the mathematics. He introduced two unknowns x and y and derived

Bernoulli's critique can be understood without going into the

two equations which x and y had to satisfy: I shall denote these equations

as
P(x,y) = 0 and Q(x,y) =0

respectively. At this stage Descartes' method prescribed that one of the
unknowns, say y, should be eliminated from these equations, and that the

resulting equation
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H{x) = 0

should be constructed by finding, in the manner also prescribed be Descartes,
two curves F and G whose intersections have x-coordinates equal to the roots
of H(x) = 0. Jakob Bernoulli found this procedure annoyingly cumbersome and
most unnatural. Why introduce new curves which have nothing to do with the
original problem? Why not skip the whole procedure of deriving H(x) = 0, and
use the curves P and Q, corresponding to the equations P(x,y) = 0 and
Q(x,y) = 0? Their intersections yield x as well as y immediately, they have
a natural interpretation in comnection with the problem and they serve better
for getting insight in the different cases of existence or non-existence
of roots that may occur. Such constructions, Bernoulli wrote
"present to our eyes the whole nature of the problem in a much better
way than those which, according to the method of the author (i.e.
Descartes) should be chosen, on the basis of a third equation (i.e.
H(x) = 0) with long detours and often insuperable work, and which
therefore have to be considered rather as forced and unnatural".
(Bernoulli 1695 p. 671).
Of course it may happen - as indeed it happens in Bernoulli's example - that
the curves P and Q have higher degree that F and G, and in that sense are
not the simplest possible constructing curves for the problem. Bernoulli
implied that that is a price one should be willing to pay for the naturalness
of the choice of P and Q.
Here again (as in the case discussed in the previous section) the algebra
did not fit the geometry. Descartes' algebraical requirement of lowest
possible degree would lead to a construction which, according to Bernoulli
was geometrically unacceptable because it had no natural link with the problem

it was meant to solve.

V-4

Even more than the mathematicians previously discussed, Newton was
aware that the algebraic and the geometrical approach to the solution of
problems are not analogous and may even be incompatible. In a series of
studies he tried to sort out the fundamental questions about using algebra
in geometry. The prime theme of these studies can be summarized thus:
contrary to what Descartes had thought, algebra is not the means which
should bring order into geometry. Algebra is useful as a tool (indeed
Newton used it brilliantly) but in all questions concerning the aim of

geometry, its proper methods and the criteria for correctness of geometrical
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constructions, algebra is a bad guide. Descartes had introduced algebraic
criteria into geometry: constructing curves should be algebraical; they
are simple in as much as their degree is low. Newton came to criticize
both these standpoints and he tried to work out alternatives. His work,
thereby, was the most consistent and acute critique of Descartes' programme.
I shall discuss it here in some detail,

Newton's arguments are to be found in three manuscript studies

(ms 1665, ms 1670 and ms 1705) that have remained unpublished until recently,

and in the Arithmetica Universalis (1707) which was published in 1707 but

whose text dates from 1683-1684,

The 1665-manuscript, entitled "the theory and construction of equations"
is a perspicacious but uncritical reaction on Descartes. The work is
remarkable because in it Newton worked out most of the results on the con-
struction of higher-order equations that were later found by de la Hire and
1'Hopital. Newton first dealt with constructions of low-degree equations. He
then treated the construction of equations of arbitrary degree, taking as the
first constructing curve, F, the cubical parabola y = x3. He conceived of this
curve as being cut out as a brass template and thus serving as an intrument.
To construct equations H(x) = O with this F, he removed the second term in
H(x), increased its degree, if necessary, to a multiple of three and then
used insertion to find G. For degrees 1-3, 4-6, 7-9, 10-12 etc. of H(X) he
found G of degree 1, 2, 3, 4 etc. After this he worked through a similar
scheme taking y = x4 as first constructing curve. He then boldly generalized
what he had found, stating, though without proof, both Bezout's theorem and
what in ITII-8 I have called the "main result". Finally he expressed doubt
about the practicality of these constructions for higher-order equations:
the curves G found in this way, although they have lowest possible degree,
may turn out to be very complicated.

The study shows that by 1665 Newton clearly saw the programmatic aspects
of Descartes' Géométrie, and that he had mastered the algebraic techniques
and formulated the algebraic insights that were first to appear in print

in 1'Hopital's Traité (1707). Although he expressed some doubt about the

requirement that the constructing curves should have lowest possible degree,

he presented no alternative.

V-5
It appears that by 1670 Newton's doubts had become stronger, so much so
that he sketched an alternative approach to the construction of geometrical

problems and of equations. This is the manuscript "Problems for construing
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equations" (Newton ms 1670), which is a truly remarkable piece of work
because of the seriousness with which Newton pursued the consequences of
rejecting Descartes' approach. Euclid had laid down the axioms and

postulates for a geometry allowing ruler and compass constructions.

Descartes had extended this geometry by allowing in principle all

algebraic curves as means of construction. He had done this by postulating
that the intersections of moving geometrical curves trace new curves that

are also geometrical (cf. III-4). For Newton, this went too far; allowing

all algebraic constructions was to him, one might say, giving the

geometrical game away. He found himself therefore confronted with the question,
which postulates should be added to Euclid's in order to arrive at a geometry
in which the constructional possibilities were extended (allowing, for
instance, the construction of two mean proportionals and the trisection of
the angle) but still suitably restricted.

The 1670-manuscript is, in fact, a sketch of such an extended
Euclidean geometry. It consists of three parts; the first contains
definitions and postulates; the second constructions of problems based on
the postulates (in particular a whole series of constructions for finding
two mean proportionals); and the third, construction of equationms.

It is not possible to treat here Newton's postulates in detail. For my
present purpose it is enough to state that they postulate the possibility
of certain motions, which in turn are the foundation of two constructions
in addition to ruler and compass. There two constructions are the classical
neusis construction (c¢f II-1) and the tracing of ellipses. As the classical
neusis construction is equivalent to the tracing of conchoids, one may
summarize Newton's approach by saying that he added postulates through which,
in addition to the straight line and the circle, the conchoid and the ellipse
become acceptable means of construction.

Newton used these means of construction in the solution of a series of
problems, among which the trisection of the angle and the finding of two
mean proportionals. After that he turned to the construction of equations. I
shall illustrate his approach by the neusis construction he gave for the

cubic equation

X = gx + r.
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figure 9

-

it is as followsss) (see figure 9). Draw a straight line with points BKA
(in that order) such that KA = 1 and BK = q. Take C such that BC = CA., Draw
a triangle CXA such that AX = AC and CX = r. Prolong AX and CX. (Until now
all constructions can be performed by ruler and compass). Now by a neusis
construction, insert a line segment EY = AC = }(q + 1) between the lines
AX and CX and "verging" towards K. Then XY is a root of the equation. -
Here, as with most of the other problems and equations he constructed,
Newton added a synthetic geometrical proof. These synthetic proofs do not make
clear how the constructions were found. But Newton added near the end of the
manuscriptsg) some examples of algebraic analysis, and from these it appears
that he had found the construction discussed above by an undetermined-

coefficients method, as follows (see figure 10):

figure 10
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Let £ and m be two given lines, intersecting in X, K a point outside £ and
m, KCA a line through K intersecting £ in A and m in C. Call KX = a, KC = b,
CX = ¢, CA = d. Suppose that, by means of a neusis, line KEY is constructed
such that EY = d. Call YX = x. Using the theorem of Menelaus and the cosine
theorem, Newton now derived an equation for x, which turned out to be of the
third degree. Its coefficients involve the undetermined lengths a, b, ¢ and

d. To find the neusis construction for, say,
3
X" =gx + r,

Newton adjusted the values of a, b, ¢ and d such that the coefficients of the two
equations coincide. Newton used variants of this approach to find other con-
structions,

The example well illustrates how strongly Newton's use of algebra in
geometry here differs from Descartes'. There are no axes involved, and no
equations of curves. The algebraical analysis serves exclusively to find a
neusis construction. Descartes' constructions strongly bear the mark of the
algebra he used - one needs only to fill in the equations of the curves and
to eliminate to have the algebraic translation of the geometrical procedure.
In contrast, Newton's neusis construction does not show much trace of algebra;
the algebra here is truly subservient to the geometry.

Newton also worked out constructions of third- and fourth-degree
equations with the ellipse and stated a preference for these over the neusis
constructions because the ellipse is simpler than the conchoid. He preferred
the ellipse over other conic sections as well, because tracing the ellipse
was one of the motions he had postulated.

In the last part of the manuscrips Newton also dealt with the construc-—
tion of higher—order equations. As in the 1665 study he used y = x3 as
universal first constructing curve. He explained how this curve can be traced
by a combination of motions, which should make it acceptable as a constructing
curve. Here, however, Newton was no longer able to actually reduce these
tracing movements to the ones he had introduced in his additional postulates.
Indeed, near the end of the manuscript (which is unfinished) Newton seems to
give up the strictly geometrical approach of the first parts.

Thus the 1670 manuscript shows that Newton's wish to work out a truly
geometrical approach to the construction of problems and equations, led him
to prefer, for third- and fourth-degree equations, constructions that are
strongly different from the parabola and circle constructions of Descartes'
Géométrie. It also shows that Newton could not pursue that line for higher-

order equations in a natural and convincingly geometrical way.
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V-6
Newton returned to the subject again when in the years 1683-84 he

wrote down his Lucasian lectures on algebra (Newton Luc. Lect.). These

lectures were not written for publication, but later Whiston proposed to
publish them, and Newton, though reluctantly, assented. They came out under

the title Arithmetica universalis (Newton 1707). The work became very

popular and was reedited and translated often. The last part of the lectures
concerned the construction of equations. This part was printed in the
published version as an appendix with the title aequationum constructio

60)

linearis, the linear construction of equations .

The aequationum constructio linearis is a curiously unbalanced piece!

On te one hand Newton defended it with very strong words (much stronger than
in his 1670 study) that the construction of problems and equations should be
part of pure geometry in which algebra should not determine the aims.
Consequently he presented constructions of equations by neusis, ellipse

or conchoid and claimed these to be better than constructions with other
conics. On the other hand he did not include, or even refer to, the postulates
about acceptable motions in geometry, on which these preferences rested.
Moreover, Newton wrote that he gave these constructions as an auxiliary
technique for finding the numerical values of the roots of equations. He
explained that the geometrical construction of the equation provides
approximations of the roots which can be used as starting values for further
arithmetical approximation procedures. This was a practical motivation and
rather at odds with the strong defence of pure geometry. Indeed why should
strongly worded methodological arguments for protecting the purity of
synthetic geometry against the influence of algebra be expounded in the
context of a mere auxiliary method to find the first digits of an approxi-
mation of a root? - that question Newton left to the reader.

Some quotations may illustrate the style and the arguments in the
Appendix. Recent mathematicians, Newton wrote, have "wellcomed in geometry
all lines that can be expressed by equations' and stipulated that construc-
tions should be performed with curves of lowest possible degree. The degree
offers a good classification for studying the curves themselves, but not for
their use as constructing curves:

"Yet it is not its equation but its description which produces a

geometrical curve. A circle is a geometrical line not because it is

expressible by means of an equation but because its description (as
such) is postulated. It is not the simplicity of its equation but the

ease of its description which primarily indicates that a line is to
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be admitted into the construction of problems. To be sure, the

equation to a parabola is simpler than that to a circle, and yet
because of its simpler construction the circle is given prior admission.
A circle and the conics are, if regard be paid to the dimensions of
their equations, of the same order, and yet in the construction of
problems a circle is not numbered with these latter curves but, because
of its simpler description, is reduced to the lower order of the straight
line; as a result it is not impermissible to construct by means of a
circle what can be constructed by straight lines, but to construct by
means of conics what can be constructed by a circle is to be reckoned

a fault". (Luc. lect. p. 425).

Geometrical simplicity, namely the simplicity of tracing should be the
criterion, not algebraic simplicity. Newton spelled out the programmatic

choice that had to be made:

"Either, then, we are, with the Ancients, to exclude from geometry all
lines except the straight line and circle and maybe the conics, or we
are to admit them all according to the simplisity of their description".
(Luc. lect. p. 427)

Choosing for the latter option, Newton was prepared even to admit non-algebraic
curves, such as the easily traceable cycloid, in preference to high-degree
algebraic ones.

The final statement on the proper place of algebra with respect to

geometry:

"Multiplications, divisions and computations of that sort have recently
been introduced into geometry, but the step is ill-considered and
contrary to the original intentions of this science: for anyone who
examines the constructions of problems by the straight line and circle
devised by the first geometers will readily perceive that geometry

was contrived as a means of escaping the tediousness of calculation by
the ready drawing of lines. Consequently these two sciences ought not
to be confused. The Ancients so assiduously distinguished them one from
the other that they never introduced arithmetical terms into geometry;
while recent people, by confusing both, have lost the simplicity in
which all elegance in geometry consists. Accordingly, the arithmetically
simpler is indeed that which is determined by simpler equations, while
the geometry simpler is that which is gathered by a simpler drawing

of lines - and in geometry what is simpler on geometrical grounds ought

to be first and foremost. It will not therefore be interpreted as a
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fault in me if with the prince of mathematicians, Archimedes, and others
of the Ancients I should employ a conchoid in the construction of solid

problems."
But immediately there follows the disclaimer:

"Nonetheless, if anyone does feel differently, I want him to know that
my immediate concern is not for a construction which is geometrical,
but for one of any sort whereby I may attain a numerical approximation

to the roots of equations.”" (Luc. lect. p. 429)

V-7

By the time that the Arithmetica universalis was being printed, about

1705, Newton once more considered the geometrical construction of problems
and equations. He wrote drafts (Newton ms 1705) for what appears to be a

revision of the appendix Aequationum constructio linearis in the Arithmetica

universalis. In these drafts he incorporated the postulates from the 1670~
manuscript and he left out the argument that the constructions could provide
starting values for numerical approximations.

Newton's attempted revision was left unfinished; the drafts were
published only recently. They repeat the statements on the purity of geometry.
This shows that by 1705 Newton was still convinced, as strongly as he had
been when he wrote the Lucasian lectures, of the necessity to keep the
geometry of the ancients '"pure and uncontaminated" (ms 1705, 211).

Newton's strong words in the Arithmetica universalis made an impression;

61)

they were often referred to in eighteenth-century mathematical literature .

But nobody took up Newton's views and developed them further. In fact,

Newton himself, when writing the drafts for a revision, must have experienced
that it was very problematical to consistently work out the approach to

pure constructional geometry which he so strongly advocated. So we find the
same outcome here as in the cases studied in sections V-2 and V-3:
considerable and well-founded doubt and critique of Descartes' programme of

merging algebra and geometry, but no workable alternative.

V-8

As we have seen, both Jakob Bernoulli and Newton rejected Descartes'
requirement that the degrees of the constructing curves should always be
lowest possible. Several other mathematicians also expressed opinions on
the right choice of the constructing curves. In this section I shall survey

these opinions.
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Descartes had not provided arguments why the degree of the constructing
curves should be lowest possible, nor had he given much guidance about the
question which curves to choose among many possible curves of the same
degree. In his notes to the 1695 edition of the Géométrie Jakob Bernoulli
uttered clear annoyance about Descartes' silence on these points; he wrote:
"but when we ask for reasons of the assertion, complete silence"6]a).

Bernoulli's annoyance is understandable because, especially in the
early phase of the development of the construction of equations, the right
choice of the constructing curves was still felt as the central problem. In
connection with it we often find quoted the almost moralistic terms of
Pappus, who spoke about guilt of mathematicians proposing wrong theorems
and the "considerable error" of those who solve plane problems with solid
meansﬁz). Descartes himself had used these words in the Gé&ométrie: it would
be "an error in geometry" to construct by means of curves with a too high
degree as well as it would be an error to try to construct with curves of
too low degree63). Fermat used the words against Descartes in his Dissertatio,

criticizing him for using curves of too high degree:

"Certainly it is an offence against the more pure Geometry if one assumes
too complicated curves of higher degrees for the solution of some problem,
not taking the simpler and more proper ones; for it has been often
declared already, both by Pappus and by more recent mathematicians, that
it is a considerable error in geometry to solve a problem by means that

are not proper to it'". (Fermat Dissertatio p. 121)

In an article on Cartesian geometry (1688), Jakob Bernoulli called Descartes'
construction of four mean proportionals (i.e. of the fifth degree equation
xb = aéb) by circle and cartesian parabola "most prolix", gave an alternative

and commented

"... I can see nothing that could in this case acquit Descartes from the
vice of acting ungeometrically (ayeoueTpnotod) which he mentions so
often". (Bernoulli 1688 p.349)

De la Hire also quoted the expression "considerable error" in connection

64)

with constructions by means of curves with too high degree . The frequent
allusion to Pappus' phrase shows the importance attributed to choosing the
simplest possible constructing curves.

Fermat, de la Hire and (though less strictly) 1'HOpital accepted
Descartes' requirement that the constructing curves should have lowest degree.
They interpreted this in the sense that the two curves should not differ much

in degree; these requirements guided the elaboration of the "main result"
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(cf. section III-8).

Descartes had left open the problem how to choose the simplest curve
among curves of the same degree. Some mathematicians valued the freedom of
choice here positively; van Schooten, Sluse and other writers took pleasure
in working out constructions of third- and fourth-degree equations by all
sorts of combinations of conic sections. Probably inspired by Descartes, the
parabola was often considered the simplest among the conic sections (apart
from the circle, which, as means of construction, was considered a '"plane"
curve). But some mathematicians (Newton for instance, cf. V-6), considered
the ellipse as the simplest conic, because its mechanical description (by
a trammel construction or by the "gardener's" construction) was almost as
simple as tracing a circle with a compass.

Wallis even proposed an alternative classification of curves to
incorporate gradation of simplicity within the class of conies. In his
Algebra (1685) he suggested to call straight lines of degree I, circles of
degree 2, the other conic sections of degree 3 and the cubical parabola of
degree 4. With that classification his construction of a third-degree equation
by the cubical parabola and a straight line (given in his 1657, see IV-2)
would be as good as Descartes' construction by parabola and circle; in both
cases the sum of the "degrees" of the constructing curves is five66).

Wallis must have realized that his argument was rather ad hoc, and, more
important, could not in an obvious way be generalized for higher-order curves.
Still, the fact that he put forth the argument shows that he considered the
matter important.

As Jakob Bernoulli had done earlier (cf. V-4), Guisnée noticed in his
textbook on analytic geometry (1733) that the search for lowest possible degree

could lead to inappropriately complicated constructing curves. He wrote

"... in a way it is embarrassing to geometry if one introduces, often
with much difficulty, certain curves preferable to others which present
themselves in a natural way and whose description is often very simple;
therefore I wished that curves would be preferred without reference to
their degree, in the way they are ordinarily determined". (Guisnée 1733
pp. 27-28)

This statement was quoted later, with approval, by Rabue167).

8)

Some writers (Rolle, Cramer)6 stated explicitly that the requirement

of low degree was purely a matter of "elegance'". Several others (Kraft,

9

6 . . . . .
Euler, Cramer) wrote that simplicity of tracing was a better criterion for

the choice of constructing curves than low degree. Cramer for instance wrote:
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"It seems that, in choosing the proper curves to construct an equation,
one has to aim at the easiness of description rather than the

simplicity of the equation. One can say that for each problem there is
some curve by which it is solved more naturally than by all other curves
even of lower degree. Indeed a curve which has high degree but whose
equation has only few terms will mostly be easier to describe, be it

by points or by some intrument, than a curve of lower degree but whose
equation, even if simplified as far as possible, has a high number of
terms. There are even various examples of curves that are easy to des-
cribe although their nature can be expressed only by most complicated
equations. Well, should one not prefer the simplest constructions in
geometry? And are not the simplest constructions those that are performed
with the easiest traceable curves? The equation is really only a symbol
which guides us in calculations; fundamentally it is the description of
the curve which resolves the problem. Whether one arrives at the con-
struction by a long or short, an easy or a difficult calculation does
not have any influence on the operation itself that really constitutes

the solution'". (Cramer 1750 p. 91)

The words are strong enough, but there is no attempt to establish an
alternative criterion of simplicity which could really be operative in finding
constructing curves. Hence by 1750 a definite, workable criterion £or the
geometrical simplicity of constructing curves had failed to turn up, the
arguments on the crucial point of method - how to choose constructing curves -

had proved inconclusive.

V-9

The arguments discussed in the previous sections illustrate that mathe-
maticians were confronted with a fundamental problem in working out Descartes'
programme: The geometrical criteria of adequacy for solutions (simplicity of
construction, acceptability of the means of construction) could not be trans-
lated in a natural way into algebraical language and procedures. On the other
had (as Newton's work shows) a purely geometrical approach to the construction
of higher order problems and equations was not feasible either.,

Thus after 1700, the construction of equations, having started as a
sensible, indeed necessary, part of Descartes' programme for geometry, was
losing much of its orig%nal motivation. Still, there remained interest in the
subject and we even see new motivations for it being put forth. One of these
was Newton's argument that the construction of equations can supply a first

approximation of the root, which can serve as a starting value for a further
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numerical approximation. We find the same argument in Halley's lectures
(1725).

Several other mathematicians alluded to practical use of the construc-
tion of equations by suggesting that a special first conmstructing curve F
should be cut out from metal and used as a template in constructions. As
we have seen (cf. V-5) Newton had suggested this in his 1665 manuscript.

Baker considered the rules he published in his Geometrical Key as practical

rules:

"Sit down therefore at thy study-table (reader) seek the aequation

whose construction thou designest, in the central table, or synopsis,
which will guide thee, to its rule for its construction, its demonstrationm,
figure, or (at least) to one suitable to it. Take thy compass and the
Scale of inches (for that scale only have I used through the whole)

and having described according to art (which in Chap. 1 is taught) a
Parabole, let all things be applied accordingly, as we have prescribed;

and thou shalt find all things forthwith exactly to answer thy

expectation". (Baker 1684 en of preface)

It is very difficult to assess in how far the construction of equations
was ever put to actual practical use. I have not found examples of such use,
but it may be that some mathematicians actually solved equations by geometrical
construction, with or without subsequent numerical approximation. Many
mathematicians, on the other hand, were sceptical about the practicality
of these constructions. Halley wrote that no geometer will actually use
ruler and compass to find exact solutions of geometrical problems 'because
of the defect of instruments and of our senses, whereby the intersections of

70)

lines imperfectly drawn, are yet more imperfect" ~’. He considered construc-

tions useful for giving a global insight in the problem:

"a geometrical construction, rightly manag'd lays open the whole
mystery in a short view, and at once shews directly as well the number

and quantities of the roots, as their signs...". (Halley 1725 p. 2)

Halley had worked out this idea in a separate article (1687). In that article
he investigated the values of the coefficients in third- and fourth-degree
equations for which there are 1, 2, 3 or 4 roots. He did this by studying
geometrically the positions of the centres and the values of the radii of
circles that intersect a parabola in 1, 2, 3 or 4 points. The results are
convincing in the third-degree case; for the fourth degree they become

very involved.
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Wolff denied, in his Elementa Matheseos that the construction of

equations has any practical use; its value lay in training the force of

the mind.7l).

In fact, one quite outspoken attack on the methods of constructing
equations came from a mathematician involved in the practice of mathematical
instruments, namely Stone. He added to the second edition (1122) of his
translation of Bion's great treatise on mathematical instruments, an
appendix in which he commented, among other things, on the construction

of equations. He repeated Newton's arguments of the Arithmetica universalis

(cf. V-6): strong critique on the use of algebra in geometry; preference for
neusis constructions for practical reasons. He then presented a series of
construction problems, in solving which he deliberately broke all the rules
of established theories of construction, using parallel rulers, sliding
rulers, sliding squares, cords and several other impromptu means of con-
struction. He commented:
"IThave given the instrumental constructions of the few problems above,
as a specimen of the most easy, natural, and obvious way possible of
performing the business, in order to invite others to proceed in this
way in the resolution of difficult geometrical problems, rather than
by that usual one so long in vogue, of first obtaining an algebraic
equation by means of the given conditions of the problem; and then
finding the linear roots of that equation, which in almost all cases
in troublesome, unelegant and unnatural, and in many other cases is

intolerable, and almost impossible. (Bion/Stone 1758, p. 324)

The arguments reviewed in this section show that the attempt to provide
new, and in particular practical, motivations for the techniques of the con-
struction of equations, failed. Indeed we find little conviction left in
the argumetns, practical or fundamental, which mathematicians put forth in
the first half of the eighteenth century as motivation for the construction

of equations.

V-10

Although ultimately no new convincing motivations emerged, there was a
side issue within the theory of constructing equations which attracted
attention when mathematicians started searching for other than purely geo-
metrical motivations. This was the interest in graphs of polynomials7la). The
requirement of lowest possible degree rules out construction of an equation
by intersecting its graph with the X-axis (cf. III-2). However, Jakob

Bernoulli, having criticized the requirement, suggested in his 1695 notes



- 5] -

e e . 12 i
to Descartes' Géométrie ), to construct the equation

x5 = ax4 + b2x3 + c3x2 + d4x + e5

by rewriting it as

2 3 4 5

b c d e
e A B

X X X

tracing the graph of the right hand side,

R S W
y=arxy 7 37 %
X X X

and intersecting it with the straight line
y = X.

He noted as advantage that the graph can easily be constructed pointwise,
that is, for each x-value it is easy to construct §by elementary construc-
tions for multiplication and division) the terms %;', ;;-etc., and their
sum. Hence points on the graph could be easily found. He suggested that this
advantage might compensate the disadvantage of the high degree of the graph.

73)

In 1'HGpital's Traité we find a similar argument ~’, now actually
concerning the graph of the equation itself. He suggested constructing the

equation

n
X 4+ ...+ax+a =20
i 0

by intersecting the graph

with the horizontal line
y = -a,-

He mentioned easy pointwise constructibility of the graph as advantage and
he stressed that this procedure was useful for reading off the limits
between which the roots of the equation lie, as well as their global
position on the X-axis.

74)

Cramer treated in his Introduction the graph of an equation in the

same way as l1'H8pital, he also saw it as a special kind of construction of
an equation, with advantages for gaining global insight in the location of

the roots.
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In later mathematics, the interest in the graph of polynomials

75)

remained ~’; but soon it was no longer seen as a special kind of construc-

tion of the equation.

V-11

An inconclusiveness similar to that of the general arguments can be
discerned in reactions of mathematicians to a more technical critique on
the usual procedure of the construction of equations. This critique was

voiced by Rolle in two articles, 1708 and 1709. Rolle was interested in

determining the limits between which the real roots of equation lie, and in
the real and imaginary intersections of algebraic curves. In studying these
questions he found many instances in which the insertion method for the con-
struction of equations, as explained by de la Hire, produced anomalous
results.

In his articles he presented these cases as a critique on the usual
method for constructing equations. He did this in a quite effective manner.
He gave nine different equations ranging from degree 6 to degree 20, and
15 possible choices for the first constructing curve. Out of these he took
20 different combinations, calculated the second constructing curve by
insertion, and showed that in each case something anomalous happened. The
number of intersections of the constructing curves turned out to be larger
or smaller than the number of roots; the intersections yielded roots that
did not satisfy the equation; the second constructing curve turned out to
have no real points etc.

In particular Rolle showed that an intersection corresponding to a real
root may become imaginary, in which case it does not appear at all when one

76)

actually constructs the equation. His example was the equation
H : x® + 21a%x - 22a° = 0,

hwose real roots are -2a and a. When one chooses

the second curve becomes
G : 21a3x + y4 = 2234.

F and G have two real points of intersection, namely (a,a) and (a,-a),
which correspond to the root a of H(x) = 0. But there is no real point of
intersection corresponding to the root -2a (the corresponding points of

intersection are (-2a,2aiv2) and (-2a,-2ai/2)).
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The example implied quite serious a critique on the usual method for
the construction of equations. It showed that by simply performing the
rules one might arrive at results that were geometrically meaningless, where-
as nothing in the algebraic manipulations warned that something anomalous
was happening.

It is noteworthy that Rolle, in these and other articles, in fact
undertook an exploratory study of the intersections of algebraic curves,
with particular interest in the occurrence of imaginary points of inter-
section. Still, apparently the only form in which he could present his
results was that of a critique of existing method of constructing equations.
This shows that at that time intersection theory of curves was still so
strongly bound up with the construction problem that it could not be
treated as a separate theory77).

Several writers reacted on Rolle's critique. De la Hire himself, whose

method was explicitly criticized, answered

"it seems to me that one could not say that this is a defect of the
method, but only of the application of it, as is not uncommon in

geometrical and analytical operations'". (De la Hire 1710 p.29)

He suggested that if anomalies as the ones indicated by Rolle occurred one
had to start again somewhat differently. Experience learned that after a few
trials one always found a good solution. More specifically he suggested that
the first constructing curve should be chosen such that its real x-values
cover the segment on the X-axis in which the roots of the equation lie78).
Hermann suggested in his 1727 that Rolle's critique could be avoided

by always taking the first constructing curve in the form
I yfl(x) + fz(x) =0

which has no points with real x-coordinate and imaginary y-coordinate. Euler
and Cramer also restricted the choice of the first constructing curve in this
way to avoid the occurrence of imaginary points of intersection79).

At first sight it seems indeed an effective answer to the critique
raised by Rolle. But there is a complication. Cramer as well as Euler stated
the "main result". Cramer referred to l1'HSpital, Euler just stated it.
L'HOpital's argument for the main theorem (and it seems likely that both
Cramer and Euler would use the same argument) was that the number of
coefficients free to choose in polynomials F(x,y) and G(x,y) of degree p and
q, is larger than the number of coefficients in a polynomial H(x) of degree

pq. But if one restricts the choice of F by stimpulating that F should be
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of the form
yE, () + £,(x),

this argument is no longer valid. The number of coefficients in F is then
2p + 1,

that in G remains

1(q + )(q + 2),

and that in H is

pq + 1.

For the main theorem still to be valid, the requirement would be

pq + 1 S2p + 1 + §(q+ 1)(q + 2),

which, for higher values of p and q (e.g. p,q > 7) does not apply.

It is significant that neither Euler nor Cramer (not to speak of
Hermann) did see this. The argument is certainly not difficult; once one has
seen the problem, the result is immediate. We can conclude, therefore, that
neither Euler nor Cramer took the problem sufficiently seriously to become
aware of an obvious problem. I take this as a sign that their treatment of
the subject was determined by tradition rather than by active interest. The
tradition was not strong enough to keep the attention of mathematicians after

Euler and Cramer.



- 55 -

VI Conclusion

VI-1

In this concluding chapter I shall anmalyse the causes that led to the
decline of the construction of equations, and I shall briefly discuss the
applicability of concepts and models of Lakatos' "methodology of research
programmes"” to this case of a "degenerating' mathematical theory. Before that,
however, something has to be said about the relation of the theory to other
parts of mathematics. The construction of equations was not an isolated
theory; there were two other theories to which, in subject and methods, it
was near. These were: the algebraic theory of equations, whose aim was to
solve equations by radicals, and the theory of algebraic curves.

To solve an equation by radicals means to express its roots in terms of
its coefficients by means of a formula involving only the arithmetical
operations and the extraction of n—th roots. In the sixteenth century solutions
by radicals were found for third- and fourth-degree equations (the formulas
of Cardano and related formulas). During the seventeenth and the eighteenth
centuries mathematicians tried to understand the mathematics behind these
solutions and to find such solutions for higher-degree equations.

The algebraic solution of equations by radicals may at first sight seem
the theory which was most akin to the construction of equations. Both theories
concerned equations and aimed at the exact (not approximate) determination
of roots. However, each theory defined exactness in its own way: the geo—
metrical theory by generalizing the exact ruler—and—compass constructions
to constructions by algebraic curves; the algebraic theory by accepting
solutions involving n-th roots as exact. These approaches were indeed so
different that the two theories had in fact little in common. Nor were they
seen as strongly related or comparable. One might argue that for some time the
construction of equations was more successful than the algebraic approach to
equations - it provided solutions for equations up to degree four which were
easy and more elegant than the Cardano or related formulas; and, contrary to
the algebraical approach, it was not blocked at the fourth degree. Still I
have found this comparison only once made in a side remark by Robervalso).
Significantly, most mathematicians did not compare the two theories in this
way, they saw them as entirely distinct in aims and in methods.

While, after 1750, the construction of equations fell into oblivion, the
algebraic theory of equations gained new impetus under the influence of a
new approach advocated especially by Lagrange. This approach led to most

important results: the proofs (by Ruffini and Abel) that the solution by
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radicals of the general fifth-degree equation is impossible, Galois theory
and, later, modern algebra. Despite the chronological coincidence of the
decline of the geometric theory and the renewed impetus of the algebraic one,
this is not a case of replacement of an unsuccessful approach by a successful
rival. The theories had been separate already for a long time, their aims

were different and none of the techniques worked out in the geometrical theory
were taken over by the algebraical one.

However, not all mathematical insights gained by the theory of constructing
equations were lost when the subject fell into oblivion. There was indeed a
natural inheritor, namely algebraic geometry, the study of algebraic curves.
Construction of geometrical problems and of equations provided the early motivation
for the general study of algebraic curves and their intersections. This was
expressed by Newton when he wrote, in connection with his classification of
third-degree algebraic curves, that '"the use of curves in geometry is that by

81)

their intersections problems can be solved" . The construction of equations
also promoted the interest in techniques of elimination which later became
central in the study of intersectiomns of algebraic curves. During the first
half of the eighteenth century the relation between the two theories gradually
changed. The theory of algebraic curves acquired an independent status; the
construction of equations was seen as one of its applications. Several insights
concerning intersections and elimination had been taken over and when the

construction of equations finally disappeared, these insights remained alive

within algebraic geometry.

Vi-2

Although its techniques and insights were partly taken over in algebraic
geometry, the construction of equations did die; its central aim, the exact
geometrical construction of roots of equations, was no longer acknowledged as
important, and subsequenty forgotten; the construction of equations lost its
place as standard part of algebra, the newer textbooks omitted the subject.

The question remains, why did the construction of equations die?

In the previous chapter I have reviewed the various processes that combined
to invalidate the subject: its original motivation was misunderstood by later
mathematicians; contradictions appeared in the efforts to translate the
original geometrical criteria into algebraic ones; new motivations for the

subject were not satisfactory; convincing criteria of adequacy for constructions
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of higher-order equations could not be formulated; fundamental critique was
answered without sufficient care by ad hoc arguments. As I mentioned in the
introduction, these processes form part of a general development of de-
geometrization of mathematics which took place in the seventeenth and
eighteenth centuries. In other fields of mathematics (in particular in
differential and integral calculus) the de-geometrization was very beneficialj
in the case of the construction of equations it led to the disappearance of
the subject after 1750.

It is important to note that the construction of equations did not dis-
appear because the problems in the field were unsolvable (it was, for instance,
quite feasible to study in detail constructions for equations of degrees 5 and
6, or 7, 8 and 9). Nor did the theory loose interest because all problems were
already solved. Nor, again, can the loss of interest be attributed to a rival
theory which produced better constructions, because there was no such theory.

Rather than in the sphere of the mathematical problems and techniques,
the causes for the disappearance of the construction of equations lay in the
sphere of motivation and method. They were connected with the reasons why
mathematicians considered certain problems as meaningful, and with the criteria
of adequacy which mathematicians set for the solution of these problems. Such
reasons and criteria are very essential in the development of mathematics.

They guide the research in a field, and as such they are necessary for its
development. The essence of their role becomes particularly clear in the case

of the construction of equations, because the original motivation of the subject
lost its meaning and adequate criteria to choose between the many possible
constructions failed to turn up. Hence the arguments on motivation and method
remained inconclusive, they could not be translated into convincing criteria

or guidelines for research,

Why, then, did the arguments on motivation and method remain inconclusive?
They did so because of a contradiction, built in from the very beginning in
the Cartesian mixture of algebra and geometry. Purely algebraically, the
procedure of the construction of equations does not make sense, its sense must
come from geometry. Therefore the criteria of adequacy must come from geometry.
In its later development the whole procedure became algebraical, but the
geometrical meaning ~ exact construction -, and the geometrical criteria of
adequacy — simplicity of instruments or easiness of tracing the curves -

appeared not to have a natural translation into algebra. This is the basic
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contradiction, and in it we can sum up the cause for the death of the con-
struction of equations: the subject had a natural tendency to become algebraic,
but it could not bring over its original geometrical criteria to algebra,

hence it lost its motivation and it died.

VI-3

The construction of equations thus provides an example of a mathematical
theory which, having started off with considerable vitality, entered in a
degenerating phase from which it did not recover. The process of decline of
scientific theories has recently attracted much interest from philosophers
and historians of science, especially because "degenerating" and "progressive"
research programmes are key concepts in the "methodology of researchprogrammes"
proposed by Lakatos as a way to study and understand the development of

82)

science . Lakatos himself, and several other writers have studied historical

examples of degenerating (and progressive) scientific theories. These examples

83)

concern natural science rather than mathematics. Recently Hallet has
studied the special case of mathematical theories from a Lakatosian viewpoint.
In preparing my analysis of the development of the construction of

84)

equations I have found these studies illuminating and inspiring, but I

have come to the conclusion that the Lakatosian approach is not applicable in

this case. This conclusion may be of some methodological interest and I shall

therefore briefly discuss the reasons why I have found the concepts and models
of the "methodology of research programmes™ insufficient for understanding the
case of the construction of equations.

The central aim of Lakatos' methodology of research programmes is to
distinguish between "progressive"” and "degenerating" researchprogrammes. Lakatos
has worked out the distinction primarily for programmes within natural science.
He has suggested that the historical development of science can be fruitfully
understood - in his terms "rationally reconstructed" - in terms of competing
researchprogrammes, whereby scientists finding themselves in a degenerating
programme tend to switch over to a rival programme which is in a more progressive
phase. Lakatos has found the criterion for researchprogrammes to be progressive
or degenerating in their success or failure to produce significant and success-
ful predictions. Predictions are considered significant especially if they
concern natural phenomena outside the realm for which the theories on which
they are based were originally created. The basis for assessing the significance
of predictions, and thereby the state of progress or degeneration of the
programme, in the informed intuitive opinion of the scientists working in the

fields in question.
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It is difficult to apply this criterion directly in the case of mathematics.
Hallet has sketched how a related criterion can be worked out for mathematical
research programmes. His proposed criterion is the success or failure of
programmes to solve mathematical problems for whose solution they were not
specifically created. He has illustrated his proposal by applying the criterion
in a number of case-histories in nineteenth- and early twentieth-century
mathematics. In these studies he bases his assessment of the success or
failure of programmes primarily on the opinions expressed by leading mathema-
ticians involved in the fields in questiom.

The construction of equations was not a large scale endeavour within
mathematics, so the term '"research programme'may be somewhat too broad to
use in this case. Still, the subject had strong programmatic aspects, which
played an important role in its development, and, after 1700, it was clearly in
a degenerating stage. So it is tempting to consider it as a degenerating re-
search programme in the Lakatosian sense. Hallet's criterion indeed confirms
that the construction of equations was degenerating after ca. 1700; the theory
certainly did not solve problems for whose solution it was not created, in
fact, in its later phase it did not solve any problems at all, But it should
be noted that this failure to solve problems is not metioned in the arguments
of the leading mathematicians at the time on the state of the subject. As we
have seen, the main theme in the critical opinions expressed about 1750 on the
subject was not that it did not solve problems, but that it did not make sense.
Hallet's criterion, then, although formally applicable in this case, is un-
satisfactory because it is unrelated to the actual causes of the degeneration
of the construction of equations, which were not in the sphere of results but
in the sphere of motivation.

It is significant that another central process in the Lakatosian model for
the "rational reconstruction" of developments in science does not apply either in
this case: there was no rival programme. In losing interest in the construction of
of equationsmathematicians did not switch over to a rival, more succesful approach
to the same questions; they just dismissed the questions.

I find, then, that an analysis of the development of the construction of
equations along the lines suggested by the '"methodology of research programmes"
is not satisfactory. The reason for the inapplicability of Lakatosian concepts
and models in this case is that they only concern success and failure on the
level of results. Here, however, is a case in which the significant factors in
the development were not on the level of results but on that of meaning and
motivation.

The case of the construction of equations shows that factors concerning
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meaning and motivation, and the related issue of criteria of adequacy of
methods and solutions, can be crucial in the development of mathematics. The
inapplicability of Lakatosian concepts and models is, to me, one of the signs
that the importance of these factors in the development of mathematics (and
indeed of science in general) has been underestimated. The present article

is meant as a contribution to an approach to the development of scientific

theories which takes these factors seriously.

Acknowledgement

I have presented parts of this material during lectures
at Leeds, Aarhus, Utrecht, Odense, Heidelberg and Amsterdam.
The discussions on the occasion of these lectures have been
very helpful for me. Lektor K. Andersen (Aarhus) and dr J.R.
Ravetz (Leeds) have read preliminary versions of the present
text. I am very thankful to them for their active interest

and their stimulating comments.



- 6] -

Notes

1) Zeuthen 1903 p. 199.

2) Wieleitner 1911 pp. 54-58.

3) Boyer 1943 and 1956, index s.v. '"graphical representation”.

4) The term “construction' in the sense of solution occurs in the
titles of five of the seventeen articles in Euler's Opera (1) 22
(early papers on differential equations).

5) I have dealt with the programmatic aspects of the Géométrie in
my 1981, see esp. pp. 304-307.

6) Cf. Steele 1936 and Niebel 1959.

7) The construction was mentioned by Eutocius. For text and translation
see Thomas 1967 1 pp. 278-283.

8) Pappus Collectio 1 pp. 34-57 and 270-273 (i.e. lib. III 20-22 and
lib. IV 57-59).

9) On neusis constructions see Heath 1921 (index s.v. '"neusis'") and
Archimedes Works pp. c-cxxii.

i0) Heath 1921 1 pp. 235-236.

11) Heath 1921 1 pp. 238-240.

12) Heath 1921 1 pp. 236-237.

12a) Newton, in manuscripts written c. 1693, recognized this problem:
"...a problem is not something which is postulated to be done. We must
therefore take care lest, in our zeal to augment geometry, we at the
same time pollute it with postulates of this sort." (Math. papers 7
pp. 388-389, tr. Whiteside).

i2b) The term is Pappus', cf. V-8 and note 62.

13) Cf. ref. in note 5.

13a) Descartes knew (see e.g. 1637 p. 335) that in some problems there
would be more unknowns than equations, so the elimination would result
in one equatior in two or more unknowns. In that case an infinity of
points satisfy the problem; these pointsform a locus. Descartes
explained that to construct points on the locus one assumed values
for all but one of the unknowns in the final equation and then
proceeded as in the case of the ordinary problems.

14) Descartes 1637 pp. 380-389.

15) Descartes 1637 pp. 302-304.

16) Descartes 1637 pp. 389-395.



16a)

17)
18)
19)

20)
20a)
21)
22)
22a)
23)

24)
25)
26)
27)
28)
29)
30)
31)
32)

33)
34)
35)
36)
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Descartes states that he takes the latus rectum of the parabola equal

to 1. Latus rectum and latus transversum are the classical terms

for certain line-segments occurring in the defining properties of
conic sections. If the vertex of the conic section is taken as

origin and the Y-axis is along the diameter, then the latus rectum a

and the latus transversum b occur in the analytical formulas for

the conics in the following way: x2 = ay (parabola); X2 = ay - %yz

(ellipse); x2 = ay + %yz (hyperbola).
Descartes 1637 pp. 402-412, cf. Bos 1981 p. 306 note 11,

Cf note 14,

Rolle (cf. V-11 and note 76) even discussed the construction of
equations which were obviously reducible without commenting upon the
fact.

Descartes 1637 pp. 381-386.

De la Hire 1679 p. 429.

Descartes 1637 pp. 403-405.

Cf. e.g. Descartes 1637 p. 371.

Descartes 1637 p. 413.

Kinckhuysen 1660 pp. 63-65; de la Hire 1679 p. 111; Jakob Bernoulli
1687 p. 349.

Fermat Dissertatio p. 121.

Descartes 16159 l_p. 324.

De la Hire 1679 pp. 418-421.

Sluse 1668 pp. 51-65.

Sluse 1668 pp. 76-78.

1'HOpital 1707 pp. 346-347.

Newton ms 1665 p. 498.

Bezout 1779 pp. 30-33.

Newton (ms 1665 p. 498) and 1'Hopital (1707 p. 346) state it as
a matter of course; 1'HOpital claims that it is evident by the
"rules of algebra".

MacLaurin 1720 p. 136, Euler 1748a, Cramer 1750 pp. 660-676.
(Note cancelled.)

1'Hopital 1707 p. 346.

Formulated in modern terms the problem is this: Let K be a field
(in particular the real or the complex numbers). Are there, for
every polynomial H(x) € K[x] of degree p.q, polynomials F(x,y)
and G(x,y) € K[x,y] of degrees p and q respectively, such that
RF,G = H ? - I have mentioned this problem to several algebraic

geometers. Thier reaction was that they did not know whether the



37

38)
39)
40)
41)
42)
43)
44)

4ba)

45)
46)
47)

48)

49)
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problem has been studied already, that the answer is probably "yes",
but that the proof would be difficult. I shall be very grateful to

any reader who can give me more definite information about this problem.
Wallis 1657; the cubical parabola and its use in constructions is
treated in the dedicatio of this work (pp. 231-256 of the edition in
Opera 1).

Descartes 1659 1 pp. 324-328.

Descartes 1659 1 pp. 328-330.

Kinckhuysen 1660 pp. 56-63.

Kinckhuysen 1663 pp. 56-64.

Mahoney 1973 p. 130, note.

De la Hire 1679 pp. 297-452; this part has a separate title-page.
Wallis 1685 pp. 275-277, Sturm 1689 pp. 348-358, Harris 1702

pp. 86-99 and 1704 s.v. "construction of equations', Halley 1687a,
Anonymous 1703, Hermann 1727 p. 140, Wolf 1743 1 p. 406, Zedler

1733 6 col. 1098, Euler 1748b 2 p. 277.

Wallis 1685 pp. 273-277 (Qpera 2 pp. 295-299), Sturm 1689 pp. 392-474
(= 1700 last part, separately paginated 1-96), Ozanam 1702 pp. 224-233,

Harris 1702 pp. 31-99 and 1704 s.v. "construction of equations",
Guisnée 1705 pp. 201-211, 1'HOpital 1707 pp. 291-361, Newton 1707
(appendix), Reyneau 1708 pp. 601-621. Note the considerable extent

of the treatments by Sturm, Harris and 1'HOpital; the section in
Sturm 1689 is in fact a complete treatise (with separate title-

page) on Cartesian geometrical constructions.

1'Hopital 1707 pp. 291-361.

Euler 1748b 2 ch. 20 "De constructione aequationum" pp. 269-284.
Cramer 1750 Ch. 4 "Quelques remarques sur la construction géometrique
des egalitez", pp. 80-108.

Savérien 1753 1 pp.220-221; d'Alembert Construction, Encycl. Britt.

(3d ed. 1797) 1 pp. 441-442. A special case is Crokers Complete

dictionary (1765); it has three relevant headings: "Construction",

"Construction of equations" and '"Geometrical construction of
equations”". These three form a cross-reference loop, but none of
them explains what construction of equations is.

Examples are Lamy 1692 pp. 284 sqq and Wolf 1743 1 pp. 302-303.
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50) Newton Enumeratio p. 161. Braikenridge states in his book on the
description of curves (1733) that the central problem in the theory
of curves is to find "a general and easy method by which curves can
be described in the plane so that by their help problems can be
constructed"” (p. vii).

51) Cf note 19.

52) (Note cancelled.)

52a) De la Hire 1712 p. 351.

53) The relevant notes of van Schooten are in Descartes 1649 p. 278
and in Descartes 1659 pp. 321-322 (Huygens' example only occurs in
the 1659 edition); see also Huygens QOeuvres 12 pp. 81-82 and 14 pp.
420-422. De la Hire later also discussed this problem, see his
1679 pp. 440-452. Compare also Whiteside's note on these and related
constructions in Newton Math. papers 7 pp. 304-305 (note 59).

54) Van Schooten incorporated this study of van Heuraet in his edition
Descartes 1659 1 pp. 259-262.
55)  Newton Math. papers 1 pp. 502-505; a study dating from 1665.

56) 1'H8pital's construction can be found in Huygens Oeuvres 10 pp.
407-408; for further references see note 1 on p. 407.

57) Bernoulli 1695 pp. 670-675. Related arguments are in his 1695 passim and
in his 1€88.

58) Newton ms 1670 pp. 470-475.

59) Newton ms 1670 pp. 492-495.

60) Newton 1707 pp. 279-326; I refer to the edition of the text in
Math. papers 5 pp. 420 sqq.

61) E.g. by Stone, cf V-9.

6la) Bernoulli 1695 p. 689.

62)  Pappus Collectio 1 p. 271.

63) Descartes 1637 p. 371.

64) De la Hire 1679 pp. 306-307.

65) (Note cancelled.)

66) Wallis 1685 p. 275.

67) Rabuel 1730 p. 418; Rabuel cited from an earlier edition of Guisnée 1733.

68) Rolle 1708 p. 340; Cramer 1750 p. 88.

69) Kraft (1742 p. 8), Euler (1748b 2 p. 279), Cramer (see below).

70)  Halley 1725 p. 2.

71) Wolf 1743 1 p. 393.

71a) Cf Boyer 1943.
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78)

79)
80)
81)
82)
83)
84)
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Bernoulli 1695 pp. 689-691.

1'Hépital 1707 pp. 348-349.

Cramer 1750 pp. 92-108.

For some information on the further history of the use of graphs

in calculating roots of equations see Frame 1943.

Rolle 1708 pp. 361-363.

Rolle presented, in his 1713, a "paradox in geometrical constructions".
The p;radox was that two graphs, both concave and increasing, may
intersect each other in arbitrarily many points. Here again Rolle
gave his result, which is purely about intersection theory, in terms
of the construction of equations. (The paradox was inspected by members
of the Académie, who concluded that '"the example is good and the
paradox true" (Saurin 1713 p. 262).)

Euler later criticised de la Hire's suggestion, noticing that it
might still happen that points of intersection corresponding to a
real root x were imaginary (1748b 2 p. 283).

Euler 1748b 2 p. 280, Cramer 1750 p. 86.

Roberval 1693 p. 244.

Cf. note 50.

Lakatos Papers vol. 1.

Hallet 1979.

Another example of a study of a declining mathematical theory is the
investigation by Fisher of the "death" of invariant theory (Fisher
1966, 1967). Fisher adopts a sociological approach in describing the
process of decline in this case. This approach is not applicable

in the case of the construction of equations because the number of
mathematicians involved is too small and because none of these mathe-
maticians viewed the construction of equations as his specialty or

as the main framework of his mathematical activities.
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