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1. Introduction. Curves and Lthedin hepresentations in
17th century mathematics.

1.1 From antiquity till the beginning of the seventeenth century
the collection of plane curves known to mathematicians did not
change. It consisted of the conic sections, some higher algebraic
curves such as the conchoid of Nicomedes and the cissoid of

Diocles, and a few transcendental ones of which the most important
were the Archimedean spiral and the quadratrix of Deinostratos.

This situation changed drastically in the seventeenth century. In

a short period mathematicians enormously expanded the realm of
curves open to mathematical treatment. Through the new analytic
geometry of Fermat and Descartes the collection of mathematical
curves came to include all algebraiec curves, that is, all curves
whose equation in rectilinear coordinates involves only the algebraic
operations +, -, x, + and b , (k> 1, integer). Also the collection
of transcendental cupves, that is curves which do net admit an
equation as above,was expanded. The cycloid appeared on the mathe-
matical scene around 16303 the logarithmic curve in the 1660's.
After that mathematicians encountered many more curves that depended
algebraically on these two fundamental transcendentals. These curves
occurred especially as solutions of inverse tangent problems.

The new curves, like the earlier known ones, occurred in mathe-
matics in three different roles. They could be object of study, they
could serve as means for the solution of a problem and they could
themselves be the solution of a problem. Thus Pascal, in his famous
challenge to mathematicians of 1658, proposed the cycloid as object
of study and required the determination of its tangents, its area,
the areas and centres of gravity of segments etc. An example of a
new curve introduced as a means to solve problems is the third degree
curve which Descartes discussed in his Géométrie, and which became
known as the Cartesian parabola. The curve was used in the geometrical
construction of the roots of 5th and 6th degree equations (cf. 3.4).

Finally, the curve with modern equation

ae—y/a T a -y + X (151)
forms and example of a (transcendental) curve which originated as the
solution of a problem, namely the famous problem of Debeaune of 1638

(c f£. note 26),



1.2 The tremendous increase in the number of curves confronted
17th century mathematicians with the problem how to introduce,
describe or define new curves. In each of the three roles which
the curves could have, object of study, means of sclution and
solution itself, the curves had to be or tc become known. In the
previous period this was no problem; all curves were already known
to mathematicians and one could refer to any of them by its name
(ellipse, conchoid, spiral etc.) and its basic parameters.

But when is a new curve sufficiently known? Seventeenth
century mathematicians did not have a uniform definition of the
concept of curve (nor does it seem that they felt the need for such
a definition) and therefore there was no standard form of speci-
fying the curves one had in mind. Indeed there were many ways to
specify curves., One could, for instance, indicate how points on
the curve could be constructed, one could describe a machine by
which the curve could be traced, and, after the introduction of
analytic geometry, one could give the equation of the curve. Some
of these ways of describing curves were considered satisfactory,
others less so, some not at all.

I shall use the term "representations of curves" for ways of
specifying curves which were considered to make the curve in
question sufficiently known. This term was not used in the 17th
century in that meaning ; there was no general such term in that
period. Mathematicians did use the terminology "construction of
curves" which comes near to it but has a more restricted meaning.

The different ways in which curves were specified in 17th
century mathematics, the preferences which mathematicians expressed
for certain among these and the reasons given for these preferences
form an important and interesting theme of historical study. It is
important because these ways and preferences influenced the direction
in which mathematics developped in that period. Historians of mathe-
matics have up till now been little aware of this theme, mainly
because a too rapid translation of 17th century mathematical argument
in modern analytical symbolism has obscured these aspects of the
treatment of curves. The subject has also a more general interest
because it touches on a wider mathematical, or perhaps metamathe-
matical, question, namely when is a mathematical entity known or

when is a problem solved.



1.3 In the present study I shall in particular deal with the
representation of curves in Descartes' GéométrieI? I intend to
follow up the theme in one or two subsequent articles on the
representation of curves in the works of later 17th century
mathematicians.

For several reasons Descartes' Géométrie is the obvious
starting point of a study on the representation of curves. It was
this book that brought in one stroke all the algebraic curves into
focus. But, as has been remarked 2) (with wonder) by historians
of mathematics, Descartes did not consider the equation of a curve
a sufficient representation of it. Hence it is of interest to study
which representations he did find acceptable.

Moreover, Descartes introduced a sharp distinction between
admissable and non admissable curves. The first he called "geometrical'
the others "mechanical™. The geometrical curves are what we now call
the algebraical curves (although Descartes does not quite clearly
state that in the Géométrie, it can be inferred from what he says),
the mechanical curves are those which now are termed transcendental
curves. But because Descartes did not consider the equation a
sufficient representation of the curve he could not argue a sharp
division between geometrical and non-geometrical curves on the
basis of their equations; he had to argue this on the basis of such
representations of curves as he did find acceptable. It is therefore
important to study which these representations were.

Also Descartes' distinction between "geometrical" and "mechanical"
curves was a serious issue in seventeenth century mathematics. The
increasing interest in transcendental curves {curves therefore that
to Descartes were not acceptable in geometry) forced mathematicians
to take position with respect to the question in how far these curves
could be considered geometrical or acceptable in general. Again this
question could only be dealt with in terms of the representations of
these curves and several of the representations used in these debates

occur already in Descartes' G&ométrie.

Finally, I have found that by considering the representation of
curves in Descartes' Géométrie we can gain a better understanding of
the structure of that book and of its underlying programme. This
structure, and in particular the different roles of curves in the
Géométrie and Descartes' different criteria for geometrical accept-
ability of curves, have, I think, not yet been satisfactorily un-
tangled 3? The consideration of the representation of curves offers a

fruitful way to understand these aspects of Descartes' great contri-

bution to geometry and algebra.



Z. The problem of Pappus

2.1 Descartes expounded in his Géométrie a new programme for dealing
with geometrical problems. In explaining his programme he used one
problem as key example : the problem of Pappus. I shall explain
Descartes' programme in section 3, but before deing so I shall
discuss the Pappus problem and Descartes' solution of it. That
discussion may serve as an explanation of the sort of geometrical
problems for which Descartes presented a new programme, and of the
roles of geometrical constructions, curves and algebraic calculations

in that programme.

y
In explaining the Pappus problem )I shall use symbols for the
elements (lines, distances, numbers) in the problem. Descartes
presents the problem in prose and with reference to drawings. Let

(see figure 1)

figure 1

a number of lines L; be given in position in the plane. To each line



Li corresponds a fixed angle wi. For a point P in the plane let
dP,i’ or di for short, dencte the length of the linesegment from

P to Li which makes an angle of @, with Li' {In the case that wi

is ¢0° , d, is the distance to Li)' Let oo : B be a given ratio and
a a given line segment. It is required to find points with the
following property

in the case of three lines
2 - » -
(dl.d2).(d3) =a : B (231)
in the case of four lines

(dl'd2):(d3'du) = : B (2;2)

in the case of an uneven number (2n-1) of lines, n > 2:

(d ...dn):(d ...d .a) = o : B (2:3)

1 n+1l 2n-1

and in the case of an even number (2n) of lines, n > 2:

(d ...dn):(d d, ) = o : B (23:4)

1 n+l” """ 2n

Pappus gives the problem for three and four lines as well as its
generalization to more linesh).The problem is a so~called locus
problem: in each case there are infinitely many point which satisfy
the condition, these points form a locus in the plane; this locus
is, in general, a curve. Pappus states that in the cases of three
and four lines the locus is a conic section and that in the cases

of more than four lines nothing is known about form of the locus.

2.2 Descartes sketches the general solution of the problem at the
end of the first book of the Géométrie (pp.309-314). His method is

as follows. He sets

d, =y (2;5)

and he takes x to be the distance along L1 from a fixed point A to
,+ He then shows by simple geometrical
arguments that all di can be expressed linearly in x and y

the intersection of d1 with L

di = a;x + biy t ey (2:7)

He notes that in the exceptional case when all lines are parallel, the

x does not occur in the expressions for the di'



He then remarks that the products d4....d_ , d 50 6! and

1 n n+l 2n
dn+1"'d2n-1'a become expressions in x and y of degree at most
n. The conditions (23;1) - (2;4) can therefore be rewritten as

equations. In the case of n lines the equation will be of degree
at most n. In the case of n-1 lines the choice of d1=y and the
occurrence of a in the second product of lines implies that x
occurs at most to the power n-1, so that in that case the equation
is of degree at most n, but the highest power of x is at most n-1.
This does not apply to the case of three lines, because there the
problem has an exceptional form. Finally the cases of 2n and 2n-1
parallel lines lead to equations in one unknown, namely y, of
degree at most n; the locus in that case consists of a number of
lines parallel to the given lines.

Descartes then turns to the question of how the points satis-
fying the requirements of the problem {(the points on the locus) can
be constructed. His idea is to choose arbitrary values for y and
then to construct geometrically the corresponding values for x, In
this way arbitrarily many points on the locus can be constructed.
In section 6 I shall discuss this type of pointwise constructions
in more detail. Descartes remarks that for any chosen value of y,
the corresponding x's are the roots of an equation of which the
degree is, in the case of 2n lines, at most n, and in the case of
2n-1 lines, at most n-1. The case of three lines leads in general
to an equation of degree 2., The exceptional case of 2n-1 parallel

lines leads directly to an equation in y of degree n.

50 the problem is reduced to the geometrical construction of
roots of equations. Now Descartes anticipates on results which he
is to explain in the third book of the Géométrie. These results are:
The roots of second degree equation can be constructed by ruler and
compass. The roots of third and fourth degree equations can be con-
structed by the intersection of conic¢s, in particular the inter-
section of a parabola and a circle. The roots of fifth and sixth
degree equation can in general not be constructed by the intersection
of conics; more complex curves have to be used in that case. It is
possible to construct these roots by the intersection of a circle

with a certain third degree curve, namely the "Cartesian parabola.



Based on these results Descartes gives, at the end of the first
book, the following classification of the cases of the Pappus
problems (G pp.313-14) :

a) 3,4 or 5 lines, but not 5 parallel lines
the equation in x is of degree < 2 and therefore points on
the locus can always be constructed with ruler and compass.

b) 5 parallel lines, 6,7,8 or 9 lines, but not 9 parallel lines :
the equation in x (or for 5 parallel lines, in y) is of degree
< 4 and therefore points on the locus can always be constructed
by means of intersections of conics; in some cases, construction
by ruler and compass only may be possible (namely if the equa-
tions happens to be of degree < 2 or if they are reducible to
such equations).

¢) 9 parallel lines, 10,11,12,13 lines but not 13 parallel lines
the equation in x (or in y in the case of 9 parallel lines) is
of degree < 6, the construction by means of intersection of
conic sections will in general not be possible and a more compli-
cated curve has to be used.

a) etc.

2.3 This classification concerns the constructability of the locus.
Descartes returns to the Pappus problem in the second book. He there
gives another classification, now according to what he calls the
"genre" of the locus; I shall translate "genre" with "class".This
related to a classification of curves according to the degree of theinr
equations, which Descartes explains in the second book (pp.319-323).
The first class contains the curves with equations of the second
degree: the circle, the parabola, the hyperbola and the ellipse. The
second class contains the curves with equations of degree 3 and 4; the
third class those with equations of degree 5 and 6 and so forth. I
shall return to this classification in section 3. It leads to the
following classification of the cases of the Pappus problem (G pp.323-
324)
a') 3 or 4 linn~s

The equations of degree at most 2; the locus is of the first class.
bE') 5,6,7 or 8 lines

The equation is of degree at most 4; the locus is of the second

class or, in exceptional cases, of the first.



c') 9,10,11 or 12 lines
The equation is of degree at most 6; the locus is of the third

class or of a lower class in exceptional cases.
d') etec.

In this connection Descartes states that all equations can occur
as equations for the locus of some Pappus problem
And because the position of the given lines can vary in all sorts
of ways, and thereby change the given quantities and the signs +
and - of the equations in all imaginable ways, it is evident that
there is no curved line of the first class which would not be of
use in this problem if it is proposed in four straight lines, nor
one from the second which would not be of use if it is proposed
in eight, nor from the third when it is proposed in twelve, and
likewise with the others. So that there is no curved line which
is subject to calculation and which can be accepted in gecometry,
which is not of use for some number of lines.(G p. 324)
The statement is incorrects? But it is important in Descartes' further
classification of curves; I shall return to it in section 9.
Descartes then gives a complete solution (G pp.324-334) of the
Pappus problem in three and four lines, calculating the equations
explicitly and discussing the positions of the resulting conics in
the plane. This section is well knowns)and it is not important for my
present subject so I shall not discuss it here.
Finally he treats special cases of the five line locus problem,
namely when Ll,...,L,+ are parallel and L5 perpendicular to them.

Descartes considers first the problem (G pp.335-339)

dl.d2.d3 = dq‘ds'a (236)

and finds that the locus is the "Cartesian parabola" (see section 5.2).
Then he considers (G p.339)

dl.d2.a = d3.du.d5 (2;7)

and he gives a rather complicated prose description of the locus in

that case (see also section 8.1).

2.4 Descartes' solution of the Pappus problem illustrates well the
different roles of curves in solving locus problems : curves can
occur as locus; they can also occur as the means to construct points

on the locus. Descartes treats the curves in quite different ways



according to the role they have. Consider for instance the conic
sections. They occur as locus of the solutions of the 3 and 4 line
locus problem. Points on them can be constructed by ruler and compass.
Descartes considers this an adequate solution,for he states that this
case the problem is "plane" which means that it can be solved by
ruler and compass. So if a conic occurs as a locus it can be con-
structed, pointwise, by ruler and compass.

Now consider the case that a conic is used as a means of con-
struction. This occurs in the 6,7,8 and 9 line locus problem, where
points on the locus are constructed by means of intersections if
conics with circles and straight lines. Apparently the conics in-
volved here cannot be constructed by ruler and compass because of
that were acceptable the whole construction could be performed by
ruler and compass, and that is what Descartes denies. Hence point-
wise constructions for conics by ruler and compass are acceptable
if the conics serve as locus but they are not acceptable if the conic
serves as means of construction; in that case their construction has
apparently to satisfy stronger criteria. The same applies to other
curves than coniecs.

That this is so is understandable because if the conic is used
as a means of construction, it is supposed that its intersection
with circles, straight lines or other conics can be found. But if the
conic is only given through a pointwise construction as in the locus
case, the intersections with other lines cannot be determined. To
illustrate this let
(see figure 2) C, and C, be
two conics whose intersec-
tions I and J we want to
construct. Let AB be the
axis of the x's and Y the
direction of the y's. Points
on Cl and 02 can be con-
structed by ruler and

compass by taking arbi-

+

trary values for x and con- A

structing the corresponding
y's. But in that way we

cannot precisely construct /ﬂ
I and J; we can approximate

figure 2
them but their exact position



would only occur if by accident we started our construction with

X or X ..

. IfJa curve is used as means for construction it must be
possible to find its intersection with other curves. A pointwise
construction is not sufficient for that purpose. In stead it is
natural to require a method to trace the curve by a continuous
motion, so that the intersections with other lines are actually
marked. We will see (sections 4 and 5) that the requirement that
curves be traceable by continuous motion, a requirement induced by
the use of curves as means for construction, plays a crucial role

in Descartes' Géométrie.

3. Descartes' Programme fon Geomelthry.

3.1 In his Géométrie Descartes presented an approach to the solution
of geometrical problems which contrasted with earlier usages in so
strong a way that one may speak here of a new paradigm. Before giving
his own opinion on the programme of geometry Descartes explained how
mathematicians before him, especially the mathematicians from anti-
quity, had thought about this matter. He says (G pp. 315-317) that,
traditionally, geometrical problems had to be solved by ruler and
compass. However, classical mathematicians had already encountered
problems which could not be solved in this way. They had solved them
by means of intersections of conics or even more complicated curves
such as the conchoid. But they called these curves mechanical, there-
by expressing that they did not consider them genuinely geometrical.
Descartes then speculates about the reasons which the ancients may
have had for this, and rejects these reasons. His rendering of the
classical arguments is oversimplified, if not inaccurate72 but as an
introduction and contrast to Descartes' own view 1t serves very well.
Descartes' view can be summarized as follows: Construction of
problems by ruler and compass is certainly simpler than, and
therefore preferable over, construction by means of the intersection
of more complex curves such as conics or higher curves. In the con-

struction of problems one should always use the simplest possible curves



- 11 -

But this does not imply that more complex curves are less geo-
metrical than the straight line and the cirecle, or that constructions
by means of these curves are less geometrical than constructions

by ruler and compass. If a problem can be constructed by the inter-
section of conics (or of more complex curves) and it cannot be con-
structed by simpler curves, then that construction is the appropriate
one and it is not less geometrical than a construction by ruler and

compass.

This vision of the geometrical procedure of construction of
problems defines a programme, consisting of three parts.

First it has to be determined which curves are acceptable as
genuinely geometrical means for the construction of problems. These
curves should include the straight line, the circle, the conic sec-
tions and higher curves of ever increasing complexity. Secondly, it
must be made clear on which criteria some curves will be considered
simpler than others; this will induce a classification according to
simplicity within the collection of geometrically acceptable curves.
Finally a method has to be found by which, for each problem, the
simplest possible curves can be found by which the problem can be
constructed. This is essentially the programme which Descartes works

out in his Géométrie.

3.2 The first point of the programme, differentiating between the
curves which are acceptable in geometry and those that are not, has
caused Descartes (and his successors) the greatest number of concep-
tual problems. As the question concerns curves, and in particular new,
hitherto unknown curves, it was discussed in terms of the represen-
tations of these curves. Basically Descartes takes as geometrical
curves those "which can be described by some regular motion" (G. p.369).
But this is not a very clear criterion and Descartes also wants to
include in the collection of geometrically acceptable curves all curves
that may occur as locus solutions of problems like the Pappus problem.
This means that in fact ~ although he never explicitly says so -
Descartes wants to take all algebraic curves as geometrical. But to

do so he would have to prove that all algebraic curves can be traced

by a continous and geometrically acceptable motions, or that they can
be traced by other means which are as geometrical as the tracing by

continuous motion. In sections 4 - 9 I shall discuss how Descartes
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dealt with this very complex part of his programme.

Thus algebra, the algebraic equation of the curve, was the
essential criterion in the first part of the programme, but it had,
so to speak, to remain under the surface. Descartes could not just
take as geometrical all curves that admit an algebraic equation,
because then he would have no argument to defend that these curves
were truly the only curves acceptable in geometry, in other words

he would not be doing geometry.

3.3 In the second and third part of the programme algebra could be
quite openly used and it formed the crucial tool. Descartes classified
curves with regard to simplicity through a division in classes
("genres") according to the degrees of the algebraic equation of the
curve. The first class consists of the curves with equations of degree
2. These are the conic sections; Descartes does not incorporate the
straight lines in his classification. Curves with equations of degree 3
and 4 are of the second class; those of degree 5 and 6 of the third
etc. (G p.319).

Descartes stresses elsewhere that in constructions we should
always use curves of lowest possible class (G p. 371). He notes that
within one class some curves may be simpler than the others in the
sense that one cannot construct with them as complicated problems as
with the others. He mentions the circle as example; it is of the first
class but there are constructions that can be performed with the
other curves of that class (the conic sections) but not with the
circle. Descartes also mentions the conchoid as such an exceptional
curve within the second class (G p.323).

Descartes gives as reason for taking two degrees together in one
class that there is a general rule to reduce fourth degree problems
to third degree ones, and sixth degree problems to fifth degree ones,
etc. (G. p.323). It seems likely that in the case of fourth and
third degree problems he had in mid Ferrari's rule for reducing
fourth degree equations (in one unknown) to third degree ones. But
there is no such rule for sixth and fifth degree equations, nor for
higher degree ones, so in this case Descartes has made a rather rash
extrapolation.

The classification may also have been induced by the methods

for constructing roots of equations by the intersection of curves.
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For the third and fourth degree equations the roots can be con-
structed by circle and parabola, those of fifth and sixth degree
equations by circle and Cartesian parabola, and so, by introducing
higher curves as means of construction one can construct roots of
equations of two successive higher degrees. But there is a puzzling
aspect here. Descartes presents his classification as a classification
for curves serving as means of construction, whereas the argument
about construction by intersection of curves would classify problems
(in this case equations in one unknown) rather than constructing
devices; indeed, for the constructing devices involved, parabola
(degree 2), Cartesian parabola (degree 3) etc., the degree rises by
single steps.

The classification, and especially Descartes' arguments about
the subdivision within one class, involve a contradiction between
algebraic criteria of simplicity (the form of the equation, in
particular its degree) and geometrical criteria of simplicity (the
use of the curve as a constructing device). The special role of the
circle within the first class shows that the classification is not
completely adequate to distinguish means of construction. I shall
return to this contradiction in connection with pointwise constructions

in section 10.

3.4 TFor the third part of the programme, to find the simplest geo-
metrical construction of the solution of a given geometrical problem,
the crucial tool again was algebra. A problem should be reduced to

an equation in one unknown (G pp. 300-302). Then the roots of this
equation should be constructed geometrically through the intersection
of certain curves, which should be as "simple" as possible that is,
of lowest possible class . The simplicity of the curves by which a
problem can be solved determines to which class the problem belongs.
Here Descartes conformed to classical usage and called problems plane
if they can be solved by circles and straight lines, and solid if
they also require a conic section. Descartes devoted most of the third
book of the Géométrie to this point of the programme. He proved there
that every third and fourth degree equation can be constructed by the
intersection of a circle and a parabola, and every fifth and sixth
degree equation by the intersection of a circle and a Cartesian para-
bola.
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3.5 At the beginning of the third book of the Géométrie Descartes
gave a succinct formulation of the programme which I have been
describing. He writes there
Although all curved lines which can be described by some
regular movement must be admitted in geometry this is no to
say that for the construction of any problem we may use in-
differently the first one that occurs. We must always take
care to choose the simplest through which the solution is
possible. And it should be noted that by simplest curves
one should not only understand those which can most easily
be described, nor those which the construction or the proof
of the proposed problem easier, but primarily those which
are of the simplest class which can be used to determine the
required quantity. (G p. 369'-370).
There follows an example of the construction of two mean pro-
portionals between two given linesegments, by means of curves
traced by a certain machine (which I shall discuss in section 5.1)
Descartes remarks that this construction may well be the easiest
possible construction and proved with great clarity, but it uses
curves of a higher class than would be necessary and therefore
»+. i1t would be a mistake in Geometry not to use them (namely
the curves of a simpler genre, HB). On the other hand it is
also a mistake to try vainly to construct a problem by a
simpler class of lines than the nature of the problem allows.
(G p.371).

4. The nrepresentation of curves in Descarntes' Gbombinie .

4.1 Descartes deals with the fundamental question of his programme

at the beginning of the second book of the Géométrie. He frames that
question in the margin title as : "which are the curved lines that can
be accepted in geometry" (G p.315). He criticises the classical mathe-
maticians for having called certain curves used in geometrical con-~
structions "mechanical"™ rather than "geometrical'. Descartes says

that the fact that such curves are described by certain machines does
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not make them less geometrical than the straight line and the circle,

which, after all, are also traced by machines, namely by the ruler

and the compass. Descartes does not want to impose such very strict

requirements for geometrical curves; he accepts many more curves as

geometrical
To trace all the curved lines which I want to introduce here,
nothing else needs to be supposed than that two or several lines
can be moved one by the other, and that their intersections mark
other lines ... " (G p.316).

Such curves may be very complicated, but that needs not make them

less geometrical
It seems very clear to me that if we consider, (as is customary),
geometrical that which is precise and exact, and mechanical that
which is not, and if we consider geometry as the science which
furnishes a general knowledge of the measures of all bodies, we
have no more right to exclude the more composite lines than the
simpler ones, provided that one can imagine them as described by
a continuous motion, or by several motions which follow each
other, and of which the last ones are completely regulated by
those which precede. For in this way one can always have an exact

knowledge of their measure.(G p.316).

Descartes criterion, then, to accept curves as geometrical is
that they can be traced by continuous motion. The tracing of the curve

is basic for understanding its nature

; Descartes significantly com-

bines the word "tracing" with understanding and conceiving; he speaks
about '"ways to trace and conceive curved lines" (G p.319) and "to

know and trace the line" (G p.307).

In view of Descartes' programme, which I have outlined in section
3, the fact that he considers curves primarily as traced by continuous
motions generated by certain machines, means that he was confronted
with a number of deep conceptual problems. These problems are the
following
a) There are certain curves, such as the spiral and the quadratrix
which Descartes does not accept as geometrical but considers mechanical
in the sense of inprecise and unexact. These curves, however, can be
traced by a continous motion. Descartes had therefore to specify which

motions he accepts and which he rejects.
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b) In the course of his studies Descartes came accross several
curves which he could not, or would not, present as traced by some
continuous motion. In stead he presented them as constructed point-
wise or as traced by machinery involving strings. He had therefore
to argue that such constructions or ways of tracing are equally
acceptabel in geometry as tracing by continuous motion.

¢) Moreover, pointwise constructions and tracing machinery involving
strings can also be given for curves which Descartes did not accept
in geometry. Therefore he had to specify which pointwise constructions
and which tracing methods with strings were acceptable.

d) Finally, algebra was the crucial tool in Descartes' new programme
for geometry, and the new curves he wanted to introduce had to be
amenable to algebraic treatment, that is, they had to have an alge-
braic equation. Thus Descartes had to consider the question whether
his new curves had such equations and conversely whether equations
resulting from the use of the algebraical methods would always

correspond to geometrically acceptable curves.

The representation of curves is central in these questions. The
arguments about the acceptability of curves can only be formulated
in terms of the representation of the curves, and the discussion is
so complex because three different methods of representation play a
role in it : representation by specifying the continuous motion which
traces the curve, representation by the method to construct points on
the curve, and representation by specification of a tracing machinery
involving strings. To these three one may add the fourth method of
representation of a curve by its equation. However, the whole complex
of questions occurs precisely because Descartes did not consider that

last representation as sufficiently geometrical.

In the following sections I shall record Descartes' arguments

with respect to the four problems mentioned above.
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5. Cunves described by continuous motion

5.1 To trace the curves that are acceptable in geometry, Descartes
stated, "nothing else needs to be supposed than that two or several
lines can be moved one by the other and that their intersections
mark other lines". (G p.316). In the second book of the Géométrie
he illustrates the kinds of motions he has in mind here by two
examples.

The first example concerns the famous instrument of figure 3

(G p.318 and p. 370).

It is a system of linked rulers. The rulers YX and YZare connected in Y
by a pivot. Ruler BC is fixed to YX in B. The rulers CD, EF and

GH are made in such a way that they can slide along YZ while keeping
perpendicular to it. Similarly the rulers DE and FG slide along YX
while keeping perpendicular to it. At the beginning of the motion

of the instrument angle XYZ is supposed to be zero and all the
rulers coincide in point A. Now the angle XYZ is opended by keeping
Y% fixed and rotating YX. Ruler BC pushes CD outwards, CD pushes DE,
DE pushes EF etc. The point B (fixed on YX) describes a circle;

the points D, F and H, sliding along YX, describe other curves dotted
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in the figure. Descartes argues that these curves, although described
by ever more complicated combinations of motions, should all be
accepted in geometry
"The latter are subsequently more composite than the first,
and this more composite than the circle. But I do not see what
could prevent us to conceive the description of the first'(i.e.
the curve described by D) as clearly and distinctly as that of
the circle, or at least as that of the conic sections, nor what
could prevent us to conceive the second one and the third one
and all the others, which one can describe equally well as the
first one; nor therefore what could prevent us to accept all
these curves in the same manner to serve the speculations of

geometry." (G p.318-19) .

The instrument of figure 3 occurs already in very early studies
of Descartes; I shall return to its use and origin in section 10.
Here it should be noted that Descartes' discussion of the instrument
in this passage does not serve primarily to explain which motions
he had in mind for the tracing of acceptable curves; he goes on to
add another example which explains that better. Rather, the instru-
ment serves to show that, however composite a motion is, the re-
sulting curve can be conceived in a clear and distinct way, and is
therefore acceptable in geometry. The instrument is a precise illu-
stration of the description, quoted above, of acceptable tracing
motions :

" a continuous motion, or(-) several motions which follow each

other and of which the last ones are completely regulated by

those which precede." (G p.316).

Here the first motion is the rotating motion of the rulers YX and
BC, the subsequent motions are those of the rulers CD, DE, EF etc.,
BC regulates the motion of CD, CD that of DE and so forth.

The text, especially the use of the key words clear and distinct
("nettement", "distinctement" G p.318) shows that Descartes saw a
parallel between the series of interdependent motiens in the machine,
all regulated by the first one, and the "long chains of reasoning" in

mathematics, discussed in the Discours de la Methode, which, as long

each step in the argument is clear, yield results as clear and certain
9
as their starting point.
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5.2 But the example of the instrument of figure 3 does not cover

all the combinations of motions which Descartes had in mind, because
it involves only straight lines as moving parts. When Descartes wrote
"nothing else needs to be supposed than that two or several lines

can be moved the one by the other, and that their intersections mark
other lines", he had also moving curved lines in mind. This becomes
clear in the second example of a tracing instrument which Descartes
gives. He uses this example to explain that every curved line traced
by such a continuous motion has an equation, and that in general the
curve traced by the instrument is more complicated than the curve
which is used in the instrument. The example is as follows (G. pp.319
sqg., see figure 4):

A ruler GL is pivoted in G.
It is linked in L with a K
device NKL whiech is movable ) . "“,/////

along vertical axis while

keeping the direction of the
line KN constant. When L is

moved along the vertical axis

the ruler turns around G and
the line KN is moved down-
ward, staying parallel to
itself. The intersection C
of these two moving straight
lines described the curve GCE. Descartes derives the equation of this
curve,

y2 = ¢y - %xy + ay = ac (531)

(where GA = a, KL =b, NL = ¢, CB =y and AB = x) and concludes that it
is a curve of the first class; he adds that it is indeed a hyperbola.
Thus the straight line KN in the machine produces a curve of the
first class.

Next Descartes asserts (G p. 322) that if +the straight line in
the machine is replaced by a curve of the first class, the resulting
curve will be of the second class. He mentions the case that KN is

a circle with centre L; the resulting curve will then be the concheid of

Nicomedes. {(Indeed that curve (see figure 5) has the property that on



all the lines through a fixed
point (G) the intercepts between
he curve and an axis (KA) are
equal.) The conchoid is of a

higher class than the conics.

Then Descartes replaces the circle by a parabola (see figure 6),
and states that the resulting curve will be the "first and simplest

curve for the problem of Pappus if there are only five lines given in

figure 6

position™ (G p.322). This curve plays a central role in Descartes
- 2 . . . )

Geométrie, it became later known as the '"Cartesian parabola”. )

Later on in the second book (G 335-337) Descartes showed that it is

the solution of the five line locus {e¢f.2.1)

dy.dy.dy = d,.d..a, (532)
if Ll’ L2, L3 and Lu are equidistant and parallel and L5 is perpen-
dicular to the other lines:; a is the distance between L1 and L2 and
all the distances di are taken perpendicular to Li' He gives the

equation of the curve as
y3-2ay2—a2y+2a3 = axy (5;3)

(See figure 7, G p.336. The lines Li are GF, ED, IH, AB and GA
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respectively. The distances are taken perpendicular to the lines,

dl = Cr, d2 = CD, d3 = CH, du = CB = vy, dg = CM = x. GL in the

ruler moving around G. CKN is the parabola moving vertically along

its axis AB. GEC is the branch of the "Cartesian parabola" described
by C, NIO is the branch described by the other intersection N, cGc and
oIn are the branches of the other "Cartesian parabola’™ which occurs

if the distance to L5 is taken positive in the other direction.)

In the third book Descartes explains how this curve can be used
in finding the roots of a sixth degree equation (G p.403); he repeats
there in more detail the way
to trace the curve through the
motion of a ruler and a parabola. §l... i ..... vl k2 F
In the passage from the second ‘
book where he introduces this figure 7
curve Descartes says that it is Xty
of the second class. Furthermore

he claims that if a curve of the Y

second class is used in the
tracing, the resulting curve will ¢ c
be cone of the third class etec.

(G p.332). He does not prove this.

5.3 The linkage machines and the device of a moving curve whose
intersection with a ruler traces new curves, are the examples which
Descartes gives to illustrate his concept of tracing curves through
combinations of motions. It is a fundamental concept because Descartes
states that he will only introduce new curves traceable in this way.
That means that there are other curves which he will not accept as
geometrical because they cannot be traced in this way. Descartes
mentiones the spiral and the quadratrix as examples of such curves.
However, both the spiral and the quadratrix can be traced by a combi-
nation of continuous motions, indeed they were defined in such a way.
Descartes had therefore to precisize a further requirement for the
motions in order to rule out these curves. Before discussing this
requirement I shall indicate the ways how the two mentioned curves

can be traced by continuous motions.
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The Archimedean spiral (see figure 8) is described by two

motions, one rotatory motion of a ruler OR which turns uniformly

R

figure 8

around 0, and one rectilinear motion of a point P which moves uni-
formly along the ruler OR. The point P traces the spiral.

The quadratrixlz)(see figure 9) can be described by a combination of separate
motions, namely again one rotatory motion of a ruler OA which turns

A B

uniformly around A from position

OA to position O0C, and one recti-

linear motion of a ruler PQ

which moves uniformly down-
wards from position AB to

position OC, and this in the

same time that OR turns from ’ 0o D ¢

OA to 0C.The intersection § _

of both rulers traces the figure 9

quadratrix ASD. The construction implies that during the motion always
AP : KE = AO : EE.

Descartes says about the spiral, the quadratrix and similar
curves, that "they are conceived as described by two separate move-
ments, between which there is no relation (" raport") that can be
measured exactly" , and that for that reason they '"really only belong
to Mechanics".(G p.317) The absence of a measurable "raport" is the
essential point here for in both cases the two movements could in
principle be linked in such a way that the one determines the other,
namely by a string mechanism which I shall discuss in section 7.
Considering the methods to trace the quadratrix and the spiral we
may conclude that Descartes, in speaking about the measures of the

motions, means their velocities and that these measures have no
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exactly measurable "raport"” because the comparison of the velocities
involves the comparison of the lenghts of straight and curved lines,
in particular the ratio AO : KE of the radius of a circle to the
quarter arc of that circle. The argument returns some pages later in
the Géométrie in connection with the tracing of curves by machines
involving strings (see 7). There Descartes writes:
"... the proportion between straight lines and curves is not
known and I even believe that it can never be known by man."
(G p.340), Thus the separation between geometrical and non-geometrical
curves, which is fundamental in Descartes' vision of geometry, rests
ultimately on his conviction that proportions between curved and
straight length cannot be found exactly. This_ in fact, was an old
and in Descartes' time generally accepted doctrine, going back to
Aristotle.i3) The central role of the incomparability of straight
and curved in Descartes' geometry explains why the first rectifi-
cations of algebraic (i.e. for Descartes geometrical) curveslk) in
the late 1650's were so revolutionnary: they undermined a corner-

stone of the building of Descartes' geometry.

5.4% These, then, are Descartes'arguments about the tracing of curves
by continuous motion. The possibility of an acceptable way of tracing
the curve constitutes the fundamental criterion for accepting the
curve as geometrical. Obviously this criterion is connected with the
use of the curve as means of construction (see 2.4 and 10); the in-
tersections of the curve with other lines can be considered con-
structable only in the case that the curve is actually traced. But

in the Géométrie Descartes also accepts other ways to represent
curves. I shall discuss these, and their relation to tracing by

continuous motion, in the next sections.



6. Poantwise constructions for curves

6.1 As we have seen (section 2.2), Descartes' solution of the Pappus
problem consisted of a method to construct arbitrarily many solutions,
that is, arbitrarily many points on the locus. The method was: first
to derive the equation of the locus in indeterminates x and y3; then
to chose an arbitrary value n for y and to form the equation in one
unknown for the corresponding value or values of x; then to solve
this equation geometrically, that is to construct the root or roots
£; and finally to construct the point or points with coordinates £,n
on the locus. By repeating this process with other values for y
arbitrarily many solutions or points on the locus can be found. How-
ever, it is not at all obvious that this construction may be considered
as a satisfactory construction for the whole curve which forms the
locus. It is not a construction by continuocus motion. The process
yields only a finite number of points on the curve. And it is, in
general, not possible to determine with this construction the inter-
section of the locus with some given curve.

Descartes' discussion of the Pappus problem in the first book
of the Géométrie leaves the question open whether this pointwise
construction can be considered as a construction of the locus as
curve. In the case of the three and four line locus, where the locus
is a conic, Descartes does more than giving the pointwise construction,
he indicates how in each case the position of the vertices,axes,

15
latus rectum and latus transversum . can be found, thus giving a

representation of the locus curve by naming it (ellipse, hyperbola

etc.) and giving its basic parameters. (G pp. 327-332). However,

later on in the second book Descartes returns to pointwise constructions
of curves and states that in certain cases curves constructed point-
wise should be accepted in geometry.

The occasion for him to do so is the five line locus. Descartes
solves it for two special cases. He considers (G pp.335-339) four
equidistant parallel lines Ll""’Lu and one perpendicular L5.

In the case
dl'd2'd3' = d,.dg.a (63;1)

(where a is the distance between L1 and L2) Descartes finds, as I have
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discussed in section 5.2 that the locus is the "Cartesian parabola"
which he had introduced earlier as the curve described by a combined

motion of a ruler and a parabola. For the case

a.dl.d2 S ds.du.d5 (B32)

Descartes also gives an explicit solution, be it in a very compli-
cated formulation which does not give a description of the locus by
continuous motion, but rather a property of it,ls) from which, at
most, a pointwise construction can be derived. (G p.339) He then
decides not to give more details because he has already indicated in
the first book how, in general, points on the locus can be constructed:
As to the lines serving in the other cases, I shall not bother
to distinguish them into different kinds, for I have not under-
taken to say everything. And now that I have explained the way
to find an infinity of points through which they pass, I think
that I have sufficiently given the way to describe them. (G p.339)
Thus Descartes states that pointwise constructions are sufficient to

describe the curves.

6.2 Descartes says more about the acceptability of these censtruc-
tions in the next section, of which the margin title is :

Which are the curved lines that one describes by finding many

of their points and that can be accepted in geometry. (G p.340)
As that title indicates, Descartes accepts pointwise constructions
under certain conditions as sufficient constructions for curves. As
in the case of tracing curves by continuous motion, these conditions
must be exclude the curves such as the spiral and the quadratrix.
Indeed there are, as Descartes says, pointwise constructions for
these curves as well. Descartes probably had in mind here the following
peointwise construction for the quadratrixl7) (see figure 10). Divide

arc AC in 2, 4, 8, 16 etc.

parts (this can be done by
ruler and compass) and
do the same with the radius

OA. Then draw radii as OR to

the divisionpoints on ARC and

draw horizontals as TS through
the divisionpoints of OA. The .

ftgure 10
intersections as S of corre-

sponding radii and horizontals are on the quadratrix. In this way



- 2K -

arbitrarily many points on the quadratrix, lying arbitrarily close
to each other can be geometrically constructed. For the spiral there
is a similar construction.

These pointwise constructions then, Descartes has to exclude and
so he has to explain the difference between these, unacceptable con-
structions and the acceptabel pointwise constructions of, for in-
stance, the loci for the Pappus problem. According to Descartes the
difference lies in the fact that for curves such as the quadratrix
the constructable points are special points (for the quadratrix those
with ordinate —%.OA). In the case of the acceptable pointwise con-
structions eve%y point is in principle constructable because the con-
struction may start from every given value of one of the coordinates.
Descartes explains this as follows:

It is worthy of note that there is a great difference between

this method of finding several points to trace a curved line,

and that used for the spiral and similar curves. For by the

latter one does not find indifferently all points of the required
curve, but only those points which can be determined by a simpler
measure than that required for the composition of the curve.

Therefore, strictly speaking, one does not find any one of its

points, that is, not one of those which are so properly points

of the curve that they cannot be found except by means of it.

On the other hand there is no point on the curves which serve

for the proposed problem [the Pappus problem H.B.] that could

not occur among those which are determined by the method ex-
plained above. And because this method of tracing a curved line
by finding a number of its points taken at random is only
applicahle to curves that can also be described by a regular and
continuous motion, one may not exclude it entirely from geometry.

(G pp-339-340).

Thus Descartes states firmly, be it without any attempt at proof,
that curves admitting a pointwise construction in which every point
on it can, in principle, be constructed, can also be traced by
continuous motion and are therefore geometrical. The passage suggests
that Descartes saw a correspondence between the complete arbitrari-
ness of the constructed points on the curve and the continuity of

the motion.



6.3 After this passage Descartes repeatedly uses pointwise con-
struction in the same way as tracing by continuous motion, namely
18)

to represent a curve. For instance he introduces the famous ovals ,

which are curves with certain optical properties, through a point-
wise construction. As an illustration of such a representation by
pointwise constructions I summarize Descartes' introduction of the
first oval (G p.352, "this is the way how I describe them"):

Let two lines (see figure 11) be given, intersecting in A under a
given angle. A lies between R

the points F and G on the

one linej; the ratio of AF to

AG is given. R lies on the

other line, AG = AR. To con-

struct points on the oval,

take an arbitrary point K

on AG. Draw a circle with

figure 11

centre T and radius FK.
Draw KL perpendicular to
AR. Draw a circle with centre G and radius RL. The two intersections
of the two circles lie on the oval. By repeating this construction
starting from other points K on AG, arbitrarily many points on the
oval can be found. - The construction yields a geometrical curve,

because the choice of K is completely arbitrary.

7. Stning constructions fon curves

7.1 The passage in the second book on the geometrical acceptability

of curves given by pointwise constructions is followed by a passage

on a third kind of representation of curves, namely tracing by

machines which involve strings. The margin title of that section is:
And which curves that one describes by means of a string can be
accepted. (G p.340).

19
Descartes then refers to his Dioptrique ,) in which he has given

such string-constructions for the ellipse and the hyperbola. For the

ellipse it is the well known "gardeners construction" (see figure 12):



A cord is fixed in the points
A and B, It is stretched by

a tracing pin T which is

moved around A and B, always
keeping the cords straight.

It then traces an ellipse with

20) fitgure 12
foci A and B (A.T 6 p.1686).

For the hyperbola (see figure 13
a ruler AR is pivoted in A;
a string is fixed at B and

at point R on the ruler. The

string is stretched by a
tracing pin T which is kept figure 13
against the ruler. By turning A
the ruler arcund A and keeping
T to the ruler and AT stretched, T describes one arm of a hyperbola
with foci A and B. (A.T. 6,p.176)

It is noteworthy that in the Dioptrique Descartes calls this
construction of the ellipse "rather rough and not very exact™" (A.T.
6 p. 166) but thinks that it serves better than the section of a
cone or a cylinder to understand the nature of an ellipse. In the
case of the hyperbola Descartes pictures "a gardener who uses it
to measure off the border of some flowerbed" (A.T. 6 p.176). Never-
theless, in the Géométrie Descartes accepts these constructions as
genuinely geometrical representations of curves. This shows that he

is not primarily concerned with the exactness of his constructions

in practice but with their clarity and understandability in principle.

7.2 On the other hand, string constructions can also be used to

trace curves which Descartes does not accept as geometrical. Descartes

mentions this but does not give examples. He may have had in mind

methods as the following to trace the Archimedean spiral (see figure
14). Consider a ruler AR pivoted in A. Around A there is a circular
disk BC., In B a string is fixed to the disk; it is kept slung along

the disk and the ruler (for instance by letting it pass through an eye fixed on
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the ruler in D.)At the end of the
cord a tracing pin T is fixed.
When now the ruler AR is moved
clockwise around A, the pin T
traces an Archimedean spiral.
(such aconstruction is mentioned

21) .
by Huygens " § it was certainly

easy for Descartes to think out

similar machinery to trace the

figure 14

quadratrix e.g.)
Such use of strings in tracing curves Descartes had to exclude.
He did so by excluding the cases in which the string is partly
curved and partly straight and during the motion curved parts change
into straight ones or vice versa. His reason for exXcluding this case
is, as I have already discussed above (section 5.3), his conviction
that ratios between straight and curved lines cannot be given exactly.
Descartes argued as follows:
Nor should we reject the method in which a string or a loop
of thread is used to determine the equality or the difference
of two or more straight lines which can be drawn from each
point of the required curve to certain other points or toward
certain other lines under certain angles. We have used this
method in the Dioptrique to explain the ellipse and the hyper-
bela. It is true, though, that one cannot accept in geometry
any lines which are 1like strings, that is, which are sometimes
straight and sometimes curved, because the proportion between
straight lines and curved lines is not known and I even believe
that it can never be known by man, so that one cannot conclude
anything exact and certain from it. Nevertheless, because in
these constructions one uses cords only to determine straight
lines whose lengths are perfectly known, this should not be a

reason to reject them. (G pp. 3u40-3u41),

7.3 Further on inthe Géométrie Descartes uses string constructions
as an alternative to pointwise constructions in the representation

of his ovals. To illustrate this I summarise the stringconstruction
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for the first oval (see figure 15)
FE is a ruler pivoted in F,
A string is fixed in E on

the ruler and in G on the axis

FAG. It is slung around a pin K

on the axis and it is kept

straight by a tracing pin in C
against the ruler. Thus the figure 156

string is kept as E-C-K-C-G.

Now the ruler is turned around

F and in that motion the tracing pin C traces the oval. The points
F, A, K and G on the axis can be chosen such that the oval has the

required optical properties.

&§. Cunve equations in the Géomdtnrnie.

8.1 We have seen how Descartes makes use of three different kinds
of representation of curves: by tracing machines, by pointwise con-
structions and by tracing machines involving strings. In each case
certain further conditions (which exclude the transcendental curves)
should be satisfied in order that the resulting curves should be
acceptible in geometry. In the first and the third kind of repre-
sentations these conditions have to do with the axiom of the in-
commensurability of straight and curved, in the second with the ran-
domness of the constructible points on the curve. It is noteworthy
that Descartes does not try to connect these two types of condition.
In fact they relate to different apsects of curve tracing by con-
tinuous motion. The incommensurability of straight and curved re-
lates to the condition that the combined motions which trace the
curve regulate each other in a measurable way {(cf. section 4.1). The
randomness of the constructable points relates to the continuity of

the tracing motions (cf. section 6.2).
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There remains the question of the role of equations as re-
presentations of curves: in how far did Descartes consider the
equation a sufficient representation of a curve? Descartes is con-
vinced that the equation of a curve incorporates all information on
its properties; He writes

"Now if one knows the relation that all points of a curved

line bear to all points of a straight line in the way I

have explained (i.e. as soon as the equation is known H.B.)

it is easy also to find the relation they have to all the

other given points and lines; and subsequently to find the

diameters, axes, centers and other lines or points to which

each curve has some special or more simple relation than to
others, and in that way to conceive various ways of des-

cribing the curves, and to choose the easiest."(G p.341).

The passage suggests that it needs still an effort to find the des-
criptioq of the curve from its equation, so that the equation itself
is not an appropriate representation of the curve.

This is in agreement with the fact that nowhere in the Géométrie
Descartes uses an equation to introduce or represent a curve. In
several cases he treats curves without giving their equations, in
other cases he gives the equation almost casually in the course of
his arguments.The solution of the Pappus proplem in five lines of
which four are parallel, equidistant and perpendicular to the fifth,
(ef. sections 2.3 and 6.1)

a.d;.d, = d,.d, .4, (831)

is given in book II in the form of a very complicated prose descrip-
tion of a defining property of the locus. The description could have
been translated into an equation, and would certainly have been more
informative in that way. Equations of the curves traced by the machine
discussed in section 5.1 are not given in the Géométrie, nor does

Descartes present the equations for the ovals. The Cartesian parabola,

so fundamental in the Géometrig, is introduced in book II as

the curve traced by the intersection of a parabola and a ruler.
Its equation is given afterwards, and clearly not as a
representation of the curve but as a means to prove that it

solves the five line locus problem (G p.337), or to determine

its tangents (G p.344). For readers to whom the description

of the curve by ruler and parabola "seems difficult" Descartes
adds a alternative representation not the equation but a pointwise

construction (G. p.407).



The conclusion from these facts must be that for Descartes the
equation of a curve was primarily a tool and not a means of defi-
nition or representation. It was part of a whole collection of
algebraic tools which in the G€ométrie he showed to be useful for
the study of geometrical problems. The most important use of the
equation was in classifying curves into classes and in determining
normals to curves. Here the equation must actually be written out.
In many other cases Descartes could get through his calculations
about problems without explicitly writing down the equation of the

curve.

9. Geometrnical curves

9.1 Within his programme for geometry, Descartes did not, and could
not simply state that geometrical curves are those which admit alge-
braic equations. Hence the question arises how Descartes saw the class
of geometrical curves; did he really consider this class to be the
same as the class of curves admitting algebraic equations and did he
think that every such equation could occur as the equation for a geo-
metrical curve? And was he aware of the extension of the class of
curves which he decided to banish from geometry? In this section I

shall deal with these questions.

Descartes states firmly that all geometrical curves have equations
After explaining the curve tracing machine discussed in section 5.1
he wrote

"I could give here several other ways of tracing and conceiving
curved lines, which would be ever more complicated by degrees
to infinity. But to understand the totality of all curves that
are in nature and to distinguish them orderedly in certain
classes, I do not know a better way than to say that all points
of those that can be called geometrical, that is those which
admit some precise and exact measure, necessarily have some
relation to all points of a straight line, which can be ex-
pressed by some equation, the same equation for all points.”

(6 p.319)
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He goes on to explain how, in the case of the tracing machines

discussed in section 5.2 these equations can be found.

The converse gquestion, namely whether all algebraic equations
describe geometrical curves, is a much more difficult one and
Descartes does not answer it explicitly. Taken in its strict sense
the question is whether for every algebraic equation a tracing
machine, or a combination of continuous motions in the sense ex-
plained in section 5, can be found that describe the curve having
that equation. Descartes nowhere explicitly deals with that question.
Still it is so fundamental a question in the whole Cartesian pro-
gramme of geometry that it seems very unlikely that Descartes had
not seen the question. Rather his silence on this question must be
explained by his inability to answer it. That Descartes could not
answer it is not surprising; it has been found only in the 19th
century that the answer to the question is positive 213).

Implicitly, Descartes' answer to the question is positive. An
equation of a curve represents a pointwise construction; one takes
successiveley fixed values for one of the variables, say for y, and
constructs geometrically the corresponding values for x as the roots
of the equation in x that results. That this can always be done
follows from the third book of the Géométrie in which Descartes
shows that the roots of equations (in one unknown) up to the sixth
degree can be found by the intersection of geometrically accep-
table curves, and in which he claims that the same can be done for
higher degree equations. (G p.#13, cf. section 3.4). This is how
Descartes solves the Pappus problem and he even claimed that every
equation can occur as the equation for the locus in a problem of
Pappus in some number of lines. Hence algebraic equations yield point-
wise comnstructions for the curves they describe and these construc-
tions are acceptable in geometry because the choice of the starting
point of the construction of the points (namely, the choice of the y)
is completely free (see section 6.2). Moreover, Descartes claims
that such pointwise constructions of curves are equivalent to tracing
by continuous motion, and hence, implicitly, he claims that all alge-
braic curves are geometrical in the sense of being traceable by

continuous motion.



- 3]_‘__

It is clear that the crucial step in this argument is the
equivalence of pointwise and continuous motion constructions.
Through this equivalence curves described by equations, in par-
ticular curves occurring in locus problems, acquire a status in
geometry equal to that of curves traced by continuous motion in
particular curves used as means of construction. But we have seen
that Descartes' arguments for the equivalence are weak (section 6.2).
He must therefore have had strong reasons to incorporate it in his
geometry. In section 10 I shall say something more on the reasons
Descartes may have had for this and on some conclusions which may be
drawn from these concerning the formation of his ideas in geometry in

the years before the publication of the Géométrie.

9.2 As to the transcendental curves, it is noteworthy that Descartes'
basic argument in rejecting them, the incommensurability of straight
and curved lines, serves only in the case of transcendental curves
depending on the quadrature of the circle, such as the quadratrix
and the spiral, which are the only ones Descartes mentions explicitly.
The question then arises how many transcendental curves did he know
and, more importantly, did he know curves depending on logarithmic
relations and by which arguments did he exclude these from geometry?
The idea that curves generated by motions not mutually sub-
ordinated are to be rejected from geometry occurs already in Descartes!
letter to Beeckman of 26 march 161922)(see section 10.2), he mentions
there the quadratrix as example. By that time he had hit upon the
logarithmic relation also, namely in connectionwith the problem "de
reditu redituum" (income on income, i.e. compound interest). In one
studyzg) he does not yet use a curve to represent the relationship
between an axis divided in equal parts and one divided in proportional
parts, but the idea of such a curve does seem to underlie his argument.
In another studyzn) he actually draws that curve, calls it the linea

broportionum and recognizes it as one of the same class as the quadra-

trix
The line of proportions is to be put in the same class as the
qQuadratrix, for it is generated by two motions not subjected

to each other, one circular and one straight (A.T. 10 pp.222/223).
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It is not clear how Descartes got the (wrong) idea that the line of
proportions is generated by a combination of a straight and a circular
motion ; perhaps he only referred to the quadratrix in mentioning
these motions. The figure in the published text suggests that he had
no clear idea about the form of the curve.

There is no evidence that Descartes actively studied other
transcendental curves than the quadratrix and the spiral before 1637.
But shortly after the publication of the Géométrie we find Descartes

5)

2
discussing the logarithmic spiral in a letter to Mersenne and

another logarithmic curve in connection with one of the problems set

7)

by Debeaunezs). Around this time he alsoc studied the cycloid.2 In
the case of Debeaune's problem Descartes does not explicitly recognize
the connection of the curve with logarithms, although he may well have
seen it. He works out two motions which together describe that curve
and he finds that these two motions

are so incommensurable that they cannot be regulated by each

other in an exact way; and therefore that this line belongs

to those which I have rejected from my Geometry as being only

mechanical. (A.T., 2 p.517).

From the little information we have, then, it seems that before
the publication of the Géométrie Descartes may have had the idea that
by rejecting the quadratrix the spiral "and the like" (6 p. 317) he
did not reject many interesting curves and only those originating
from motions which involve the relation between curved and straight
lines. Shorly after 1637 he was confronted with several other "non
geometrical” curves, some of them not obviously depending on the re-
lation between curved and straight, and some of them indeed quite

interesting.
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10. Once more: Descarfes' programme

10.1 We have seen that in Descartes' programme for geometry as ex-
pounded in the Géométrie there is a contradiction with respect to
criteria for geometrical acceptability of curves. On the one hand
Descartes claims that he only accepts curves as geometrical which

can be traced by certain continuous motions. This requirement relates
to curve tracing and the possibility to determine intersections of
the curve with other curves; it is induced by the use of the curve

as means of construction in geometry. On the other hand Descartes
states that, under certain conditions, curves represented by point-
wise constructions are truly geometrical. Pointwise construction are
related to curve equations in the sense that an equation for a curve
directly implies its pointwise construction. Pointwise construction
occur primarily for curves that occur as solutions to locus problems.

The link between the two criteria, namely Descartes' argument
why curves that are pointwise constructable can also be traced by
continuous motion, is very weak. This makes the rdles of these two
criteria all the more interesting. Descartes could not strictly keep
to the continuous motion criterion because in that case certain curves
(such as the locus solution of the general Pappus problem) which he
wanted to accept in geometry, could not be proved to be geometrical.
And of course he could not take pointwise constructability itself as
criterion because pointwise construction of points on the curve is a
construction by geometrical means, that is by the intersection of
curves that are accepted as means of construction.

The question then arises: why did Descartes not cut this Gordian
knot in the way which seems so obvious to us, namely by defining geo-
metrical curves as those which admit algebraic equations ? Why did he
not simply state that all such curves are acceptable means of construc-
tion, that their intersections can be found (which would then be an
axiom), and that they are ordered as to simplicity by the degrees of
their equations ? Descartes could have done so, and it would have re-
moved the contradictions mentioned above. But he did not. In order to
understand why we have to look at the development of Descartes' ideas

on geometry.



10.2 In 1619 already Descartes had a programme for his geometrical
research. We know it from his letter to Beeckman of 26 March 1619.
He wrote there

I hope to prove (-) that certain problems can be solved with

straight and circular lines only; that others can only be

solved with other curved lines, but such that originate in one

single motion, and that therefore can be traced by the new com-

passes, which I do not think are less certain and geometrical
than the ordinary ones by which circles are drawn; and that
finally other (problems) can be solved only by curved lines
originating from different motions that are not subordinated

to each other and that certainly are only imaginary (imaginariae);

such is the well known quadratrix. I think that one cannot

imagine problems that cannot be solved by at least these lines;
but I hope that I shall come to demonstrate which questions can
be solved by the first or the second method and not by the third;

so that in geometry nothing would remain to be found. (A.T.10

pp. 157).

The passage shows that by 1619 Descartes had already formed the con-
ception of geometry which he adhered to all his 1life. He does mnot con-
sider geometry primarily as an axiomatic, deductively ordered corpus
of knowledge about points, lines etc., but at the science of solving
geometrical problems. Once all such problems can be solved nothing
more needs to be found in geometry.

In referring to compasses Descartes had in mid here two linkage
machines for solving problems or tracing curves. One of these we have
met already in the Géométrie, it is the machine illustrated in figure
3. Its aim is to find mean proportionals between two given line seg-
ments. The similarity of the triangles involved yields immediately

YB : ¥YC = YC : YD = YD : YE = YE : YF = YF : YG = YG : YH (10;1)
Hence to find, for instance, two mean proportionals between YA and
some given line A , one opens the compass so far that YE = A ; YC and
YD are then the required proportionals. Alternatively, one traces
first, by continuously opening the compass, the curve AD. Then when
A is given one intersects AD with the circle with diameter YE = A,

The intersection point is D; YC (the abscissa of D) and YB are the
required proportionals. In the same way the curve AF traced by F

serves to determine four mean proportionals.
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The other compass was not incorporated in the Géométrie. In the
same way as the preceeding compass is based on a very simple geo-
metric device to find proportionals,
this one employs a very simple -
device for dividing an angle in
any given number of equal parts.
For the trisection of the angle
the machine is as in figure 16,

There are four rulers AB, AC

AD and AE, all pivotted in A.
On each of them at fixed and
equal distances from A, there

are adjusted links FG, IH, KG,

and LH, all equal in length.
FG and KG are joined such that figure 16
G can move along ruler AC ;

IH and LH are joined such that H can move along ruler AD. If now

a given angle a has to be trisected the compass is opened till LBAE

is equal to &, then LBAC is equal to % a. Alternatively (see figure 17)
let the point G trace a curve
MG by opening the compass while
leaving ruler AE fixed. If then
angle o has to be trisected one
draws the angle in A with one
leg along AE, choses a point F!
on the other leg such that

AF' = AF and draws a circle
around F' with radius FG,

Through the intersection G

of the circle and the curve A
one draws AG' . Then
LFTAG' = % LF'AE = % o. figure 17

Around this time Descartes had experimented with other such
compasses, and in the letter to Beeckman he mentions that he has found

the construction of all types of cubic equations by means of such
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compasses. The use of these compasses for various special construc-
tions was by no means new, it occurs in classical mathematics and

Pappus' Collections contain several such machinery. Also the idea

to consider the curves traced by these machines is not new, the
conchoid of Nicomedes, for instance, is a curve traced by a special
kind of instrument for certain constructions, the so-called neusis
constructionsz?) It is important, however, that in the formulation of
his programme Descartes considers the curveé themselves, rather than

the compasses, as the means for constructions.

10,3 If we compare the programme which Descartes outlined in his 1619
letter to Beckman with the programme of the Géométrie we find signi-
ficant differences. These differences precisely concern the role of =
algebra and pointwise constructions. We see that by 1619 Descartes'
programme contained already the following ideas: GEometry is the
science of solving, or constructing geometrical problems. Construction
by more complex means that the circle and the straight line {(the com-
pass and the ruler) need not be less geometrical. Curves that can be
traced by one single continuous motion such as provided by the com-
passes are acceptable in geometry as means of construction. There are
also problems that c¢an be constructed only by curves traced by a
combination of motions that are not subordinated to each other. Such
curves are "imaginary", an example is the quadratrix, With such curves
all problems can be solved but Descartes wants to classify the problems
that can be solved by acceptable geometrical curves,

A11 these elements of the 1619 programme also occur in the
Géométrie. But several points of the programme in the Géométrie are
still lacking in 1619. Most notable is the absence of algebra. It is
true that Descartes envisages geometrical solutions, through certain
compasses, of algebraic equations, but algebra does not yet play a
role in the classification of geometrical means of construction as to
their simplicity, nor in a method to find the simplest possible con-
structions. It seems likely that by 1619 Descartes envisaged to
classify the constructing curves as to the simplicity of the compasses

involved in tracing them. An echo of this is found in the Géométrie
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where Descartes, in discussing the compass for mean proportionals,
says
I don't believe that there could be a more easy method to find
as many mean proportionals as one wishes, nor one whose proof
would be more evident, than to use the curved lines traced by
the instrument XYZ... (G p. 370).
But, he goes on to say, the curves traced by that instrument are of a
higher class than necessary and therefore they should not be used in
a truly geometrical solution of the problem to find mean proportionals
(G p. 371). We may conclude that by 1637 Descartes' algebraic criterion
of simplicity of curves namely the class, defined through the degree
of the equation, had replaced and indeed was in conflict with an
earlier criterion of simplicity, namely the simplicity of the compass
and the resulting proof of the construction.

The other element lacking in the 1619 programme concerns loci and
pointwise constructions. In 1619 Descartes does not want to introduce
new curves in geometry for other purposes than as means of construc-
tion. The problems to be constructed will have one (or a finite number
of) solutions. In 1619 Descartes did not consider the case that the
solutions are infinite in number forming as locus a curve which, by
the nature of the process of solving the problem, is constructed
pointwise. Hence the problem did not occcur whether such curves should

be accepted in geometry and if so according to which criteria.

10.4 Evidently, then, Descartes' programme of geometry has changed
between 1619 and 1637. The stages of this change are in fact fairly
well known and dateable.zg)Probably shortly after the letter to
Beeckman of march 1619 and before november 1620 Descartes studied the
construction of problems through the intersection of conics and found
the solution of all third and fourth degree equations through the
intersection of a parabola and a circle. This must have given him the
idea that the conics are the class of constructing curves immediately
following the circle and the straight line.

This result may have led him to search for a construction of all
fifth and sixth degree equation through the intersection of a circle
with one special curve more complicate than the conics. He succeeded

in finding this construction ; The curve is the Cartesian parabola,
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the construction is explained at the end of book 3 of the Géométrie
(G pp.#02-411, cf section 3.4). But we do not know the date of this
discovery30? These results must have induced Descartes to consider
the degree of the equation of the curve, rather than the simplicity
of the tracing machine, as criterion for the geometrical simplicity
of curves used in constructions.

The other new aspect, loci and pointwise constructions, entered
Descartes' programme most probably in 1631 when Golius suggested him
to try his hand at the problem of Pappus. We know that Descartes
solved the problem in a number of weeks and that the solution appearing
in the Géomé€trie is essentially the one he sent to Golius in January
153231? This study must have turned Descartes' attention the more to-
ward algebra, the equation as embodying all the information about the
curve, the necessity to incorporate all curves admitting algebraic
equations in geometry and the necessity to admit pointwise construction

for curves.

10.5 However, more important than the chronology of these changes in
the development of Descartes' geometrical ideas, is the faet that
they explain the basic contradiction in Descartes' programme in the
Géométrie. The programme of 1619 may have been impracticable, but it
was consistent. It claimed to demarcate geometrical from non geometrical
procedures and it did so by geometrical means, namely constructing
machines that were generalizations of the ruler and the compass.

In the programme of 1637 algebra has become dominant. Descartes
now classifies curves according to the degree of their equations and
a great part of the Géométrie (especially the third book) is devoted
to algebraical techniques concerning the roots and coefficients of
equations (reduction of equations, sign rule, removal of terms from
the equation, change of negative roots into positive ones, ete.). But
despite all this algebra, what has remained is Descartes' conception
of geometry as the science of solving geometrical problems by the
construction of points through the intersection of curves. And so the
main aim of the third book, is the construction of roots of equations
through the intersection of curves.

This aim determines the structure of the third book and the nature

of the algebraical techniques presented there. The reduction of equations
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to other equations of lower degree is necessary for finding the
construction by the simplest possible constructing curves. The
techniques concerning the roots and coefficients of the equation
serve to reduce the equations to standard forms for which Descartes
then gives standard constructions. For third and fourth degree
equations this is the construction by the intersection of circle
and parabola; for fifth and sixth degree equations the construction
by the intersection of circle and Cartesian parabola.

Thus, although algebra has taken a dominant position in Descartes'
programme of 1637, it is still the conception of the geometrical aim

of the work which gives it structure and motivation.

10.6 Here lies the answer to the question raised in section 10.1,
namely why Descartes kept the criterion of tracing by continuous
motion for the geometrical curves, and why he did not simply
define geometric curves to be those that have algebraic equations.
As we have seen, the whole structure of his Géométrie depends

on the conception of construction by the intersection of
geometrical curves. For Descartes, these intersections are
actually found or constructed only in the case that the curves

can be traced by continuous motion. In that case one can

conceive clearly and distinctly that the intersections are

found. If he were to give up the criterion of tracing by
continuous motion and at the same time keep to his programme

of construction by the intersection of curves, he would have

to state as an axiom that for all curves having an algebraic
equation the intersections are given or constructible.

It is evident that Descartes could not do this. An axiom stating
that the intersections of curves are constructible is by no
means clearly and distinctly evident, so it would not satisfy
Descartes' criterion for accepting a statement as basis for
further argument.

Moreover, by adopting this approach Descartes would lose the
claim that he was doing Geometry; he would be doing some kind of
algebra. But that would mean giving up the principal aim of
his work: to bring order in the science of geometry.

Finally, the whole structure of the Géométrie, determined by
the aim to find the simplest constructing curves for a given problem,

would lose much of its sense. If the intersections of all algebraic
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curves are by axiom constructible there is no evident reason
for finding the simplest curves for a given problem, and hence
there is not much sense in finding constructions for roots of

. . n n-1
equations. The roots of an equation x +ax +... = 0 are the

intersections of the curve y = x"+ax" " "+... with the straight
line y = 0, and so they are given already as intersections of
curves with algebraic equations.

So, in conclusion, we see that Descartes could not give up
his continuous motion definition of geometrical curves because
then he would have lost the claim of doing geometry and hence

the rationale of the whole structure of his work.

11. Conclusion

11.1 As I hope to have shown, the representation of curves forms
the key to understanding the structure of Descartes' Géométrie and
its underlying programme or programmes. The structure and the
programme involve contradictions, but there is a unity of vision
behind it, which Descartes had already formed as early as 1619

and which fouﬁd its clear expression in the Géométrie in 1637.

The vision was that geometry can and should be structured, that the
bewildering jumble of problems, methods and solutions, in which

it is not clear where the problems end and the solutions begin,

can and should be cleared up. The vision, in short, that geometry
concerns a surveyable, orderable collection of well defined problems,
well defined also in the sense that there are clear criteria of
adequacy for their solutions. Descartes left it to his successors
to work out the programme, to encounter its limitations and to

come to terms with its contradictions.
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Notes

R. Descartes, La Géométrie, one of the essays in his Discours de

la méthode pour bien conduire sa raison, et chercher la vérité

dans les sciences, plus la Dioptrique, les Meteores et la Geometrie

qui sont des essais de cete methode, Leiden, 1637. I shall refer to

the Géométrie in footnotes and references by the abbreviation G;
I shall use the pagenumbers of the original edition (pp. 297-413).

The original text is easily accessible in The geometry of René

Descartes with a facsimile of the first edition (tr. and ed. by

D.E. Smith and M.L. Latham), New York (Dover) 1954, In my translations
of texts from the Géométrie I have taken the English of Smith and
Latham as starting point. However, their translation is very free
and often unreliable, so that in many cases I have had to modify

it, The edition of the QEEmEEPii in the Oeuvres de Descartes

(eds. C. Adam and P. Tannery, Paris 1897-1913) vol. 6, pp- 367-485
also indicates the pagenumbers of the original.

See, for instance, C.B. Boyer, History of analytic geometry (New

York 1956) p. 88 and p. 102; see also M.S. Mahoney, "Descartes:
mathematics and physics”, Dictionary of scientific biography
(ed. C.C. Gillispie, New York 1970 ff) vol. 4 (1971), pp. 55-61,
footnote 7.

Many studies have been devoted to Descartes' Géométrie. Most of these,
however, are unsatisfactory with regard to the questions I discuss
here because they are guided by the unfruitful question whether
Descartes did or did not invent analytic geometry. The best source

on the actual contents of the Géométrie is the Géométrie itself. The
best summary of its intention, its development and its place within

Descartes' mathematics is still G. Milhaud, Descartes savant, Paris




1921, I have found A.G. Molland's "Shifting the foundations,

Descartes' transformation of ancient geometry') Hist. Math. 3

(1976), pp. 21-49 very helpful as a discussion of the history of
the concepts of construction and classification of curves in
antiquity and of Descartes' opinions on these classical ideas.
Three other more or less recent studies devote special attention to

the concepts of curves and constructions in Descartes' Géométrie.

These are: J. Vuillemin, Mathématiques et métaphysique chez Descartes,

Paris 1960 (in particular Ch. III "De la classification cartésienne

des courbes", pp. 77 ff.), G.-G. Granger, Essai d'une philosophie

du style, Paris 1968 (in particular Ch. III "Style Cartésien, style

Arguésien" pp. 43-70), and J. Dhombres, Nombre, mesure et continu,

épistémologie et histoire, Paris 1978 (in particular the section

pp. 134-143). I find that none of these treats these concepts in
sufficient detail to explain the structure of the Géométrie, the
conflicting elements in Descartes' programme and the genesis of this

programme. I must mention here also J. Itards's La géométrie de

Descartes (Conférences du Palais de la Découverte, série D, nr.
—escantes

39) Paris 1956. In the very dense text of this "conférence" there
are many remarks that suggest to me that Itard knew many of the
things I am dealing with in the present article. However, he does
not explain these remarks in this text, so that they remain
understandable only to those who know them already. I do not know

of other studies of Itard in which he explains his ideas about the

Géométrie more fully.

Note however that (23;3) is not a generalization of (231). In fact
(2;1), the problem in three lines, is an exceptional case which
arises when in the problem for four lines two lines coincide.

A proof will be given in the final version of this article.

For an extensive discussion of the section see D.T. Whiteside,
"Patterns of mathematical thought in the later seventeenth century"
Arch. Hist. Ex. Sci. 1 (1960-1962), pp. 179-388, especially pp.
290-295.

See the article by Molland cited in note 1.

Descartes tended to underestimate the dangers of extrapolating
mathematical results, witness, for instance, the penultimate
sentence of the GEométrie: "For in the matter of mathematical
progressions, once one has the first two or three terms, it is not

difficult to find the others™ (G p. H13).



9. Descartes Qeuvres (see note 1) vol. 6 p. 19.

10. See G. Loria, Spezielle algebraische und transzendente ebene Kyrven,
Leipzig (24 ed.) 1910-1911, vol. 1 pp. 51-52.
11. See Archimedes, On Spirals, definition 1, in The works of Archimedes

(ed. T. Heath, New York, Dover reprint) p. 165.
12, Often called the quadratrix of Deinostratos, a4lthough the names
of Hippias and Nicomedes are also connected with the curve. Pappus

discusses the curve in his Mathematical collections. See I. Bulmer

Thomas, "Dinostratus", Dictionary of scientific biography (ed.
C.C. Gillispie, New York 1970 ff.) vol. 4 pp. 103-105.
13. See T.L. Heath, Mathematics in Aristotle (Oxford 1949) pp. 140-1u2.

14, Rectifications of algebraic curves were found around 1658,
independently, by van Heuraet, Neile and Fermat. See for instance
M.E. Baron, The origins of the infinitesimal calculus (Oxford 1969)
pPp. 223-228.

15. Latus rectum and latus transversum are the classical terms for

certain linesegments occurring in the defining properties of conic
sections. If the vertex of the conic section is taken as origin

and the X-axis is along the diameter, then the latus rectum a

and the latus transversum b occur in the analytical formulas for

the coniecs in the following way: y2 = ax (parabola); y2 = ax - %XQ

(ellipse); y2 = ax + %x2 (hyperbola).
16. Descartes' very criptic description of the curve is as follows:

The curve 1is such that
"if all the straight lines orderedly applied to its diameter
(i.e. the ordinates H.B.) are taken equal to those of a conic
section, then the segments of the diameter between the vertex
and these lines (i.e. the abscissae H.B.) have the same ratio
to a given line as that line has to the segments of the diameter
of the conic section to which these lines are orderedly applied.™
(G p. 339)

Following C. Rabuel, Commentaires sur la Géométrie de M. Descartes

(Lyon 1730) p. 271, the passage can be interpreted as follows. If we
take the origin in the centre of the figure,
a.d,.d, = d,.d, .d

172 3°74°75
leads to

a(y+§)(y—%) S x(y+%a)(y-%a)
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as equation for the required curve. Taking

= 2aml(y?-2a%)
w = 3a Yy -y
we find
w:a=a: (a-x)

If we now take the "vertex" in Descartes' text to be the point
V (x=a, y=0), and draw the parabola

2aw = y2 - %aQ
with w taken along the X-axis from V, then the required curve
and the parabola are related in such a way that for points (x,y)
and (z,y) on either curve with equal ordinates y, the abscissae
x-a and w (taken from V) satisfy

w:a=a: (x-a) .

This corresponds to what Descartes says, but he does not specify
that the conic section is a parabola in this case. If the conic
section and the position of the vertex are given, Descartes'
description implies a pointwise construction of the curve.
This pointwise construction follows immediately from the description
of the quadratrix by continuous motiomn, see note 12. T.L. Heath

mentions the construction in his A history of Greek mathematics

(2 vols, Oxfors 1921), vel. 1 p. 230, as a means to find points on
the curve near D (figure 9) and thus to approximate D. But he gives
no reference to classical sources containing this construction.

The ovals which Descartes discusses on pp. 352-368 of the Géométrie
are curves whose surfaces of revolution provide shapes of lenses

with the property that light rays coming from one point converge,
after passing through the lense, to another point {and variants

of this property). Descartes explains how these ovals can be
constructed when the positions of the light source and the converging
peint, and the refractive index of the lense material, are given.

La Dioptrique, one of the three essays of the Discours; in Descartes'

Oeuvres (see note 1) vol. 6 pp. 79-228.

I use the abbreviation A.T. for Adam and Tannery's edition of

Descartes' Oeuvres mentioned in note 1.



21. See C. Huygens, Qeuvres Complétes (22 vols. The Hague 1888-1950)
vol. 11 p. 216; a note from 1650.

2la. A.B. Kempe, "On a general method of describing plane curves of
the nth degree by liinkwork", Proc. London Math. Soc. 7 (1876)
pp. 213-216.

22. A.T. 10 pp. 154-158.

23. A.T.

24, A.T,

[

pp. 77-78; the study dates from before December 1518.

0 pp. 222-223, from 1619-1621,

=

|

25. Descartes to Mersenne 12-¢-1638, A.T. 2 pp. 352-362, in particular
p. 360,

26. For Descartes' solution of Debeaune's problem see his letter to
Debeaune of 20-2-1639, A.T. 2 pp. 510-52., and C.J. Scriba,
"Zur LOsung des 2. Debeauneschen Problems durch Descartes™. Arch.

Hist. Ex. Sci. 1 (1960-1962) pp. 406-419,

27. Mersenne mentioned the cycloid and Roberval's studies on its
quadrature in his letter to Descartes of 28-4-1638 (A.T. 2 pp.
116-122). In his answer, 27-5-1638 (é;E; 2 pp. 134-153) Descartes
said that he had never thought of the curve before (p. 135). He
discussed the curve and its properties in several subsequent letters
to Mersenne.

28. See the chapter "On the problems known as neuseis™ in The works

of Archimedes (ed. T.L. Heath, Dover edition) pp. c-ecxxii, in

particular p. cvii. For the conchoid see also figure 5.

29. See G. Milhaud, Descartes savant (Paris 1921) Chs 1, 3 and 6.

30. It seems likely that the discovery occurred later than 1628, for
we have a note of Beeckman on his interview with Descartes in
Octover 1628. Descartes had explained to Beeckman the construction
of the roots of any fourth degree equation by the intersection of
a circle and a parabola. Beeckman noted that "M. Descartes made
so much of this invention that he confessed never to have found
anything superior himself and even that nobody else had ever found
anything better" (ﬁ;l; 10 p. 346). It is not likely that Descartes
would have commented in this way is by that time he knew already
the general construction of the roots of 5th and 6th degree

equations.,



31.
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See Descartes'! letter to Golius
pp. 232-236. Descartes refers to
this "&crit" is now lost. In the

of classes ("genres") of curves,

of January 1632, A.T. 1
an "écrit" sent earlier to Golius;
letter Descartes adds a definition

The definition is not clear

and the terminology is quite different from the one used in the

Géométrie. Still, from the further indications in the letter

it seems likely that by that time Descartes had found the essential

elements of the solution of the Pappus problem as it appeared in

the Géométrie, and that the "écrit" sent to Golius contained

a condensed version of this solution.
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