1.

-§2=-

Algebraization in Descartes' Géométrdie

by
H.J.M. Bos

It is a pleasure for me to speak at this symposium on a topic
from one of the fields in which Professor Monna has been, and
still is very active: the history of mathematics. To me, one of
the most inspiring aspects of Professor Monna's work in history
of mathematics is that he tackles the major issues and does not
avoid the basic problems by concentrating on detail. This becomes
clear if we consider the range of his interest in the history of
mathematics: fundamental concepts such as the concept of function;
extensive subfields of mathematics, I am thinking here of his
book on the history of functional analysis; major problems, for
instance the book on the Dirichlet principle; and basic changes
of style in the development of mathematics. Professor Monna deals
with the latter topic in his study on algebraization.

At the moment I am engaged in studying [1] the concept of curve
in 17th century mathematics, with particular reference to Descartes’
Géoméxtrie, a book which caused a complete revolution in the mathe-
matical study of curves. The Géométrie marks the beginning of
analytic geometry, that is, the study of curves by means of their
equations. Hence in Descartes' book we have an example of the
algebraization of a part of mathematics. It therefore seemed
appropriate on this occasion that I should follow up one of
Professor Monna's interests and say something about the process
of algebraization as it is found in Descartes' GéomZitrdie.

Strictly speaking the GEomEtrie is not a book but an essay
serving as an appendix to another treatise, namely the Discouxnse
on Method [2], which was first published in Leiden in 1637. The
method was a philosophical method and the GZométrie was one of
three "essays" (try-outs) of that method, showing its effectiveness
in three different branches of science.

In many respects the GéZométrie was revolutionary. Descartes
introduced the elementary algebraic notation which we still use,
namely x, v, and z for variables or unknowns, a, b, c etc. for

constants and the usual notations for sums, products and powers
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of these quantities. But the most important aspect of the
GeomZinie was that Descartes worked out the relation between
algebra and geometry much more fully than had been done before.
And so the GZomZtrie became a captivating mixture of geometry
and algebra. What did Descartes achieve? He achieved two things:

He showed that the algebraic operations of addition, subtraction,
multiplication, division and root taking (§"with k positive, integer)
can be interpreted geometrically as operations on line-segments.
He also showed that the curves that one meets in geometry can be
characterized by their equations in rectilinear coordinates x and
Y. Because he worked with algebraic operations, the equations were
also algebric, in fact they were usually polynomial equations in x
and y. The only types of eguations which Descartes considered,
were algebraic ones.

Thus it would seem that Descartes was doing analytic geometry
of algebraic curves. But there is a complication. Descartes said
that all curves in geometry have such equations. He did not say
that all algebraic equations describe curves that occur in geometry
- or at any rate he did not say so explicitly. In other words, the
fundamental principle of analytic geometry, namely the correspon-
dence between curves and equations, is not explicitly stated in
Descartes' Géométrdie.

What were the geometrical curves which Descartes had in mind?
On this point he was explicit:

To trace all the curved lines which I want to introduce

here nothing else needs to be supposed than that two or

several lines can be moved one by the other, and that _

their intersections describe other lines. ([3], G, p. 316)

Such curves may be very complicated but they are acceptable in
gecmetry provided

one can imagine them as described by one continuous

motion, or by several motions which follow each other,

the last ones of which are completely regulated by

those which precede them. For in this way one can

always have an exact knowledge of their measure. (G, p. 316)
Note that there is no trace of algebra in this definition or
characterization of the curves that are acceptable in geometry.

Descartes set great store on this characterization and repeatedly
returned to it.
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Fortunately, he gave examples to illustrate what he had in

mind. His first example [4] is the famous "compass" of figure 1.

figure 2

GL is a ruler which can turn about G. At L the ruler is connected
figure 1 to a triangle KNL that can move up and down along the vertical

axis AL. If the triangle is so moved the intersection C of KN and

It is discussed in the GZométrdle and since then has often been the ruler describes a curve. This curve (in fact a hyperbola) is

reproduced in books on the history of mathematics, sometimes one which, according to Descartes’ criterion, is acceptable in
purely for aesthetic reasons. The rulers YZ and YX pivot in Y.
Ruler BC is fixed to ¥YX at B. The rulers CD, EF, GH can slide

along YZ in such a way that they remain perpendicular to YZ.

geometry.
Finally, a variant [7] of the above construction is given,
from which it becomes clear that the moving lines in Descartes’

Similarly the rulers DE, FG can slide along YX and remain per- Statement may themselves be curves. The example is as follows

pendicular to it. When one now opens the compass, C moves to the (see figure 3):
right and pushes CD, so that D also moves and describes the curve
AD. At the same time D pushes the ruler DE, which in its turn
pushes EF and the intersection F describes another curve AF.
The next curve thus produced is AH and the process can be conti-
nued to yield further curves [5]). According to Descartes' crite-
rion these curves are acceptable as geometrical curves: they are
described by a combination of continuous movements that are
regulated directly or indirectly by the first movement of the
opening of the compass.

Descartes also gave another example [6] of a curve acceptable

in geometry (see figure 2):

figure 3
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The straight line KN in the previous example is now replaced
by a parabola KN. Again the parabola moves vertically along KA;
the point L moves with it, in such a way that the distance KL
remains constant; the ruler GIL turns around G and during the
motion the intersection C of ruler and parabola describes a
geometrically acceptable curve. This curve played a central
role in Descartes' GZométrde. It later became known as the
"Cartesian parabola". The equation of the curve is of the third
degree. Curves that can be described in the way explained in
the examples are geometrical, according to Descartes, and curves
that cannot be so described are to be excluded from geometry.
Descartes called the non-acceptable curves "mechanical” and he
gave two examples of such curves: the spiral and the quadratrix.
This kinematic approach and the restriction of the class of
acceptable curves are a curious starting point for someone who
is about to create analytic geometry. This starting point raises
a number of questions. Descartes claimed that geometrical curves
(in the sense explained above) have algebraic equations. But it
is possible to imagine instruments similar to the ones described
in the examples which trace non-algebraic curves, such as spirals
or cycloids. How did Descartes, then, regard these curves? Des-
cartes indeed knew about the possibility of tracing such curves
in this way and he stipulated further conditions for the process
of curve tracing which served to exclude these non-algebraic
curves. These requirements are very interesting but they fall
outside my present theme [8]. Another, more complicated guestion
is this: Descartes said that geometrical curves, in the sense
explained above, have algebraic equations. But how did he regard
the converse: namely, does every algebraic equation correspond
to a curve which is geometrical in Descartes' sense? Descartes
did indeed think so but he did not say it explicitly, and he
could not prove it. It is of interest to find out precisely what
Descartes said about this guestion. But to do so I first have to
say something about the so~called problem of Pappus.

In the GZométrie Descartes gives particular attention to one
special geometrical problem, namely the problem of Pappus [9].
It is a classical problem explained in the Mathematical collections
of Pappus (ca. 300 A.D.) but is certainly earlier. To explain it
I shall use the figure which Descartes gave himself (see figure 4).

- 7=

figure 4

Four lines DA, FE, EG and TG are given. From point C lines CD,
CF, CB and CH are drawn towards these lines at certain angles.
I shall call the length of these lines dl, d2, d3, and d4,
respectively. It is required to find the locus of the points C
for which

(dl.dz) : (d3.d4) =a : b, (1)
where a : b is a given fixed ratic. The di should always form
the same angle with the given lines. Pappus himself also formu-
lated a generalization of this problem for more than four lines;
in that case the requirement was

(dl'dZ"'dn) - (dn+1'dn+2"'d2n) = a : b, (2}
and a variant if the number of lines is uneven.

How did Descartes approach this problem? He wrote out the
requirement {(which Pappus gives entirely in prose} as an equation
in x and y. This is easy because after a suitable choice of
coordinates every di can be expressed in the form 1lx + my + n.
From the equation so formed Descartes derived a geometrical
construction for points on the locus. He also deduced from the
equation further data about the locus_as curve (e.g. vertex,
axis etc.}.

In connection with the Pappus problem, Descartes made a
statement which, together with two further arguments in the
Geéomeinie help us to find out whether or not he thought that

all algebraic equations correspond to geometrical curves.
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Descartes said [10] that if one takes a sufficient number of

lines in the Pappus problem {formula (2)) it is possible to get
all possible equations (he says: all possible coefficients and
signs in the equations) by varying the positions of the lines.
words: every equation can occur as an equation of the
locus in a Pappus problem. Descartes did not prove this and in
fact the statement is false [11]. But for low degrees of the

equations the statement is plausible enough, and Descartes had

found that in the Pappus problem for four lines all quadratic

In other

equations did indeed occur.
If the equation in x and y of a curve is given, Descartes
argued that points on it can be constructed by arbitrarily
assuming a value X, for x and constructing geometrically the
root (or roots) Yo of the resulting equation in y. I shall return
to this procedure, called "the construction of equations®, later;
here it is important to note that it yields a pointwise construc-
tion for the curve whose equation is given; that is,

struct arbitrarily many points on it but one cannot by this means

one can con-

trace the curve by continucus motion. However, after giving some
examples of such pointwise constructions Descartes stated [12]
that these were equivalent to tracing by continuous motion.
Descartes gave no proof at all for this statement, which is
crucial in the structure of the Géométrie.

Combining these three statements: the occurrence of all equations
for loci, the pointwise constructability of each curve whose
equation is given, and the equivalence of pointwise constructions
to tracing by continuous motion, we may conclude that Descartes
effectively considered every algebraic equation to correspond to
a "geometrical" curve. In other words, his "geometrical curves”
are what we now call algebraic curves. But in the course of his
argument Descartes had to give up the strict criterion of trace-
ability by continuous motion. And the crucial step, the equi-
valence of pointwise construction to continuous motion-tracing,

could not be proved.

This leads to a further question, namely: Why make matters so
complicated? Descartes could have made things much easier for
himself by simply stating: Geometry concerns precise and exact

operations; algebraic operations, when interpreted geometrically
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are precise and exact; therefore all curves which admit an
algebraic equation are acceptable in geometry and geometry will
henceforth be simply the analytic geometry of algebraic curves.
He would then have obtained the same class of geometrical curves
without the complications of a definition requiring continuous
motion-tracing by complicated instruments as those in the
examples explained above. He could have done this, but he did

not. The question then is: Why didn't he? Why did he keep to

his criterion of continuous motion-tracing for geometrical curves?

In my opinion, this question has never been answered satisfac-
torily. In the many studies on Descartes' GBometrie the question
is usually not mentioned at all. Most writers are already con-
vinced that Descartes invented analytic geometry and so they do
not seriously consider his actual definitions and opinions. I have
come up against this problem through my interest in the concept
of the construction of curves in the 17th century. In fact, what
Descartes is struggling with here is the problem of which construc-
tional procedures are acceptable for the definition of a curve.

In the 17th century many mathematicians faced this problem and so
it is an interesting theme in the history of mathematics.

But also from the point of view of algebraization the question
of why Descartes kept to his kinematic criteria for the accep=-
tability of curves is of interest, because these criteria intro-
duced a tension and a restriction in a book which otherwise
constituted an important step towards the algebraization of
geometry. I shall now go on to say why, in my opinion, Descartes
kept to these kinematic criteria.

We must first ask what Descartes' aim was in writing the
Geometnie. Descartes had a very clear programme for geometry.
According to him the aim of geometry was the solution of geome-
trical problems. Geometrical problems at that time were mostly
of the following type. A certain geometrical figure is given and
it is required to find one or several points which satisfy a
certain given property.

Finding mean proportionals is a characteristic example of
such a geometrical problem (see figure 5)-.
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figure 5

Two line segments AB and AC are given and it is required to find
a point D such that the segment AD satisfies

AB : AD = AD : AC, (3)
i.e. AD is the mean proportional between AB and AC. If two mean
proportionals are required, points E and F have to be found such
that AE and AF satisfy

AB : AE = AE : AF = AF : AC (4)
AE and AF are then the two mean proportionals between AB and AC.

Solving such a geometrical problem means constructing the
required point or points. But which constructions are acceptable?
The ancient mathematicians, according to Descartes, required that
the construction be performed with ruler and compass. But they
also encountered problems which could not be constructed with
these means. In those cases they constructed the required points
by means of the intersection of curves other than circles and
straight lines. That is, they allowed other curves to be used
as means of construction. These curves could be conic sections
or certain curves called conchoids, or other curves. They also
devised instruments, kinds of generalized compasses, with which
such curves could be traced, so that the points of intersection
could actually be determined.

For instance it is generally not possible to construct two
mean porportionals with ruler and compass. But they can be con-
structed as follows by two conic sections (see figure 6):
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figure 6

Let AB and AC be the given line segments. Draw an axis AT perpen-
dicular to AC and mark points P and Q such that PB = QC = AB and
PB L AC and gc 1 AC. Now draw through P a parabola with axis AT
and vertex A, and draw through Q a hyperbola with the axes AC and
AT as asymptotes. Mark the intersection R of the parabola and the
hyperbola and draw RE perpendicular to AC. Then AE is one of the
required mean proportionals. It is easy to check this. Such con-
structions of the problem were known in antiquity.

The essential point of the construction is that it is supposed
to be possible to draw the parabola and the hyperbola and to
actually determine their intersection R. It is not evident that
this is possible and hence that the construction is an acceptable
solution of the problem. The ancient mathematicians, Descartes
said, had doubts about this kind of construction; they were not
sure if such constructions were geometrical, perhaps they were
rather mechanical, depending on certain mechanisms for tracing
the constructing curves.
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Thus there was uncertainty among the ancient mathematicians

about when a geometrical problem was adequately solved. Descartes'

programme was to eliminate this uncertainty. He stated that conic

sections, conchoids and certain other curves which the ancient
mathematicians used for constructions were no less geometrical
than the circle and the straight line. He based this argument on
the fact that one could imagine instruments for drawing these
curves, and the operations of these instruments could be conceived
as clearly and distinctly as the operation of an ordinary compass.

These curves are indeed more complicated but for that reason no

less geometrical than the circle. Descartes stated also that one

should ‘always use the simplest possible means of construction,

that is, the simplest possible curves.

Descartes worked out these two statements in a programme.

It is obvious that his programme would deal with three points:

a. The programme should distinguish the collection of curves that
are acceptable in geometry as means of construction from the
collection of curves that are not acceptable.

b. The collection of curves acceptable as geometrical means of
construction should be ordered as to simplicity; then it will
be clear what is meant when the simplest possible curves are
required.

c. The programme should provide a method for finding for a given
problem, the construction which uses the simplest possible curves.

This was the programme of the Géomitrie, and Descartes was able
to carry it out to a large extent. His treatment of the three points
of the programme can be summarized as follows.

a. Curves that are acceptable in geometry as means of construction
are, according to Descartes, those that can be described by one
continuous motion or by a combination of such motions in the way
explained above (section 2). Within the programme, the requirement
of traceability is obvious: the curves serve to determine their
intersections with other curves or lines, and these intersections
can be found if the curves can actually be traced.

b. In order to classify the acceptable curves Descartes used
the degree of their equation. His classification is somewhat
complicated and not completely clear, but roughly he argued that
a curve is simpler when the degree of its equation is lower [13].
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€. Algebra is fundamental to the third part of Descartes'
programme. He explained that first of all the geometrical problem
to be solved should be reduced to an algebraic equation. The way
to do this is to call the known guantities in the figure a, b, ¢
etc., and the unknown gquantities x, vy, 2 etc., after which the
given and the required relations between these gquantities are
translated into equations. Eventually there should be as many
equations as there are unknowns. If there are not, then the
problem is indeterminate (a locus problem) and one should arbitra-
rily fix some of the unknowns and thus reduce the problem to a
system of as many equations as there are unknowns. Then the
unknowns should be eliminated one after the other from the system
till one equation in one unknown is left. If we can find that one
unknown we can find the others. But for Descartes "finding" meant
constructing geometrically. Therefore he added a method for con-
structing, by the simplest possible and acceptable geometrical
means, the roots of an equation in one unknown. That is, for every
equation in one unknown, he indicated how one should find two
curves, of the lowest possible degree, such that the x-coordinates
of the intersection points are precisely the roots of the equation
This procedure is called the "construction of an equation”.
Descartes showed [14] that:
—quadratic equations can be constructed by the intersection of a
circle and a straight line (that was a classical result);
—cubic and quartic equations can be constructed by the intersectio
of conics (that was known also) and in particular by the inter-
section of a parabola and a circle (that was new);
-5th and 6th degree equations can be constructed by the intersecti
of a circle with the "Cartesian parabola" mentioned above (cf.
figure 3) (that was quite new):
-and, said Descartes,

One only has to go on in the same way to construct all equation

of higher degree, to infinity..For inumathematical progressions

once one has the first two or three terms, it is not difficult

to find the others. (G, p. 413).

This overconfident statement is characteristic for Descartes'
approach. Nevertheless, in working out the third point of his
programme, he did present a large number of techniques that have
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proved very important for algebra. These include the sign rule
for the number of roots of an equation, techniques for shifting
roots for letting them change signs, techniques for removing
middle terms in an equation and techniques for finding whether

an equation is reducible. He needed the last technique, of course,
for finding the simplest constructing curves for a given problem.
All these techniques, therefore, were devised and presented with
a geometrical aim. This aim was to construct geometrical problems,
by the intersection of the simplest possible, geometrically
acceptable constructing curves, i.e. curves that can be traced

by a continuous motion.

Before returning to the question of why Descartes kept to his
kinematic criterion for geometrical acceptability I want to point
out a characteristic difficulty in the second part of Descartes'
programme. There the simplicity of a curve is measured by the
degree of its equation. But within Descartes' programme, simpli-
city of curves has to do with simplicity as means of construction
and it is not at all evident that simplicity of construction
corresponds to low degree. On the contrary; the circle for instance
is a simpler means of construction than a conic, but the degree of
its equation is the same as that of a conic. Descartes has to
make an exception for this case.

Furthermore, the curves traced by the instrument discussed in
section 2 (cf. figure 1) have equations with rather high degrees.
But their kinematic origin in fairly straightforward and hence as
means of construction these curves could be regarded as rather
simple. Descartes remarks this himself [15]; nevertheless in this
case he opted for the algebraical classification of simplicity by
the degree of the equation.

We see that within the Gdométrie there is tension between the
algebraic and the geometrical criteria for simplicity. It now
becomes even more interesting to find out why Descartes insisted
that geometrically acceptable curves are those which can be des-
cribed by continuous motion. Why did he not simply state the
equivalence of curves and their equations and thereby avoid all

the tensions and contradictions in his programme?
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The answer lies in the structure of his Programme as I have
explained it above. The whole apparatus of algebraic methods
which Descartes worked out, especially in the third point of
his programme, makes sense only if the aim is the construction
of equations with one unknown by the intersection of the simplest
possible curves. And that question makes sense only within the
geometrical context where curves serve as means of construction,
that is, where their intersections are actually found. But that
requires tracing of the curves by continuous motion, for only
then is it certain that if the curves are given (namely traced)
the points of intersection are given also. In other words, if
Descartes had given up the criterion of traceability by conti-
nuous motion and had simply supposed that once the equations of
curves are given their intersections are given too, then the
whole programme of constructing roots of equations by the inter-
section of curves would have become pointless. For in that case,
as soon as the equation itself is given, its roots should be
regarded as having been given too.

This, then, is the answer to the question: Descartes could
not give up the criterion of traceability by continuous motion
because his programme would then have made no sense. The tension
between the algebraic and the geometrical aspects of the GfomBitrie
was inherent in his programme.

What fascinates me most in this example of algebraization of
a mathematical subject is the dialectic of geometrical and alge-
braic concepts, methods and problems. On the one hand, the whole
enterprise of the GEom€irdie, the elaboration of an analytic
geometry for algebraic curves, only made sense for Descartes
within the geometrical context of construction by intersection
of curves traced by continuous motion. On the other hand, it
was in fact the geometrical context and the geometrical starting
point which led to tensions, if not contradictions, in the struc-
ture of the GEomZirlie; for instance-the impossibility of proving
that all algebraic curves are traceable by continuous motion, and
the fact that the algebraic criterion for the simplicity of curves
does not correspond to the geometrical criterionfor simplicity.
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Thus it seems in this case that the first phase in the
emergence of analytic geometry was necessarily full of contra-
dictions. One wonders then whether such contradictory phases
have also occurred in other instances of algebraization, and
if so, whether these were necessary.

This, I think, is an important general question arising
from the study of the process of algebraization in Descartes'
Geomitnie. It also ties up with professor Monna's interest in
algebraization, and therefore raising this guestion seemed to
me a good way of ending this lecture at a symposium held in his

honour.
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Notes

Compare my article "On the representation of curves in Descartes!
Géometnie", Mathematical Institute Utrecht, Preprint nr. 142,
February 1980. This article is submitted for publication in the
Anchive fon Historny of Exact Sciences.

R. Descartes, Discouns de La méthode pour bien conduine sa raison,
el cherchern fLa vernite dans Les sciences, plus La Dioptrique, Les
Méteores et La Geomiirnie qui sont des essais de cete methode,
Leiden, 1637.

The abbreviation G refers to the Géomiitrie cited in note 2. The
Geométrie is easily accessible in a facsimile edition with English
translation: The geometry of Ren? Descartes with a facsimile 04
the §irnst edition (tr. and ed. by D.E. Smith and M.L. Latham)

New York, (Dover), 1954. The translations in the present article
are my own, but I have taken Smith and Latham's translation as

a starting point.

G p. 318 and p. 370.

The instrument and the curves it traces were meant to be of use
in finding mean proportionals; indeed YC, YD, YE and YF are mean
proportionals between YA and YG. Compare secion 6.

G p. 319 sqq.

G p. 322.

Further explanation is given in my article cited in note 1.

In particular G pp. 309-314 and pp. 324-334.

G p. 324.

A proof that it is false will be given in the published version of
my article mentioned in note 1.

G p. 339-340.

G p. 319.

These results are explained in the third book of the Ggomeirdie.

G p. 370~-371.



