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Introduction

In 1619 Johann Molther published at Frankfurt a book about the duplication
of the cube, entitled Problema Deliacum. It attracted little interest at the
time and references to the book in historical works are very scarce.! Yet for
my studies on the concept of construction I have found the book revealing,
and the occasion of the Festschrift for Dr Busard provides a welcome occasion
to present a short note on its content, purpose and interest.

About Johann Molther himself little seems to be known.? He was born on
March 28, 1591 in Griinberg in Hessen (Germany) as son of Johann Molther
(1561-1618), pastor and professor of theology and Hebrew at Marburg univer-
sity. About Molther senior’s life we know more than about his son’s because
the latter included in his Problema Deliacum a long funereal poem for his
father, detailing the qualities and the career of the deceased. Johann junior
studied medicine and became professor of medicine at Marburg University
in 1621. His date of death is unknown. Besides the Problema Deliacum he
published an astronomical treatise and three medical disputations.®

In the style of his time, Molther did not spare words in phrasing the title
of his study:

The Delian problem of doubling the cube, that is, given any solid, to

1Marin Mersenne expounded Melther's construction of two mean proportionals (see
below, p. 43) in his Harmonie universelle contenant la théorie ¢l la pratique de la musique
Paris, 1636 (also fasimile ed. Paris 1965), p. 68; N.Th. Reimer mentioned Molther in
his Historia problematis de eubi duplicatione sive de inveniendis duabus mediis proportio-
nakibus inter duas datas, GSttingen, 1798; G.J. Toomer mentioned Molther’s book in his
article on Nicomedes in the Dictionary of Scientific Biography (ed. C.C. Gillispie, New
York 1970-1980) vol. 10, pp. 114-116. I have found no other references.

2My sources for the biographical information are:
Zedler, J.H. (ed.), Grosses vollstindiges Universallezikon aller Wissenschaften und Kinsle
(64 vols, 4 suppl. vols), Leipzig 1732-1754 (reprint Graz, 1961-1964), vol. 21 (1739) col.
955,
Jocher, C.G., Allgemeines Gelehrienlezicor, 4 vols, Leipzig 1750-1751;
Adelung, J.C., Rotermund, H.W., Giinther, O. Fortselzungen und Ergan:ungen zu
Jicher’s allgemeinem Gelehrienlezicon, 7 supplement vols, Leipzig 1784, 1787, Delmen-
horst 1810, Bremen 1813, 1816, 1819, Leipzig 1897 (facsimile reprints of these volumes:
Hildesheim (Olms), 1960-1961), vol. 3, col. 604 and suppl. vol. 4 col. 1960.

3]écher (note 2), suppl. vol. 4, col. 1960. The title of the astronomical treatise is given
there as “Methodus erigendorum thematum astronom” (sic), Frankfurt 1618. I have not
tried to trace these publications.
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make a similar solid in a given ratio, by means of the second Mesolabe,*
by which two continuously proportional means can be taken. Now at
last easily and geometrically solved after innumerable attempts of the
most eminent mathematicians. The history of the problem is given
first and some results are added about the trisection of an angle, the
construction of a heptagon, the quadrature of the circle and two very
convenient designs of proportional instruments.®

Such wordiness, and especially the claim to have “at last” solved the problem
of duplicating the cube, are likely to draw a smile from the modern reader;
the tradition of mistaken solutions of the problem, announced with similar
pomp, is an old one. Molther's solution, however, was not mistaken, in
particular he did not claim, as several others had done before him, to have
solved the problem by straight lines and circles (ruler and compass®), which
cannot be done. And although the mathematical content of his book is
definitely unoriginal, there are aspects of his arguments which I find to be of
some interest, especially because they relate to questions debated by some
contemporaries of higher mathematical standing, such as Viéte, Kepler and
Descartes.

Duplication of the cube, mean proportionals and
neusis

A mean proportional between two magnitudes a and b is a term of a geomet-
rical sequence with a and b as first and last terms respectively. The simplest
case occurs when the sequence has three terms: qa, z, b, with

a:z=z:b;

T is then called the mean proportional or the geometric mean of @ and b. The
construction, by straight lines and circles, of the geometric mean between two

4The term Mesolabum was used in classical Greek geometry to denote an instrument
for constructing mean porportionals. In the sixteenth and seventeenth centuries the term,
also spelled mesolebsum, no longer had a strictly instrumental connotation; it meant in
general the art of constructing mean proportionals. Molther, however, used it in the
classical sense. He called ‘second’ mesolabe the instrument for constructing fwe mean
proportionals.

5 Problema Deliacum de cubi duplicatione, koc est de guorumlibet! solidorum, inler
ventu Mesolabii gecunds, quo duae capieniur mediae conlinue proportionales sub data ra-
hione simihum fabrica. Nunc tandem post infintlos praestantissimorum mathematlicorum
conatus expediie et geomeirice solutum. Ubt historia problematis praemstisiur, ef s:mul
nonnulla de anguli triseciione, heplagoni fabrica, circuligue quadratura ef duabus com-
modissimis instrumentorum propertionum formis insereniur. The book was published at
Frankfurt, “Typis ac sumptibus Antonii Hummii®, in 1619. I have consulted the copy in
the Bayerische Statsbibliothek at Munich (4° Math P 237) and a xerox of the copy in the
library of Brown University, Providence, R.L, kindly provided by Prof. G.J. Toomet.

5In the following T use the terminology ‘by straight lines and circles’ rather than ‘by
ruler and compass' for constructions according to the Euclidean postulates because Euclid
did not mention instruments to petform these constructions.
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line segments is given in Euclid’s Elements (11-13 and VI-14). The case of
two mean proportionals arises when the sequence has four terms: a, @, y, b.
Thus the problem of constructing two mean proportionals is: Given two line
segments a and b, it is required to construct two line segments z and y such
that a, z, ¥ and b form a geometric sequence, i.e.:

a:z=z:y=y:b.

This problem was formulated and solved in classical Greek geometry. Tradi-
tion has it that the problem arose in connection with one of the three ‘classical
problems’, namely the duplication of the cube: To construct a cube twice as
large (in content) as a given cube. In algebraic terms, if the edge of the given
cube is called a, it is required to find the edge z of a cube determined by
2% = 243, If we write y = 7%/a, the equation impliese: 2 =2 :y =y : 2a,80
z is the first of two mean proportionals between a and 2a. Greek geometers
also realized this fact (be it not exactly along the algebraic line above) and
knew that hence a method for constructing two mean proportionals would
imply a method to duplicate the cube.

Molther also reduced the duplication problem to a construction of two
mean proportionals, for which he used an expedient called ‘neusis’.” Greek
geometers from the classical period had found that several problems which
could not be constructed by straight lines and circles, could be reduced to
the so-called ‘neusis’ problem. This problem was:

Problem (neusis)

Given: two straight lines / and m (see Figure 1), a point O and a line
segment a.

Required: to find a line through O, intersecting { and m in points A
and B respectively such that AB = a.

The problem requires the segment a to be placed between the lines [ and
m in such a way that it points in the direction of 0.2 There were variants
of the problem in which one or both of the straight lines were replaced by
circles. In particular cases (for instance when the distances of O to ! and
m are equal) the neusis construction can be achieved by straight lines and
circles only, but not in general. I shall use the term ‘construction by neusis’
for a construction which reduces a problem to a neusis problem, and I shall
call a ‘neusis procedure’ any procedure to actually construct the solution
of a neusis problem. In his book Molther solved the problem of two mean
proportionals by a neusis construction and he explained a neusis procedure.

7On neusis in classical geometry see for instance The works of Archimedes (ed. T.L.
Heath), New York (Dover), 1953 {reprint of ed. Cambridge 1897-1912), pp. c-cxxii, and
W.R. Knorr, The ancient iradition of geomeiric problems, Boston etc. (Bitkhauser), 1986,
pp. 178-187 and index s.v. ‘neusis’.

8This explains the name of the problem: the segment has to be placed such that it
‘verges’ towards P; neusis derives from the Greek verb ‘neuein’ which means ‘to verge’.
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Figure 1

Neusis: the classical heritage

The mathematical techniques which Molther applied in his neusis construc-
tion were of classical origin and well known at his time. The two main sources
from which early modern mathematicians learned about neusis and similar
constructions and procedures were Eutocius’ commentary to Proposition 11-2
of Archimedes’ Sphere and Cylinder, available since the beginning of the six-
teenth century,® and Pappus’ Collectio, first edited in print in 1588.1°

In Proposition II-2 of the Sphere and Cylinder Archimedes assumed with-
out further explanation the possibility of constructing two mean propor-
tionals. In his commentary Eutocius gave twelve different constructions of
this problem ascribing them to Plato, Heron, Philo of Byzantium, Apol-
lonius, Diocles, Pappus, Sporus, Menaechmus, Archytas, Eratosthenes and
Nicomedes.!” The one by Nicomedes was a neusis construction. Several
other solutions from Eutocius’ list employed constructions like the neusis;

9The constructions which Eutocius mentioned were published in Georgius Valla, De
expetiendis et fugiendis rebus opus, Venice 1501, book XIII, Ch. II, fols Uv™-Xiv". This
was a rather unsatisfactory version of the text. Johannes Werner gave a better edition
in his Libellus super viginti duobus elementis conicis (-) commentarius (-) cubi duplicatio
(-) Niicnberg, 1522, fols Civ* - Hiv". The commentary of Eutocius became available in
printed form in the Basel 1544 edition of Archimedes’ Opera by Th. Geschaufl. At the
moment the text is easiest accessible through Vereecke’s French translation: Les ceuvres
complétes d’Archiméde suivies des commentaires d'Eulocius d'Ascalon (tr. P. Vereecke),
Paris, 1921,

10 Pappi Alezandrini mathematicae collectiones (tr. ed. F. Commandino), Pesaro 1588.
French translation: Pappus, La collection mathématigue (tr. Paul Vereecke), Paris, 1933.

11'There is one unattributed solution, mentioned after the one by Menaechmus.
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Figure 2

these were to be performed by shifting a marked ruler over the figure until,
by trial and error, the cotrect position was found. Eutocius also mentioned
a curve invented by Nicomedes by which a neusis problem could actually be
solved. The curve has become known as the ‘Conchoid of Nicomedes’. It
is the curve traced by an instrument as in Figure 2, consisting of a system
of perpendicular rulers AB, CD and a movable ruler EG. CD and EG
have slots along their central lines; at O on AB and at F on EG pins are
fixed which fall in the slots as shown. The distances FG = a and AQ = b
are constant {Nicomedes probably considered an instrument in which these
distances were adjustable). If the ruler EG is moved the point G describes
the conchoid. The pins and the slots ensure that in all its positions EG
passes through the center O while F remains on the line CD. Thus any
point H on the conchoid has the property that its distance to the base line
CD measured along the line HO is equal to a. Eutocius showed that if for
any given center, base line and segment the conchoid of Nicomedes can be
drawn, the neusis problem can be solved (see Figure 3): draw the conchoid
with respect to center O, segment a and base line [, let its intersection with
m be B, then OB is the required line, intersecting ! in A, with AB = a.

In his Collectio Pappus gave a classification of geometrical problems based
on the curves used in their construction. He distinguished ‘plane’, ‘solid’,
and ‘line-like’ problems. Plane problems were those constructible by the
Euclidean means of straight lines and circles; ‘solid’ ones were those which,
although not plane, could be constructed by the intersection of straight lines,
circles and one or two conic sections. If the construction of a problem required

more complicated curves than conic sections, they were ‘line-like’.'?

12 Collectio (cf. note 10) book III, introduction to Proposition 5 and book 1V, introduc-
tion to Proposition 34.

—— e e e s — e




34 BOS

Figure 3

Pappus also discussed the neusis and its use in solving problems such as
trisecting an angle or finding two mean proportionals. He was aware that the
neusis problem was not plane; he proved that it was ‘solid’ by providing a
construction by means of the intersection of a hyperbola and a circle.?® The
Collectio also contained a trisection by neusis.'4

Thus the classical sources were quite informative about propositions and
techniques relevant to the neusis procedure. They were, however, incon-
clusive with respect to the question whether procedures similar to the neu-
sis, employing other means of construction than straight lines and circles
and thereby being outside the Euclidean bounds of geometrical procedure,
were legitimate. Eutocius’ list of consiructions suggested that the ancient
mathematicians had not reached a consensus about which method was the
most proper for solving the problem of mean proportionals. Eutocius himself
hardly discussed the question of the geometrical legitimacy of the construc-
tions; as far as he expressed preferences, they concerned the practical ease
of the constructions, not their theoretical exactness. Pappus’ classification
of problems and his treatment of the neusis suggested that construction by
intersection of conic sections should be considered as more geometrical than
by using a conchoid or another neusis procedure.

13 Callectio book IV Proposition 31.
14 Collectio book IV Proposition 32.
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Neusis: early modern interest

Jn the 1590’s Viéte gave the neusis construction a prominent place in his
«Restored mathematical analysis or new algebra”.!® In his Supplementum
Geometriae (“The Supplement of Geometry”) of 1593 he gave neusis con-
structions for both the two mean proportionals problem and the trisection
problem. He also showed that any geometrical construction problem which,
translated into algebraic terms, led to an equation of the third or fourth de-
gree, could be reduced to either a trisection or a determination of two mean
proportionals. Thus a very large class of geometrical problems, including
all the solid problems known at that time, could be reduced to a neusis. 17
Viéte highlighted this result by stating that the Euclidean postulates, on
which constructions by circles and straight lines were based, should be sup-
plemented by a new one, postulating that to every center, base line and
segment a neusis could be performed. This new postulate was the ‘supple-
ment of geometry’ in the title of his book of 1593; Viete claimed that, with
geometry thus supplemented, “no problem would be left unsolved”.!®

Legitimation

Viéte formulated the neusis as a postulate; he did not propose any particular
procedure for performing the construction. Nor did he argue explicitly why
it should be allowed to accept neusis as a postulate; apparently he considered
the postulate sufficiently legitimated by the fact that it made ‘all’ problems
solvable. Molther was primarily interested in this legitimation question and
he did not accept Vidte's answer. He was not alone in this interest; the status
and acceptability of constructions beyond those by straight lines and circles
was widely discussed in early modern geometrical studies. I mention two
examples to give some background to Molther’s arguments.

Some years before Viéte, Clavius had proposed another means to ex-
tend the boundaries of geometry so as to include such hitherto unsolvable

18]y 1591 Viéte published in Tours his fsagoge in artem analyiscen; it was the first of
a series of treatises which he then planned to publish and which were to form what he
called the Opus restitutae mathematicae analyseos seu algebra nova. He did not complete
this project. The [sagoge was republished in Viéte, Frangois, Opera mathematica {ed.
F. van Schooten}, Leiden, 1646 {facsimile reprint Hildesheim 1970}, pp. 1-12. An English
translation can be found in F. Viéte, The analytic art, nine studies in algebra, geometry
and trigonometry (tr. T.R. Witmer), Kent (Ohio), 1983, pp. 11-32.

16Tours 1593; it was the second of the series of treatises mentioned in the previous note.
It is on pp. 240-257 of van Schooten’s edition and on pp. 388-417 of Witmet’s translation.

17In fact, Vidte’s result implies that afl solid problems in Pappus’ sense, that is, all those
that can be solved by the intersection of conics, can be constructed by neusis, because such
problems can be reduced to equations of degrees not higher than four, However, Viéte did
not explicitly draw that conclusion.

18«Nyllum non problema solvere” (Van Schooten edition p. 12, see note 15). Remark-
ably, Vidte did not discuss the problems leading to equations of higher degree than four,
although he knew that the higher-order angular sections were of that class.

B
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problems. He did so in a treatise on a special curve, namely the ‘Quadra-
trix’, inserted in the second edition of his Euclid.!® From Pappus’ Coellectio
Clavius had learned about that curve and its properties; in particular the
fact that if the quadratrix were given, trisection, other angular sections and
even the quadrature of the circle could be constructed. Ancient geometers,
however, had expressed doubts about the legitimacy of this use of the curve
because its definition, by a combination of motions, seemed to presuppose
the quadrature of the circle, so that the curve’s use in solving this problem
would involve a petitio principii. Clavius provided a pointwise construction of
the quadratrix which he considered to be fully geometrical. He then claimed
with quite some emphasis (which he mitigated somewhat in later editions)
that through his construction the use of the quadratrix in geometry was le-
gitimized and the problems of the quadrature of the circle and the angular
sections were truly geometrically solved.?®

Viéte and Clavius argued for an extension of the domain of geometry.
Their view was opposed by others, notably by Kepler. In the same year
as Problema Deliacum appeared, Kepler published his Harmonices Mundi.?!
The work contained a spirited defence?? of Euclid’s geometry against all clas-
sical and modern geometers who tried to extend the means of geometrical
construction beyond straight lines and circles. According to Kepler line seg-
ments constructed by other means than straight lines and circles were not
knowable, they fell outside the sphere of exact, genuinely geometrical knowl-
edge. Also ratios involving such line segments were beyond the bounds of
geometry. Kepler’s reasons for this orthodox and purist conception of ge-
ometry were philosophical; in his view the Creator had shaped the world
according to harmonious, knowable ratios and these were precisely the ones
constructable by strictly Euclidean means; assuming that there were more
such ratios would destroy the structure and the divine rationality of the
creation.

Kepler was not the last mathematician to address the issue of accept-
ability of constructions beyond straight lines and circles. Indeed much of
what Descartes’ presented in his Géoméirie of 1637 was directly or indirectly
inspired by that question.?®

19 Buclidis elementorum libri XV accessit X VI de solidorum regularium cuiuslibet com-
peratione (ed. C. Clavius), 2 vols, Rome, 1589, vol. 1, pp. 894-918: “De mirabilia natura
lineae culusdam inflexae, per quam et in circulo figura quotlibet laterum aequalium in-
scribitur, et circulus quadratur, et plura alia scitu jucundissima perficiuntur”; Clavius
inserted the treatise also in his Geemetria Praciica, Rome, 1604 (pp. 359-370).

20CE. *{-) adinittere (-) descriptionem hanc nostram quadratricis lineae ut geometricam”
{p. 898 in Euchd edition 1589, cf note 19); in the version of the Geometria Practica of
1604 Clavius added ‘quodammodo’ in front of geometricam (p. 362, cf note 19).

213ohann Kepler, Harmonices mundi libri V, Linz, 1619, in Gesammelte Werke (ed W.
von Dyck e.a.), Miinchen 1937, vol, 6 (1940). There is a German translation: J. Kepler,
Weitharmonsk (tr. M. Caspar), Miinchen, 1973 (repr. of editicn 1939).

22Book I, Werke vol. 6, pp. 13-64, see especially the Prooemium, pp. 15-20.

23Cf. my articles: “On the representation of curves in Descartes’ Géométrie”, Archive
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The Problema Deliacum

In his Problema Deliacum, then, Molther took a position in an existing math-
ematical debate. He proposed the use of neusis constructions to solve prob-
lems that could not be solved by straight lines and circles, and he presented
in particular one such construction for two mean proportionals. The proposal
was not new, as we have seen, and his construction was a modification of ex-
isting ones. Nor did Molther explicitly present them as original. What he did
claim, however, as his own new and original contribution was his argument
that the neusis construction was geometrical. In his opinion a convincing
argument for the geometrical legitimacy of neusis constructions had not yet
been given, and so, by presenting such an argument, he could claim to be the
first to have really solved the problems of doubling the cube and constructing
two mean proportionals. Before analysing Molther’s arguments I give a brief
survey of the content of the work.

The book opens with a dedicatory poem addressed to Maurice, landgrave
of Hessen,?! and a preface.?® The main text starts with a history of the
problems of cube duplication and constructing two mean proportionals.?®
Then follow four chapters, the first on the neusis postulate itself,?” the second
on the construction of two mean proportionals by means of the neusis,?®
the third on a particular problem in solid geometry which depends on the
construction of two mean proportionals,” and the fourth on some related
subjects.®® The above mentioned funereal poem for Molther’s father ends

for history of ezact sciences, 24, 1981, pp. 295-338; and “The structure of Descartes’
Géométrie”, in Descaries: #f melodo e 1 saggi; Atli del convegno per il 3500 anniversario
della publicazione del Discours de la Méthode e degli Essais (ed. G. Belgicioso e.a., 2 vols,
Florence, 1990) pp. 349-369.

4pp. 3-5.

3%pp, 6-9.

26Pp. 10-28.

3T4Postulatum genuinum. Lineae rectae & puncto ad duas lineas requisita applicatio.”
Pp. 29-50.

28 “Mesolabit secundi expositio” pp. 51-69, The chapter ends (pp. 63-69) with the remark
that the first of two mean proportionals between 1 and 31, that is V31, provides a good
approximation for 7; this is the result on the quadrature of the circle announced in the
title of the book; Moither gives the values as 314138+ and 314159+ respectively (for radius
100000). .

33 «Fabrica sclidorum sub data ratione similium” pp. 69-72. This was a standard problem
in the early modern geometrical literature, namely: given a solid A and a ratio a : b, to
construct a solid B similar to 4 and such that the volumes of A and B ate in the ratio
a:b.

30Pp. 73-88. Molther discussed some aspects of the determination of mean propertionals
in practice, both by numbers and by instruments. He also explained the two proportional
instruments announced in the title of his book. They were variants of the proportional
compass. In one of them (pp. 83-86) the two sets of scales notmally drawn on the two legs
of the compass were drawn parallel but at some distance on a single flat surface; Molther
claimed that this device, because of the absence of a hinge, was easier to make and as
accurate in use as the usual proportional compass. The second (pp. 86-88) was practically
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the book.?!

In the historical section Molther critically reviewed earlier constructions of
mean proportionals. He dealt with the constructions from Eutocius’ list and
with a number of more recent ones (Cusanus, Ramus, Oronce Fine, Peletier,
Viéte, Clavius, Villalpandus, Salignac, and Metius). In Molther’s opinion, ali
these constructions failed to be truly geometrical. Some of them used curves
which were traced by machines or constructed pointwise; neither method
could be accepted as fully geometrical. Other constructions were unpractical,
merely approximative or just false. Among all the constructions Molther
preferred the one by Nicomedes which used the conchoid, because that curve
could be traced more easily than the conics or the cissoid (another curve used
in a construction of two mean proportionals), and also because its pointwise
construction (here he referred to Clavius, who gave such a construction of the
conchoid in his Geometria Practica®®) was easy and practical. Yet, curves as
the conchoid were not traced in a truly geometrical way and it was still an
open problem

how one should geometrically achieve the placing of the lines in these
required positions, in one immediate action, with no other instrument
than those the geometer is absolutely allowed to use, and with such
fruth and precision that the procedures indeed can bear the test of
reason’s criticism.®

The postulate

At the end of the historical introduction Molther announced his own method
for finding two mean proportionals in the following terms:

We, however, have finally realized that the matter of this difficulty,
investigated through many centuries, a stumbling block for the most
ingenious of mortals, is really so smooth, easy, obvious, ready and evi-
dent, that, because it meets the very terms for a legitimate postulate,
it has by right to be counted as the next postulate, so that it does not
at all require a belabored construction and proof, as difficult problems
do, but that, as a principle clear in itself, it needs only a simple ex-

planation, after which anyone can understand it and give it its due
assent.*

the same as the usual instrument but Molther proposed a different use of it by which it
was not necessary to have the scales on both legs of the compass.

31pp, 89-102.

32 Geometria Practica (see note 19), pp. 301-304.

33%(-) quomodo eiusmodi linearum requisitae applicationes Geometrice sine alic quam
Geometrae absolute concesso instrumento, mox ptitna actione prasstarentur tanta veritate
ac praecisione ut etiam rationis censuram sustinerent.” P. 25.

At vero nos rem istam exploratae per plurima secula difficultatis, in qua mortalium
ingeniosissimi haesitarunt, ita expeditam, facilem, obviam, parabilem promtamque dudum
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So Molther claimed that the neusis construction could be accepted as a pos-
tulate in geometry on the same level as the traditional postulates that can-
onized the usual Euclidean constructions, and that therefore the duplication
problem could indeed be solved geometrically by means of neusis. This, as
we have seen, was precisely what Viéte had done in his Supplementum Ge-
ometriae, be it that he had not explicitly justified the postulate status for
the neusis. For Molther that was the heart of the matter, which may explain
how easily he dismissed Viéte’s work in his introduction:

With all his subtlety Viéte gathered nothing that can stand the test
of criticism.%

The crucial part of Molther’s reasoning, then, was his argument why the
neusis construction was as obviously possible and acceptable in geometry
as the construction of straight lines and citcles by ruler and compass. The
first chapter of his book was devoted to this argument. It opened with the
formulation of the neusis postulate:

Let it be postulated that, given two lines and a point in position in
the same plane, a line can be drawn from that point such that the
segment intercepted on that line by the two given lines is equal to
another straight line given in length.%

The justification of the postulate

To justify the status of postulate Molther explained a procedure for the
peusis which, he claimed, was legitimately geometrical. The procedure may
be summarized as follows:

Procedure® (Neusis, Molther)

Given: two straight lines ! and m (see Figure 4), a point O and a
segment a.

Required: to find a line through O, intersecting { and min A and B
respectively and such that AB =a.

Procedure:

animadvertimus, ut quia hasce Postulati legitimi conditiones obtinet, Postulatus sit prox-
ima meritoque annumetanda, adeo ut nequaquam ceu Problema contentiosum anxiam
constructionem et demonstrationem requirat, sed tanquam Principium per se manifestum,
levi contenta sit explicatione, qua adhibita & quolibet capi et assensum meriri possit.” P.
27.

354Gy btillissimus Vieta nihil quod censuram sustineret venatus est” p. 26.

88 «pogiuletur, duabus lineis punctoque in eodem plano situ datis, ut & puncto i8to linea
recta applicetur, cujus portio a lineis illis intersecta alteri rectae Jongitudine datae sit
aequalis,” p. 29.

37Pp. 31-36.
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1. Take a ruler and mark points C and P on it with distance a.

2. Move the ruler over the plane in such a way that it slides along the
})oint O and that the point C on the ruler is always on the given line
3. Stop that motion at the moment that the point D is on the line m;
then draw a straight line along the ruler; call A and B its intersections
with [ and m respectively.

4. OAB is the required line.

Figure 4

Molther analyzed this procedure at great length, arguing that each of its
steps was legitimately geometrical. Since the first Euclidean postulate ascer-
tained the tracing of straight lines, the ruler, by which this was done, was
a geometrical instrument. Moreover such rulers could be made very precise,
for instance by making them of metal, or by folding a piece of paper. The
segment CD = g could be marked on the ruler by a compass, which was
also a geometrical instrument. The required movements of the ruler could
be performed with great precision. This precision was guaranteed by our
senses, which could judge whether the ruler remained along O during the
motion and whether the point C moved along the given line {. It was also
by the senses that the geometer decided to stop the motion at the moment
that the point D lay on the second given line m. Molther argued that both

motion and the testimony of the senses were implicitly assumed in the usual
Euclidean postulates:

For we have to use our sense to observe and acknowledge whether or
not the ruler is placed in the way as postulated: because what can
be clear by itself need not be made known through any demonstra-
tion. For at other times we acknowledge in no other way than by
sense whether or not a ruler is duly placed along two points, from
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one of which to the other a straight line can be drawn according to
the postulate; whether the given interval with which a circle is to be
described is justly contained in a compass; and whether the one leg
of the compass is rightly placed in the given center around which the
circle is to be drawn. Indeed one sees immediately and with the same
ease whether the ruler is along the point [O] and at the same time
whether the point [C] on the ruler is at the line [{] and the point [D]
on it at the line [m].%®

Thus if one accepted the common Euclidean postulates one implicitly granted
a legitimate place in geometry to motion and the testimony of the senses,
and thereby to the neusis procedure.

Pure geometry

Although the starting point of Molther’s legitimation argument was the pre-
cision of the neusis procedure as effectuated in practice, he did acknowledge
geometry as a pure science, remote from the practice of drawing figures on
paper by a step of abstraction or idealization. However, he argued that also
if one considered pure geometry as an action of the mind alone, based on
postulates, constructions still had to be performed in the mind by an inner
sense, and this was done by procedures idealized from the actual physical
construction procedures. Indeed the analysis of the role of motion and the
senses in the actual physical procedure served to help the inner sense to per-
form the neusis abstractly in the mind as easily as it performed the mental
operations corresponding to the use of ruler and compass. Therefore neu-
sis should be accepted as a postulate in pure abstract geometry. Molther
formulated this argument as follows:

But also if one would judge that geometry it its most pure form should
be practiced by action of the mind alone and based on its postulates,
one detaches by mathematical abstraction the ideas of a material ruler
and of a compass, and grasps them in one’s mind, so that in the
fantasy they serve as ruler and compass, guided by an interior sense.
And thus it will be easy to imagine in thought the process of which
we have shown how it is performed in reality.®

384Gensu enim advertendum et agnoscendum sitne Regula ita ut postulatur applicata:
quia nulla demonstratione id innotescat, quod per se liquidum esse potest. Quemadmodum
alias haud aliter quam sensu cognoscimus sitne Regula ad duo puncta, & quorum uno ad
alterum trahi postulatur Recta, debite applicata: sitne intervallum pro Circulo describendo
datum Circini apertura iuste comprehensum: sitne pes Circini alter in centro dato circa
quod gyranda est Peripheria, recte positus. Nempe eadem facilitate protinus cernitur, sitne
Regula juxta punctum A simulque Regulae punctum C in linea 1, et Regulae punctum B
in linea m.” Pp. 33-34, in the translation I changed the letters to fit my figure.

394G quis autem existimet oportere puram puram [sic] Geometriam sola mentis ac-
tione, etiam secundum Postulata sua, exerceri; is quoque Regulae Circini materialis ideas
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Figure 5

Molther’s neusis instrument

To show the practical feasibility of neusis construction, Molther finally de-
scribed two ways to actually perform the neusis, one by an instrument and
one by a procedure involving a string. Figure 5 shows the drawings in his
book.** The neusis was performed between the lines AE and AF from the
point D; the given line segment was BC. The instrument was a combination
of two rulers ab and de sliding along each other with adjustable points and
pins. The distance oi along the ruler de could be made equal to the given
segment. Ruler ab was placed with the pin at @ in D and then turned around
D while ruler de was made to slide along ab in such a way that the point
corresponding to ¢ moved along AE. The movement was stopped when the
point corresponding to ¢ was on the other line AF; at that position the ruler
ab gave the required line.

The string procedure used a cord on which two points B and C were
marked, with distance equal to the given segment. The cord, while being
kept straight, was moved along the plane such that it wrapped around a pin
in the given pole D and such that C followed the given line AE; the required
position of the line was reached at the moment that B on the cord coincided
with AF.

The construction of two mean proportionals

After these theoretical and practical arguments about the status and the
execution of the neusis, Molther turned to the actual construction of solid

{afairesei} Mathetnatica abstrahat et mente complectatur, ut in Phantasia per sensum in-
teriorem Regulae ac Circini opera faciant. Sic enim proclive fuerit cogitando illud fingere,
quod quomodo reipsa praestetur monstravimus.” P. 36, text between () in Greek.

40pp. 38 and 39.
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Figure 6

problems, by neusis but also otherwise. As most of these consiructions are
not particularly original or informative,* I shall only discuss the one for two
mean proportionals.

The second chapter of Problema Deliacum was devoted to the Mesolabium
proper, that is, to the construction of two mean proportionals. The construc-
tion was as follows:

Construction?? {two mean proportionals by neusis, Molther)
Given: segments a and b (a < b) (see Figure 6). It is required to find
their two mean proportionals z and y.

Construction:

1. Mark points A, B, C, D along a straight line such that
AB=BC=CD=q,

2. Construct two congruent isosceles triangles AEB and CF D, with
AE = EB =CF = FD = }b; draw BF.

3. By neusis (Molther here refers to his postulate), construct a line
through E, intersecting the lines BF and AD in G and H respectively
such that GH = 1b.

4. The required mean proportionals are * = £G and y = BH.

The proof Molther gave for the correctness of this construction may be sum-
marized as follows:

41Molther concluded his first chapter with a trisection by neusis (pp. 40-45) and a
construction of the regular heptagon by means of & curve (introduced for this special
purpose and constructed pointwise) which he called the “Helix (heptagoonografousa)” {pp.
46-48). The trisection is a variant of (and obviously inspired by) the neusia construction
that occurs in Pappus’ Collectio (cf. note 10); Molther referred to Clavius’ Geomeiria
Practica of 1604, where the same construction was given (on pp. 399-400, cf. note 19).
Molther’s change of the original construction was a slight practical improvement.

42pp. 51-55.
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Figure 7

Proof®

1. Draw (see Figure 7) a circle with center E and radius EA = 3b;
prolong EH to both sides, take I on it with GH = HI (and therefore
GI = b); mark its intersections L and M with the circle, LM = b
draw a line through A parallel to BF, call its intersections with EG
and EB J and K respectively.

2. Prove by similar triangles that EK = KB and EJ = JG.

3. Note that, because GH = b= EL, wehave EG = LH, MG = IL
and IE=HM.

4. Prove by means of Euclid I1I-36 that HL: HB = HA: HM.

5. Because AJ is parallel to BF it follows that AB: JG = BH : GH;
hence AB : 2JG = BH : 2GH; now AB = 4, 2JG = EG = g,
BH =y and 2GH = GI = b, thereforea: z =y : b.

8. By similar triangles and the equalities of 2. prove that HA: EI =
AB : EG and (using 4) that HA : EI = EG : HB; as AB = g,
EG=zand HB =y it followsthata:z =z : y.

7. From § and 6 it follows that a: 2 = 2 : y = ¥ : b as required.

If we compare Molther’s construction and proof with those of Nicomedes (as
given by Eutocius*) and of Viéte (in his Supplementum Geometriae®) it ap-
pears that there is little originality in Molther’s version. Without going into
details here I may summarize the dependencies between the three solutions
thus: Essentially they are the same, in particular with respect to the center,

43Pp. 55-58.
44Vereecke’s translation (cf. note 9) pp. 618-620.
45Proposition 5, in Witmer’s translation (cf. note 15) pp. 392-394.
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lines and segment of the neusis. Viéte simplified Nicomedes’ proof by remov-
ing a number of inessential auxiliary elements in his figure; he introduced the
isosceles triangle with sides a and }b and the circle with radius 46 and chord
a. Molther introduced more auxiliary lines, in particular the second isosceles
triangle, which do not serve much function.

Conclusion — the interpretation of exactness

The justification of geometrical construction procedures beyond the use of
straight lines and circles was a common concern in the early modern period.
Mathematicians were unwilling to accept the restrictions of the Euclidean
postulates, but the introduction of other means of construction than straight
lines and circles evoked the question what exactness meant and where the
borderline lay between legitimate, exact, or at any rate acceptable means
of construction and inexact, unacceptable procedures. I term this issue the
‘Interpretation of Exactness’.4

Mathematicians may adopt various strategies when confronted with the
necessity to find new interpretations of exactness. They may, like Kepler,
refer to authority and tradition and refuse to accept new interpretations.
They may, as Descartes did in his Géométrie,*” base a new interpretation of
exactness on a philosophical analysis of pure understanding. They may, like
Viéte, motivate their choice implicitly by the quality of the resulting theory.
They may also, like Clavius and like Molther, take practice as the starting
point of their interpretation of exactness and argue for the legitimation of
geometrical procedures by idealizing the criteria of precision that apply in
practice.

All these strategies were tried out in the early modern period. They
form, I find, a fascinating field of historical enquiry, not least because the
various ideas developed in response to the questions concerning exact, ac-
ceptable constructions, although themselves of meta-mathematical nature,
decisively influenced the development of mathematics in the early modern
period. Although the idealization of practice, such as adopted by Clavius
and Molther, appealed to a strong common experience of the practitioners of
geometry, it was the least successful among the strategies mentioned above.
Its arguments failed to convince and, contrary to the approaches exemplified
by Viete and Descartes respectively, it led to no new mathematical resuits or
techniques. Not surprisingly, then, Molther’s Problema Deliacum met with
little response and exerted no noticeable influence. Still, I think the book
is of interest, because Molther worked out his legitimation in greater detail
than we usually find. Thereby the Problema Deliacum offers us an instructive
archetype of the approach to the interpretation of exactness which favours

6Ct. my ‘On the interpretation of exactness’, to be published in the Proceedings of the
fifteenth international Wittgenstein symposium, held at Kirchberg am Wecheel (Austria)
August 1992.

ATCI. the articles cited in note 23.
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the idealization of practice.
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