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Differentials and Higher Order Differentials 1.
from Leibniz to Euler*

Ever since the seventeenth century the differential has haunted both

mathematics and history of mathematics. In a collection of articles from the

A@erican Mathematical Monthly, published only three years ago, there is a section
discussing how to introduce the differential in teaching. At the end of the section
the conclusion is reached that

"there is no commonly accepted definition of differential which fits

all uses to which the notation is applied." (1)
And I am told (2) that a Canadian Ph.D. student has been able to distinguish no
less than seven different types of infinitesimals in the history of mathematical
analysis, I am sure that the questions and the arguments in the debate over
differentials are quite familiar to you: Are differentials equal or unegqual to
zero? If unequal, are they infinitely small or finite bul approaching zero? If
infinitely small, what does that mean and will that notion not always lead to contraw
dictions? If differentials are finite but approaching zero, do they cver become
zero? And if not why can powers of the differentials be discarded? If the differentials
are zero, how can you divide by them? Or do differentials simply not exist? Are
they found only in symbols standing for mathematical entities arrived at by well
defined processes? If that is so, why are they so suggestive? etec. I will not go
into these questions because 1 have found fhem of little help in understanding the
mathematics to which most of my historical studies have been directed. I have been
studying the infinitesimal analysis practised on the continent by Leibniz and those
mathematicians who, in the late seventeenth and eighteenth centuries, developed the
differential and integral calculus in the way which Leibniz had initiated. It seems to

me that only in rare occasions the course which their researches took can be explained
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by a concern for foundational questions concerning the differential., What I do

find, however, is that there are certain practical and conceptual questions concerning

the differential, and especially the higher order differential, which were of direct

concern for that school of mathematicians,

These questions have not received the

attention they deserve, because historians of mathematics have usually restricted their

attention to the foundational questions around the first order differential,
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To introduce these questions, I invite you
to look beyond the first order differential,
What does one see when one looks beyond the
first order differential? One sees the next

4

first. order: differential. This differential

definition of the

Now, what is de?

differentials, so

is important because it occurs in the

second order differential;

I

ddx {or dzx) = dx~ - dx

Especially, what is it with respect to dx? They are both

the obvious

would be zero; there would be

the X-axis, the domain of the

higher order differentials do

thing to suppose is that they are equal, In that case ddx
no higher order differentials. Indeed, if we only look at
variable x, there is no reason to suppose otherwise and

not make sense., This shows that we must not restrict

ourselves to the X-axis and study the differential as separate entity, but that we

must look at the problem situation in which differentials occur.

The paradigm object of enquiry for the
Leibnizian differential calculus is the
curve, drawn with respect to perpendicular
axés, This is important to stress: the

calculus is an analytical calculus for
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geometrical problems. The famous book by the Marquis de l'Hapital is most

significantly called Analyse des infiniment petits, pour 1'intelligence des lignes

dourbes (3) and I regret very much that usually the last part of the title of this
first textbook of the calculus is omitted.

Now, let us come back to the differential and the next differential and ask: are
they equal? Well, they may or they may not bej but surely, if

de = dx

then dyI £ dy,
for otherwise the curve would have no curvature,
So we cannot suppose all first order differentials equal. But we may suppose the
dx's equal, That choice would give a privileged position to the Awaxis in the problem
situation. In fact, as will appear later, the cholce of supposing all dx's equal is
in a certain sense equivalent to treating all the variables involved as functions of
x3 that is to take x as independent variable.

However, in the geometrical problems to which the Leibnizian infinitesimal analysis
was applied, the X-axis did not have a privileged position. The curve was not
considered as the graph of a function x-y(x), in which x is the independent variable.
In fact, in the analysis of curves, until well into the eighteenth century, the concept
of function as mapping, as unidirectional relation between an independent variable and

a dependent variable, was absent,



L.

The curve was conceived as embodying a

set of relations between variable geometrical

quantities. Such variable geometrical
quantities are for instance: abscissa,

ordinate, arclength, radius, tangent, sub-

t
' tangent, quadrature, etc. The relations
e .
;/ﬂ’ B between these variables were expressed in
p .
. !
e /

i
. < the Analysis, if possible, by equations.

. There is an essential difference between
Variables:

bscisss N : it
; 2rd§ﬁai§ these variable geometrical quantities, or
s arclength
r radius variables for short, and functions. The
t tangent
=+ subtangent . \ 5

& concept of variable does pot imply the choice

Q@ gquadrature Eaanes

of one special variable in the problem to be
considered as independent and as the
variable on which all the other variables
depend.

To illustrate this distinction between variables and functions we may turn to
physical theories. Such theories are msuaslly concerned with relations between variables
(pV = RT for instance), no particular one of which is an "independent" cne., If we
consider a process of fall, there are three variablesy space traversed s, time t and
velocity v. These are variables; there is no reason why velocity, for instance, should
depend on time rather than on space traversed. In fact, if one introduces functions
in this situation, the one variable velocity dissolves into two entirely different
functions y(t) and v{s).

The absence of the concept of function in the Leibnizian infinitesimal analysis

and the predominance of the concept of variable is of crucial importance, because it
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explains why the derivative does not occur, and could not occur, in that calculus,

Indeed, to define a derivative, the specification of the independent variable is

necessary, and in the absence of a specified independent variable a derivative

cannot be introduced. Variables cannot have derivatives, but they can have

differentials, This fact explains also why it has been so difficult entirely to

get rid of the differentials ~ as some rigorists in mathematics have deeply wanted

to do., Differentials tend to be very persistent, especially in those cases where

variables are involved, that is, in physics or applied mathematics generally.

But if functions, and hence derivatives, were absent in the Leilbnizian calculus,

the important question to be asked must be: when and why did derivatives eventually

come to take over the role of fundamental concept in the differential calculus?

The usual answer to this question is that the derivative emerged gradually in the

eighteenth century, that it was canonised in the works of Lagrange and Cauchy and

that the reason why the derivative took over, was that the logical inconsistencies

of the differential became so embarrassing that one had to go over to the ratio, or

the limit of the ratio, of two differentials, But I have personally always felt a

little doubtful about this explanation. After all, would not the most typical

reaction of the working mathematician to the foundational problem of the differential

be to pay lip-service to it in the prefaces of his works, and to continue to work

with differentials? This, in fact, was what Euler did and yet in his work the

derivative - or to be precise the differential coefficient - rlays a most important role,



Indeed, there were other remsons for fhoe emergenoce of the derivative., The
emergence of the function concept itself must be taken into account, and also the
study of functions of more thon one variable brought in the derivatives, because
the usual conceptions and technigues of differentials bresk down when applied to
these functions, and the ensuing technical problems naturally force onc to the
derivatives, in this case the partial derivatives.

As you see, these are technical and conceptual, rather than foundational
problems, and in the rest of my talk I will concentrate cm yet another reason for

the emergence of the derivative, which also lies in the sphere of the conceptual

and the practical. This reason is connected with higher order differentials.
As is obvious from my preceding arguments, the Leibnizian calculus, lacking the

concept of derivative, had to introduce higher order differentials in order to deal

with problems involving higher order differentiation. Yet, unlike the hordy first
order differentials, the higher order differentials have been almost completely

abolished from mathematics. It is reasonable to suppose, that the technical and

conceptual difficulties associated with higher order differentials were so severe
that they had to be eliminated. I shall argue that this is indeed the case, and
that the attempt to eliminate higher order differentials was one of the main causes
of the emergence of the derivative,

To introduce the aspects of higher order differentials which I have in mind, I

ask you to return to the figures which we left for our discussions on functions and



7.

variables. We have scen that there is in principle no privileged variable, and
therefore no a priori reason why we should suppose the dx's all equal, or; for instance,
the dy's or the ds's, On the other hand, the dx's may be all equal -~ as long as

we don't expect the other differentials to be all equal too. So there is an essential

element of arbitrariness in the relation between adjacent differentials.
In order to discuss this point further I have to introduce a technical term,
I shall refer to the way in which the successive differentials of the variables are
related, as partition. If all the dx's are equal I shall say that the X-axis hos
a regular partition - and similarly for the Y-axis and the domains of the other
variables, The practitioners of the Leibnizian calculus did not use this term; they
used circumlocutions involving the idea of a progression of values of the variable (5),
We have seen that the partition has a degree of arbitrariness. Of course if the
partition of the domain of one variable is fixed, the partitions of the other dowmains
are fixed too., Thus the different possible partitions for a given curve can be
specified by stating how the differentials of one varisble behave, The four most

usual partitions which occur in the works of Leibniz, the Bernoulli's and Euler arc:

dx constant regular partition of the X-axis
dy constant regular partition of the Y-axis
ds constant regular partition of the curve

ydx constant regular partition of the area under the curve.



At this point T have to stop for two side remarks,
The partition tells us how the differential behaves along the domain of the
relevant variable., If for instance for the parabola y = x2 (see figure) dx is taken
constant, the dy (for x = 2) is twice the
dy (for x = 1), That is, the differential

can be considered throughout the domain.

¥ Thus the differential becomes a variable,
y=x ; like the other variables in the problem
+5 1
{
/ situation, only infinitely small, It is,
/
&y ; I feel, the failure of historical studies to
by >
J
! . see that the differentinl is an infinitely
!
:
3 i small variable, that has blocked much of
;f i our understanding of the differential. (The
: / |
}2 ;f , fact that one differential may be supposed
;f constant is not at variance with its status
SN |
1 ﬁgi as variable, Indeed, constant variables occur
i
[
S |
S é% ; in many situations, as for instance: the
s L :
7 P s
S R 11 ST~ T S
0 dx dx X constant ordinate of a horizontal straight

line, the constant radius of curvature of
a circle and the constant subtangent of the

logarithmic curve),

My second remark concerns the question how these arguments about the partition
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relate to the formula which is at present still in use for the second derivative, dzy/dx "

fx+h) - £(x)
h=0 h

For y = £f(x), the derivative is, as you know, defined by dy _ Tin
ax ~ T

The second derivative is usually introduced as the derivative of the derivative. However,

one can also introduce it as

2
a7y [£Cxteh) - £lerh)] = [£0xh) - £(x)]
2 - o e

which is analogous to

day . dyi -~ 4y
dX2 dx2

However, as you can see, for this definition of the second derivative it is essential that
one takes the two segments h along the X-axis equal,

Indeed, let us try to introduce the second derivative directly as a limit of a
qugtient of finite differences with respect to segnents hl and h2 along the X-axis, whigh

are not necessarily equal. The numerator of the quotient would be

[ f(x+h +h2) - f(x+h1)] - [f(x+h1) - £(x)].

1

But we run into a problem of choice for the denominator for which we might equally

well chose hi or hg or, as a compromise, hlhz' But, for whatever choice of the

denoninator, the double limit for hifo, hé*O would not exist, as can be checked easily
in the example y = x. So we have to suppose hl = h2, which is equivalent to what in
Leibnizian terminology is rendered as supposing dx constant. So we conclude : only
if dx is taken constant does dzy have a relation to the second derivative of y(x), Put

more generally, the variable whose differential is supposed constant takes a role

equivalent of that of the independent variable.
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Well, after all this, one should ask: does it matter? Obviously as long as we
restrict ourselves to first order differentials it does not mattér whether we

suppose dx constant or dy constant etc, becausé these suppositions refer to adjacent
differentials and they do not enter the story. So we state:

Problems involving only first order differentials do not depend on the
partition.

But it does matter for higher order differentials., I shall illustrate this
with some examples. The radius of curvature suggests itself as an example here because
it involves repeated differentiation. Let me present you a series of formulas which

Jakob Bernoulli gave in 1694(6) for the radius of curvature:

Z,
dxds as” )
=5y (ds constant) ; T = Gddy (dx constant)
3
ds” ~
T o= Gy (dy constant),

S0 we see:

The formula for a mathematical entity involving repeated differentiation
depends on the partition chosen,

Conversely, if you have a formula involving higher order differentials its
meaning depends on the partition, Let us return to Bernoulli's formula and apply it
: . 2 2 2 . =
in the case of a circle x + y = a but under different suppositions about the

partition, We find

dxds

i - ° for ds constant (as expected)

i

—yz/a for dx constant

for dy constant.

i

So: The meaning of a formula involving higher order differentials depends on the

vartition.
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To complicate matters still further consider the formula

dydsz
ddxds = ddsdx

Now if you work this formula out with respect to different partitions you find that
you will always get the same result. In fact, this is a formula for the radius of
curvature which is independent of the partition; Leibniz gave it; be it in a slightly
different form, in 1694 (7), and he stated that, compared with Bernoulli's formulas,it
has the advantage of being independent of the partition. So we conclude

Some formulas involving higher order differentials are indpendent of the
partition.

Obviously, these aspects of higher order differentials are of importance for
higher order differential equations. Consider e.g.

addx = (dy)a ds constant .
In the correspondence between Leibniz and Johann Bernoulli there is (dated 1694)
a reference to this differential equation (8). However, the specification of the
partition was omitted so that it reads there
addx = (dy)a,
When I first was confronted with this differential equation I was greatly puzzled by
the importance which the correspondents attached to it, because I thought it obvious
that
addx = (dy)2 yields dgx/dy2 = 1/a, whence
X = ya/aa + my + n would be the solution,
That is, I interpreted the differential equation as applying under the condition
dy constant., However, properly interpreted,
addx = (dy)2 ds constant

. . -%/a . . .
has as solution y = + a arcsin(me / )+ n, a solution which was given by Jakob
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Bernoulli in 1693 (be it not in this analytical form but by means of a geometrical
construction of the solution surves) (9),

So here we see that the dependence of differential formulas on the partition
implies that the solution of higher order differential equations depend on the
partition with respect to which they are considered,

Reviewing these examples we see that the higher order differentials have a
peculiar feature which the first order differentials lack: they involve an
indeterminacy. The first order differential is affected by a logical inconsistency
but routine manipulations with them leads to no ambiguities or pitfalls. But when
we turn to higher order differentials, even in ordinary mathematical practice
anomalies occur because a formula with higher order differentials can mean anything
or nothing, depending on the assumed partition,

How much were the practitioners of the Leibnizilan calculus aware of this
indeterminacy? Very much. Leibniz comments on it several times, he stresses the
necessesity to specify the partition when dealing with higher order differentials,
and he claims -~ and rightly so - that the possibility to assume whatsoever
partitions of the X-axis is precisely what makes his calculus superior to Cavalieri's
(10), For lack of time T will not go into the studies of the Bernoulli's concerning
the question of indeterminacy; suffice it to say that these aspects of higher order
differentials belonged to the standard knowledge of the practitioners of the
Leibnizian calculus.

Of these practitioners, Euler was the man who most fully grasped the
implications of the indeterminacy of higher order differentials, He devoted

large parts of his famous textbook Institutiones calculi differentialis (1755) (11)

to the discussion of these implications, Not only did Buler see the implications of
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the indeterminacy of higher order differentials, he also concluded that these higher

order differentials, because of their indeterminacy, do not really belong to Analysis.
His argument was this (12): If the partition is not specified, higher order
differentials are vague and have no determined meaning, so they do not belong to
Analysis = unless, of course, they occur in formulas which are independent of the
partition. But in that case, Buler says, they effectively cancel each other, so that
they do not really enter Analysis. If, on the other hand, the partition is specified?
the higher order differentials can be expressed in terms of finite variables and powe?s
of first order differentials, so that in that case also they do not really enter
Analysis, Indeed, if a partition is specified, this means that the differentials of

a certain variable is supposed constant, say dt constant. But then for every variable
x one can form dx=pdt, in which p is a finite variable called the differential
coefficient. Similarly dp = qdt and dq = rdt, Now by means of these differential

coefficients p, q, r, etc., the higher order differentials of x can be eliminated.

3 3

Indeed d2x = d(pdt) = dpdt -‘thz, d’x = rdt” etc. Thus the higher order differentials
are eliminated by reducing them to powers of the first order differential dt and to

the differential coefficients. The differential coefficients p, q, r etc., as well as
the differential dt are independent of the partition, because their definitions involve
only first order differentials,

What is important in this procedure is that by introducing the differential
g &3

coefficients Euler arrives at formulas which are independent of the partition. In other

VR [ PR DR PO O e T SNy O . OV RIS SOt [ SO 200 T O T w®t man P 2 0t T BN 4
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A

practitioners of the calculus, found that in order to achieve indépendence of the
rartition one has to introduce differential coefficients.

These problems about the indeterminacy of higher order differentials are
not foundational problems of the same sort as those about first order differentials,
They are practical - specification of the partition is part of the mathematical
argument - and they are conceptual - for instance where they concern symbols whose
meaning is not fixed. We see that these problems find a natural solution in the
introduction of differential coefficients with respect to one variable. That is,
they induce a consideration of the variables involved as functions of one
specified varieble, in which case the differential coefficients become the
derivatives. This then concludes my argument that the indeterminacy of higher
order differentials was one important contributing factor to the emergence of the
derivative.

The emergence of the derivative accompanied the disappearance of higher
order differentials and arbitrary partitions. To end this tallk I would like to
give an example of how these aspects may still pop up in modern mathematical
practice,

The formula for the second derivative, day/dxa, is a formula which depends on

the partition, If we consider for example the function y = xz, then

it

day/dx2 2 for dx constant,

i

day/dx2 0 for dy constant,
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’)m
dzy/dxa = 2(1 - hx%) 1 for ds constant,

2 4
d y/de

i

-2 for ydx constant.
Thus day/dx2 is one of those formulas to which the practitioners of the

Leibnizian calculus would always add an indication of the partition. We don't. Ve

have even forgotten that we should. This is not too serious because we usually
interpret dzy/dx2 as a single symbol and we know that y should be considered as a
function of x.
But problems may arise, for instance when we consider the chain rule for first

derivatives:

dy _ 4y  &x

dt ~dx " at !
in which, apparently, the dx's in the right hand side cancel each other., Applying the

same procedure to second derivatives we arrive at

zf“.x - .,,._daz (€2 (*)
2 2 dt ?
at d

which formula i1s incorrectj; it should be

Ly o @2, 4 4 (*)
2 2 dt ax .. 2 ¢
at dx dt

So we may ask: why is it that apparently we are allowed to cancel dx's in the case of
first order derivatives but not in the case of higher order derivatives?
The answer is that in fact we may cancel dx's as in (*), but that we are in

general not allowed to interpret dzy/dx2 and day/dt2 as second derivatives of y(x)

and y(t) respectively. In the Leibnizian calculus, (*) is a perfectly correct equality
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?etween differentials, but the meaning of the terms on both sides of the equation
depends on the partition. If dx is chosen constant then dgy/dxz may be interpreted
2s the second derivative of y(x), but day/dta may not be interpreted as the second
derivative of y(t); it is a quotient of differentials, for whose evaluation one has
to express numerator and denominator in terms of dx, that is, one has to consider

2

both y and t as the functions of x. Conversely, if dt is supposéd constant, dzy/dt

may be interpreted as the second derivative of y(t), but day/dx2 may not be interpreted

as the second derivative of y(x), Hence the only case that (*) may be interpreted

as an equality between derivatives is when dx and dt can be token constant together,

that is, when x is linearly dependent on t. But this also follows from the chain
rule for derivatives (**), because if x is linearly dependent on t, the second term of
the right hand side of (**) wanishes, so that (**) reduces to (*),
*This is a slightly altered and anotated version of a paper read to the British Society
for the History of Mathematics during its conference at Nottingham on 20th May, 1972,

(1) Selected papers on the calculus, ed. T.M. APOSTOL e¢.a,, Mathematical Association
) §

of America, 1969, p. 186,
(2) By dr I, Grattan-Guinness in private correspondence,
(3) Paris, 1696,

(4) In his Institutiones Calculi Differentialis, St. Petersburg, 1755, reprinted in

EULER, L. Opera Omnia, Ser. I, Vol, X, Leipzig-Berlin, 1913,
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(5) 8o for instance Leibniz:

Es ist ganz nicht nothig ad summandum, dass die dx oder dy

constantes und die ddx = 0 seyen, sondern moan assumiret die

progression der x oder y (welche man pro abscissa halten will)

wie man es gut findet, (LEIBNIZ, G, W. Mathematische Schrifton,

ed. C. I, GERHARDT, Berlin~Halle, 1849-1863, reprint Hildesheim 1961-1962,
Vol. VII, p. 387)

and Buler:
« o o notavimus differentias secundas atque sequentes constitul
non posse, nisl valores successivi ipsius x certa quadam lege
progredl assumantur; guae lex cum sit arbitraria. . .

(op. cit. note (4) part I paragraph 128)

(6) Acta Eruditorum, June 1694, reprinted in Jak, BERNOULLI, Opera, Geneva, 174k,

p. 576600,

(7)  Acta Eruditorum August 1694, reprinted in Mathematische Schriften (see note (5))

Vol, V, p. 309~2%18, 1In fact, Leibniz gave r = ETE%%&;yw*“ 3 working out

d(ay/ds) = (ddyds - ddsdy)/(ds)a, one arrives at r = dyds%/(ddyds—ddsdy).
Euler presented several formulas which involve higher order differentials but

are independent of the partition, in his Institutiones (see note (4)); such as

dyddx ~ dxddy (Part I, paragraph 257),
dxj

and (dx2 + dv2 + dza )3/2

(ax+dz)ddy - (dy+dz)ddx + (dx=-dy)ddz

(Part I, paragraph 261),

(8) Johann Bernoulli to Leibniz 19th May 1694, see LEIENIZ Mathematische Schriften

Vol., IIT p, 139,

(9)  Acta Bruditorum, June 1693, reprinted in Jakob BERNOULLI, Opera p. 549-573,

(10) Compare for instances:

« « « aream figurae calculo meo designo }ydx, seu summam ex

rectangulis cujusque y ducti in respondens sibi dx, ubl si dx ponantur

se aequales, habetur Methodus indivisibilium Cavalerii. (LEIBNIZ, mss Elementa
Calculi novi, published in GERHARDT C,I, Die Geschichte der‘hSheren Apnalysis,
erste Abtel%ung, die Entdeckung der hoheren Analysis, Halle 1855, pp 149155,
€50 Po 150

Und das ist eben auch der avantagen meines calculi differentialis, dass
mann nicht sagt die summa aller y, wie sonst geschehen, sodern die summa
aller ydx oder eydx, denn so kan ich das dx expliciren und die gegebene
quadratur in wndere infinitis modis transform1ren und also eine vermittelst

der andern finden. (Mathematische Schriften, Vol. VII p, 387)
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Sed haec (that is Cavalieri's) Indivisitilium Methodus tantum

initia quaedam ipsius artis continebat (. . .). Nam quoties,

ordinatim ductae inter se parallelae, nempe rectae lineae vel planae
superficies (. . .) intercipiunt inaequalia quaedam elemente, non

licet ipsas ordinatim applicatas in urum addere, ut contentum

figurse prodeat, sed ipsa intercepta Elementa infinite parva sunt
mensuranda; (. . .). Ea vero infinite parvorum aestimatio Cavalerianae
methodi vires excedebat . . » (LEIBNIZ, mss Scientiarum diversos

gradus . . «, published by G. I. GERHARDT in Vonatsberichte dsr
Konichlich Preussischen Akademie der Wissenschaften zu Berlin (28 October)

1875, pp 595-599, esp. p. 597.)

(11) See note (4)., The most important chapter in this respect is Ch. VIII

of part I, entitled De formulerum differentialium ulteriori differentiatione

(12} Part I, paragraph 263 5qq.



