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1. Introduction

There are two highlights in the development of mathematics in the
seventeenth century. These are: the creation of analytical geometry by
Descartes and Fermat, and the creation of the differential and integral
calculus by Newton and Leibniz. Huygens had little to do with either of
these highlights. From Descartes’ Géométrie of 1637 he learned to use
the new analytical geometry with ease and certainty, but he did not add
to it. He was also familiar with methods in infinitesimal calculus which
may be seen as precurosors of the differential calculus, for instance those
of Cavalieri, Fermat or Pascal, but in this domain Huygens did not
contribute much himself. When, around 1690, he learned about the
new differential and integral calculus he was no longer in a position to
use it in a creative way. This means that the obvious approach to my
subject “Huygens and mathematics”, namely to ask how Huygens fits
into the story of seventeenth century mathematics, does not work well.

This is a curious state of affairs because Huygens was a great mathe-
matician in the judgment of his contemporaries and of all those who
have later acquainted themselves with his work. The reasons for this
discrepancy lie in the fact that historians of mathematics tend to see
the highlights of their story in theories and in methods (as analytical
geometry and calculus). But there is another side to mathematics too,
which in that approach tends to remain in the background, and that is
the side of the material to which the theories and methods apply, and
the problems which they help to solve. Huygens as a mathematician was
not a man of abstract theories and methods, his preference lay towards
the use of these to solve problems, preferably problems in physics. I
think therefore that I should structure my report on Huygens and ma-
thematics by taking as central themes Huygens’ approach to mathema-
tical problems and his dealings with the material of mathematics.

The material of the new mathematics worked out in the seventeenth
century was first and foremost curves. In this period the number of
curves investigated by mathematicians increased enormously. The curve
collection of classical mathematics, consisting of the conic sections,
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some higher algebraic curves and two or three transcendental curves,
was extended by the algebraic curves introduced by Cartesian analytical
geometry, and by many new transcendental curves. The exploration of
this new mathematical material of curves forms one central theme in
Huygens’ mathematical work. Interest in these new curves was largely
caused by the confrontation with new problems that required the
knowledge of such curves. The second central theme in Huygens’
mathematics is his approach to these new problems.

Before reporting on Huygens’ mathematics I shall have to give two
somewhat technical preliminary explanations concerning these two
themes; the one is about transcendental curves and the other about
what I shall call inverse calculus problems.

Seventeenth century analytical geometry provided a most powerful
new tool for the study of curves, namely to characterize the curve by
its equation in two unknowns x and y. But these equations were
algebraic, that is, they involved as operations only addition, subtraction,
multiplication, division and roots. There were no equations or formulas
involving sines, logarithms, exponentials or (in the early period of ana-
lytic geometry) infinite series. Therefore the tool was only applicable
to curves which admit such an algebraic equation. These curves are called
algebraic curves. There exist other, non-algebraic curves they are called
transcendental! ; examples are the spirals, the cycloid and logarithmic
curves. Obviously these transcendental curves caused difficulties because
the new methods of analytical geometry were not directly applicable to
them. We will see that in Huygens’ dealings with curves these difficulties
around the transcendental curves played a crucial role.

There are some standard problems in the geometry of curves which
we might call calculus problems because the differential and integral
calculus has provided easy methods to solve them. These problems are
of the following form (see figure 1): Given a curve and a point on it, to
find, or construct, the tangent in that point, or the perpendicular in
that point, or the area bounded by curve, axis and ordinate through
that point (the so-called “‘quadrature”), or the arc-length from the
origin to that point. These problems in general do not lead to new
curves because they presuppose a given curve. With the term “inverse
calculus problems” 1 want to indicate a type of problems that are
inverse to the ones just mentioned and that do lead to new curves.
They are of the form: For which curve have the tangents such and such
a property? or, which curve has such and such an area? In the case that
a property of the tangents was given, these problems were called inverse
tangent problems in the seventeenth century; my term is a generalization.

These inverse calculus problems were a key factor in the development
of the differential and integral calculus in the seventeenth century
because they required new methods and because they gave rise to new
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curves. Huygens was repeatedly confronted with these problems and his
studies of them are very revealing of his approach to mathematical pro-
blems.

2. The formative period, 1645-1655

Huygens approached mathematics with a very characteristic style. He
formed this style in the decade from 1645 to 1655, which may be called
his formative period in mathematics. It is the period of his first studies
in higher mathematics, guided by Van Schooten, of his further indepen-
dent mathematical research and of his first publications.

These first publications concerned very classical and prestigious
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problems, namely the quadrature of segments of conic sections, in
particular the quadrature of the circle. His Theorems on the quadrature
of the hyperbola, the ellipse and the circle* appeared in 1651, with
an appendix containing a refutation of the circle quadrature by Geogory
of St. Vincent. The Inventions about the magnitude of the circle®
followed in 1654 with an appendix containing solutions of a number of
classical geometrical problems. Before these publications Huygens had
written a long work on the equilibrium position of floating bodies.*
This required the determination of volumes and centres of gravity of
many mathematical shapes like cones, paraboloids and their segments.
He never published this work.

It appears from these studies and from the further manuscripts of
this period that Huygens’ training in mathematics was predominantly
classical. It is true that, through Van Schooten, Huygens acquainted
himself with the modern methods of Descartes, Fermat, Cavalieri and
others, but the subjects he studied and the methods he used in most
cases were directly taken from the classical mathematicians, notably
from Archimedes. Indeed, even when he did use the new analytical
geometry, it was to solve classical geometrical problems, and Huygens
presented the solutions (in the appendix to the /nventions)in thoroughly
classical geometrical style, omitting the analytical methods by which
he had found them. In fact Huygens, like many of his contemporaries,
believed that the mathematicians of antiquity had possessed an analytical
method similar to the Cartesian and Fermatian analytic geometry.®

I want to show in some detail the central result of Huygens’ first
publication. This because it is a beautiful result (Huygens was rightly
proud of it) and also because I can use it to illustrate the characteristics
of the mathematical style that Huygens acquired in his formative
period. Archimedes had proved (see figure 2) about the parabola that
the area of a segment ABC is 4/3 of its inscribed triangle ABC. This is
Archimedes’ quadrature of the para-
bola. Furthermore Archimedes had
proved that the centre of gravity L
of the segment ABC lies on the axis
BD of the segment and such that
BListo LD as3: 2.

Huygens studied the same quest-
ions in the case of an arbitrary

A centre of gravity parabola conic section, ellipse, circle of
\ hyperbola. He did not find the

direct determination of the qua-

drature or the centre of gravity

Figure 2 (that would amount to having
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B solved the quadrature of the circle)
N but he found a relation between
the two. His result was this (see
figure 3): Let ABC be a segment
of an ellipse (the case of the hyper-
bola is analogous). F is the middle
c of the ellipse, L the centre of
gravity of the segment. Then
Huygens proved that®

o
centre of
gravity

ellipse

segment ABC: triangle ABC =
%— ED : FL.

Figure 3

Now triangle ABC and 2/3 ED are known, so that Huygens here relates
the area of the segment to its centre of gravity;if the one is known, the
other can be found too.

A beautiful result. It may be called Huygens’ master-proof in classical
mathematics: with classical methods applied to a classical problem he
found essentially new results. The result was also powerful: in his
Inventions he used it to work out a method to approximate the qua-
drature of the circle (or in other words ), and later, in 1661, he used
it in a method to calculate logarithms by means of the quadrature of
the hyperbola.” In both these cases his methods were essentially better
than the existing ones.

In order to show how this result illustrates characteristics of Huygens’
mathematical style I shall have to say more about Huygens’ proof of it.
Huygens proved first® that the centre of gravity of the segment lies on
the axis. For this he considers (see figure 4) circumscribed rectilinear
figures around the segment. It can be proved easily that the centres of

Figure 4
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gravity of these rectilinear figures
lie on the axis. The approximating
figures now suggest the following
argument: I can choose the figures
ever closer to the segments; the
centre of gravity is always on the
axis. Therefore in the Ilimiting
case, when the approximating
figure coincides with the segment,
the centre must also be on the
axis.

Figure 5 Huygens, however, following
the classics, does not accept this
argument as proof. Instead he
argues as follows. Suppose (see
figure 5) the centre of gravity lies
outside the axis, at a certain
distance 6. I can choose the
circumscribed figure so near to the
segment that the difference be-
tween them — arched in the figure
— is so small that it cannot cause a
shift of & in the position of the
centre of gravity. This can be
e”/ipse proved on the basis of the known
properties of the centre of gravity.
Now this is a contradiction and
therefore the presupposition, na-
mely that the centre of gravity lies

Ko \L/ H outside the axis, must be false.

Hence it lies on the axis, guod erat

-
il

demonstrandum.
By wusing a strictly logical
Figure 6 argument based on a reductio ad

absurdum, Huygens avoids the
direct limit argument. This rigour of proof is one characteristic of the
classical style which Huygens acquired in mathematics.
Another step in the proof® employs an argument on the equilibrium
of figures. Huygens chooses (see figure 6) a friangle KFH with KH
parallel to AC and

FG? = BD x DE
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and he shows that in that case for each line L parallel to the axis, the
intercepts bd in the segment and fg in the triangle are in equilibrium
around the line M. From this he proves, again by means of a rigorous
reductio ad absurdum, that segment ABC is in equilibrium with triangle
KFH around F.

I find that this episode in the proof well illustrates a second characteris-
tic of Huygens’ style in mathematics, namely his impressive familiarity
with the geometrical properties of the figures he studies and his ease in
using them. It is a familiarity which does not need the help of algebraic
methods, equations and formulas; Huygens actually thinks geometrically,
he sees the relations in the figures, formulas are secondary for him.

Huygens presented his study to the public in impeccable Euclidean
style, theorem following strictly proved theorem. This illustrates a
third characteristic of his style: his care for the logical presentation of
his results. But there is a deeper characteristic behind this, which 1 shall
call Huygens’ skill in axiomatisation. 1 have in mind here in particular
the cases where Huygens worked out a mathematical theory of physical
phenomena. There it requires a very special skill to formulate the basic
principles such that they are evident from physical considerations and
at the same time serve as powerful axioms for the subsequent mathe-
matical theory. Huygens had this skill. He acquired it from the example
of Archimedes’ works and showed it in his own studies on floating
bodies and collision.

So, together with his care for logical rigour in proof, and his geo-
metrical way of thinking in mathematics, I note as a third characteristic
of the style which Huygens acquired in his formative period his skill
in choosing powerful mathematical axioms and a care for arguing the
evidence for these from physical or other principles.

3. The creative period, 1655-1660

The year 1655, the year of Huygens’ first journey to Paris, marks
the end of his formative period and the beginning of the most creative
and prolific period in his career, the years 1655-1660. In these years
he invented the pendulum clock, discovered the ring of Saturn, worked
out his theory of centrifugal force and found the tautochrony of the
cycloid. Also in mathematics he went in new directions. He studied
the questions which Pascal had proposed about the cycloid, he studied
question of probability, he worked out methods for the rectification
of curves and he formulated his theory of the evolutes of curves. Here
much was new. It was new material: the cycloid is a transcendental
curve, probability was quite a new subject for mathematical research.
The questions were new: rectification of curves, that is, the determinat-
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ion of the arc-length of curves, was new and much debated, if only
because Descartes had claimed that the lengths of curved and of straight
lines could never be comparable.!® New methods too: for rectification
Huygens found a general, non-analytic method applicable in principle
to all curves!!, and Huygens’ theory of evolutes involved both new
questions and new methods.

In exploring the new material, the new questions and the new
methods, Huygens brought the characteristics of his classical style
and these determined his successes and failures. In these five years they
were mostly successes. I want to mention two in particular: his work on
probability and his theory of evolutes.

In Paris Huygens had heard about the probability problems discussed
by Fermat and Pascal. These concerned the question how the stake in
a game of chance should be divided if the game had to be stopped
half-way. Huygens, at home, worked out a theory, wrote it down in
Dutch, Van Schooten translated it into Latin and published it in 1657;
the Dutch version appeared in 1660. The book, Treatise on calculations
in games of chance'?, was very influential in the development of
probability theory. In this study Huygens introduced what we now call
the expectation of a stochastic variable. If at a certain moment I have
the possibilities of winning either amount a, or b, and if the chances
of these gains are to each other as p : q, then my expectation in that
situation, or as Huygens called it the value which that chance situation
has for me, is

pa+gb
pt+q -

This is Huygens’ result.!® The formula has an obvious extension to the
case of more than two possibilities. Now this a most powerful concept.
From it, as starting point, most of the problems discussed by Fermat
and Pascal are solved by obvious mathematical calculations.

For me there is no doubt that it was Huygens’ classical training in
mathematics, and in particular the skill in axiomatization he acquired,
which enabled him to take this decisive step in understanding proba-
bility. With this skill he saw the crucial phenomenon in the mathema-
tization of chance situations. It was not the simple concept of probability
— that was obvious to most participants in the discussions. But it was
precisely the situation of a player when the game is stopped half-
way: the player can make out the possible events of the play, their
probabilities and their gains, and he has to decide what is the value or
the expectation in that situation. Moreover, in keeping with what I
have said above about Huygens’ skill in axiomatization, he took care to
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prove or make evident his central principle of expectation. He did that
by a deep and well-found argument based on the conception of equable
play which for him was selfevident. For reasons of space I cannot go
into the argument but 1 want to stress its presence: Huygens did more
than simply define expectation, he argued the evidence for his definition
too. ‘

In the same way as in his study on probability, Huygens’ theory of
the evolutes of curves forms an example of a mathematical success
due in large measure to Huygens’ classical training, in particular to his
mastery of the classical proof-methods by reductio ad absurdum.
The origin of the theory is well known, it lies in Huygens’ pendulum
clock. In 1659 Huygens had found that if the weight of a pendulum
can be made to move in a path in the form of a cycloid, then the
pendulum will be truly tautochronous, that is, all its oscillations whether
large or small, will take the same time.'* Now the weight can be made
to move in a cycloidal path by means of bent metal strips (Huygens
called them “‘cheeks’”) applied at the point of suspension (see figure 7),
against which the cord winds up during its outward movement, thus
lifting the weight above the circular path which it would normally
describe. In December 1659 Huygens found the precise form which
the cheeks should have in order to give the weight a cycloidal path.!®
Indeed the cheeks had to be cycloids themselves.

The result about the form of the cheeks is striking and it inspired
Huygens to work out a general theory for the process of unwinding
or “evolution” of curves. Let (see figure 8) a curve a be unwound and

'cheek’
«

cycloid  evolute

involute

Figure 7 Figure &

let a point on the cord which is wound off describe curve f. acis called
the evolute and § the involute.'® Huygens’ theory deals with the relation
of the two. He worked it out immediately after his discovery of the
true forms of the cheeks: it was published in 1673 in his magnum opus
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the Horologium Oscillatorium.*” 1 shall sketch the theory and draw
attention to one central feature in it.

By definition of the process of unwinding, the cord in each of its
positions is tangent to the evolute. Huygens first proves!® that in each
of its positions the cord is also perpendicular to the involute. That
proof is intricate; it is based on certain inequalities derivable from
Archimedes’ axioms about the arc-lengths of convex curves. Huygens
then goes on to prove!® that conversely a curve which cuts all tangents
of the evolute at right angles must be its involute. This amounts to
showing that two curves which each cut the tangents at right angles and
have one point in common, must coincide. In other words Huygens
proves the uniqueness of the orthogonal trajectories of the family of
tangents. Now the awareness that this is a point to be proved — rather
than glossed over as obvious — is a mark of Huygens’ mathematical
genius and of his indebtedness to the rigorous logic of his classical
examples. Indeed in modern terms he proves a uniqueness theorem for
the solutions of a class of differential equations, and that is a kind of
question which became current only in the nineteenth century.

His proof is equally a work of genius. I want to show this by explain-
ing the basic lemma on which it is built. This lemma concerns (see
figure 9) a convex arc AL with points A, B, C, D to L on it. In each of
these points the tangent and the normal are drawn, so that along the
curve a series of triangular figures AA'B, BBC, CCD etc. is formed.
Huygens now proves that, given any length A as small as one wishes, the
points on the curve can be chosen such that the total length of all the
perpendicular sides A’A, BB, CC, till K'’K taken together is smaller
than A. His proof is basically correct. It does imply some tacit assumpt-
ions, but these could be made explicit only in a completely different
context which was not developed until the nineteenth century.

The result is by no means obvious, for although the sides A’A, B'B,
CC etc. can be made very small
by taking the points near to each
other, their number becomes ever
larger and so their sum might as
well remain large. That the result
is deep can also be illustrated as
follows. We may consider the arcs
AB, BC, CD etc., being chosen
ever smaller, as arc-length dif-
ferentials. What Huygens then in
fact proves is that the perpen-
diculars A'A, B'B,CC etc. are
Figure 9 second order differentials, they
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become infinitely small with respect to the first order differentials
and, although their number tends to infinity, nevertheless their sum
tends to zero. So what Huygens achieves here is to extend the techni-
ques of approximation and inequalities which he had learned from
Archimedes to the case of second order smallness — and that is a most
notable achievement.

About the rest of Huygens’ theory I shall be brief. He has worked
out a method to calculate the evolute from the equation of the involute,
provided that equation is algebraic. The proof of the correctness of
that method?® is much less rigorous than the proofs mentioned above.
The method showed him that if the involute is algebraic then the
evolute is algebraic too. This has a consequence which was very important
to Huygens and which concerned rectification. From the configuration
of evolute (see figure 10) and involute it is clear that

arc-length AB = BB~ AA’".

If both curves are algebraical this means that the arc-length AB is alge-
braically constructable. A consequence is that every algebraic curve has
an algebraic evolute which is
rectifiable. Huygens valued this
result very much for it proved that
rectifiability of algebraic curves is
not an exceptional occurrence.
These two examples, proba-
bility and evolutes, show how
Huygens® classical style brought
him great successes in mathe-
matics. That does not mean that
the characteristics of his style
were always advantageous. In his
Figure 10 studies on rectification he found
that the rigorous Archimedean
style of proof had its drawbacks too: it was very time-consuming and in
most cases not very illuminating; it served to prove things one was
already convinced of.?! Huygens came to solve this tension between
the rigorous criteria of his original style and the tediousness it involved,
by reserving that style as a sort of V.I.P. treatment for those results he
valued most. Thus the Horologium Oscillatorium of 1673, much
praised for its rigorous classical style, does indeed contain such rigorous
proofs for the theory of evolutes and for the theory of fall along
cycloidal arcs.?? But in the same book the treatment of compound
pendulums?® and of the rule for calculating evolutes is much less
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rigorous and involves a free use of infinitely small quantities, precisely
the sort of things which the classical style tried to avoid.

4. 1660-1680, transcendental curves and inverse calculus problems

In the introduction I mentioned transcendental curves and inverse
calculus problems as the two central themes of new material and new
problems in Huygens’ mathematical work. Both themes are present in
the creative period 1655-1660 which 1 have been discussing. The
cycloid is a transcendental curve. Huygens’ studies on rectification and
evolutes were significant because in them he explored the boundaries
between the Cartesian Geometry of algebraic curves and the wider field
including transcendental curves. And the tautochrony of the cycloid,
Huygens’ great discovery of 1659, was in fact the solution of an inverse
calculus problem: Huygens was able to translate the mechanical problem
of finding a tautochronous path for the pendulum into a mathematical
problem of finding a curve with a certain property of its perpendiculars.
He was able to solve that problem because he happened to know that
the cycloid had that property.

In the two decades 1660-1680 Huygens’ research in mathematics was
less intensive than before. His work at the Académie Royale des Sciences
in Paris from 1666 till 1681 caused a change in the direction of his
scientific work, and also the preparation of his Horologium Oscillatorium
took a lot of time. The book was published in 1673 but most of its
contents date from the years between 1655 and 1660. Within Huygens’
mathematical work in the period after 1660 the themes of transcendental
curves and inverse calculus problems remained prominent and even
became more so. I want to illustrate that by discussing his studies on
the logarithmic curve and on fall in a medium with resistance.

It seems that before 1660 Huygens had not actively used or studied
logarithms. This changed because of his interest in music. The problem
of the equal division of the octave leads namely to the mathematical
problem of finding mean proportionals, and that problem in turn can
be solved by logarithms. So, in connection with music Huygens in 1661
took up the study of logarithms and in September of that year he
studied?* the geometrical aspects of the logarithmic relation. That is, he
considered a curve (see figure 11) with the property that to each series
of equidistant points along the axis (such a series represents an arithme-
tical series of numbers) there corresponds a geometrical series of
ordinates. This, the correspondence between arithmetical and geo-
metrical series was the way in which logarithms were first introduced;
the idea of considering them as exponents to a fixed base came much
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Figure 11 Huygens’ figure of the logarithmic curve, 1661

later. Thus if the points on the axis are marked by numbers, these
numbers behave as the logarthms of the corresponding ordinates.

The relation of the curve with musical theory is the following (see
figure 12). Let AB and CD be two ordinates such that CD = 1/2 AB

logarithmica

A

Figure 12

138

Consider AB as the length of a
string producing a certain tone,
then length CD will produce
the octave. If we now divide the
distance AC along the axis into
twelve equal intervals and erect
ordinates at the division points,
then these ordinates are the mean
proportionals between AB and CD
and they correspond to the lengths
of the string of the intermediate
equal tempered half-tones between
the original tone and the octave.?®



The importance of the curve, for musical theory and other subjects,
was clear to Huygens. Indeed it has proved to be a very important curve,
for it is none other than the what we call the exponential curve, with
modern equation (supposing we read figure 11 from right to left)

y = aeX.

To illustrate its importance in mathematics and elsewhere I need only
to mention exponential growth and the Club of Rome.

Huygens was not the first to study this curve; Torricelli had done so
earlier but he had not made his results public.?® Huygens undertook a
full survey of the properties of the curve. He found (see figure 13) that
the subtangent of the curve is
constant and he gave a numerical
approximation of that subtangent
from other data of the curve; this
calculation is equivalent to a de-
termination of !®loge to 18
decimals. He determined the qua-
drature and in particular the
quadrature of the infinitely ex-
tended area between axis, curve
and ordinate, which he found to
be equal to the product of ordinate
Figure 13 and subtangent. He also deter-

mined centres of gravity and the
volumes of figures produced by revolving the curve around its axes. In
short Huygens explored all the basic properties of this transcendental
curve. He published his results in 1690 in the Discourse on the cause
of gravity, which was an appendix to the Treatise on Light.*’

But it proved more than simply an interesting subject for exploration;
Huygens found that he could use the curve in the solution of a number
of inverse calculus problems originating in physics. One of these was the
problem of determining the relation between pressure and altitude in
the atmosphere. Huygens solved this problem in 16622® on the basis of
Boyle’s law and with the help of his insight into the logarithmic relation.

Another was a study from 1668?° on fall in a resisting medium. I
shall give some more details about that study because it well illustrates
Huygens’ skill in dealing with these problems. Huygens studied the case
where the resistance of the medium is proportional to the velocity of
the falling body. He argued as follows (see figure 14). Let the vertical
axis in the figure represent time. If there were no resistance, the velocity
of the falling body would, according to Galileo’s law of fall, be propor-

logarithmica

= subtangent —=
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Figure 14 (left: Huygens’ figure concerning fall in a resisting medium,
1668)

tional to time. Let therefore area ACEL represent this velocity at time
CE. Now because there is resistance, the actual veiocity will be smaller
than the velocity in the case of free fall. Let us represent that actual
velocity also by a area along the time axis. Then that area will be
bounded by a curve as AD in the figure, and our problem is to find that
curve,

The representation of the velocity as an area enabled Huygens to
interpret the ordinates, as ED, as accelerations. From the given fact that
the resistance, or deceleration, is proportional to the velocity, he then
derived that area ACED must be proportional to the segment DL. Thus
he reduced the problem to an inverse calculus problem, to find a
curve with the property that its quadrature is proportional to DL.
Moreover, he recognized the curve, for the logarithmic curve has precise-
ly that property, ashe had foundin 1661. So curve AD is the logarthmic
curve; thereby the problem was solved and Huygens could work out the
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further consequences of this discovery, as for intance the form of the
ballistic curve in this case.

Later®® he applied the same approach to the problem of fall with
resistance proportional to the square of the velocity. Here the curve is
not so easily recognizable but Huygens solved that problem too. He
published his results in 1690, prompted by the fact that Newton had
dealt with the same questions in the Principia of 1687.3! I think that
this episode well illustrates not only Huygens’ skill — the idea of re-
presenting the velocity as an area is especially fortunate — but also the
power of his geometrical way of thinking. Inverse calculus problems
were soon to become the paradigm problems of mathematical physics.
They very often lead to transcendental curves and therefore they defied
analytical treatment with the methods of Cartesian analytical geometry.
Hence it was Huygens’ geometrical way of thinking that enabled him
to deal with such problems successfully.

But at a somewhat later stage, it was this same geometrical way of
thinking that prevented Huygens from following suit in the subsequent
development. For the next step in the development was that analytical
methods were created covering these inverse caiculus problems too.
This was the achievement of the new fluxional calculus and the diffe-
rential and integral calculus, worked out in the years 1660-1680 by
Newton and Leibniz and coming “on the market”, so to speak, around
1690. By means of these methods the inverse calculus problems could
be formulated analytically, that is, in terms of formulas, as differential
equations, and in many cases these equations could be solved by the
algorithms, transformations and tricks of the new calculus. Here Huygens’
way of thinking in figures rather than in formulas, his suspicion of the
introduction of new symbolisms and, no doubt, his advanced age
prevented him from following. This is what characterizes the last period
in his mathematical career: he was overtaken by the younger generation
with the new methods.

5. The confrontation with the new infinitesimal calculus

In 1681 Huygens left Paris; he stayed in Holland the rest of his life. The
year marked another turning point in his scientific career. The work in
and for the Académie stopped; Huygens became again a private inde-
pendent scholar. In these years he prepared the publication of the
Treatise on Light with the Discourse on gravity, both of which contain
much mathematics. In general Huygens returned more to mathematical
researches in that period. In these researches inverse calculus problems,
in particular inverse tangent problems became increasingly important.
In 1688 the correspondence with Leibniz, interrupted since 1680, was
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resumed on the occasion of an inverse tangent problem publicly pro-
posed by Leibniz®? to test the strength of the mathematics of the
Cartesians. Huygens published a solution®®, and Leibniz wrote to him
about it. In the subsequent letters, Leibniz gave hints of his new methods
and Huygens sent him inverse tangent problems to solve. Due to mis-
understandings and to Leibniz’ secretiveness about his methods, the
correspondence did not give Huygens much insight into the new methods.
But it did convince him that inverse tangent problems would be a test
case for any new development in the mathematics of curves, and that,
however much he disliked the analytical style and the flourish of new
and at first sight meaningless symbols, Leibniz had somehow hit on
something powerful.

This was confirmed in the discussions about the catenary. Jakob
Bernoulli had proposed in 16893* the problem of determining the
mathematical form of a freely hanging chain. The problem was very
familiar to Huygens for in his early youth he had studied it3® and
proved that the form was not a parabola — an opinion then current.
Now he studied it again and applied all his geometrical brilliance to its
solution. He determined several properties of the curve and sent in his
findings. His results appeared in 16913® together with the solutions of
Leibniz3? and Johann Bernoulli.®® And Huygens had to acknowledge
the superiority of these solutions, for Bernoulli and Leibniz determined
the curve in a better way. They showed that it was transcendental and
that it depended on the logarithmic curve, whereas Huygens had not
been able to determine to which class of transcendental curves the
catenary belonged. Immediately after seeing these solutions Huygens
derived the results with his own methods. His final solution, published
in 16933 is a true gem of his geometrical style.*® But the circumstances
of its origin are significant: he had to receive the crucial hint from
the younger mathematicians with the new methods.

In 1687 Fatio de Duillier, the young Swiss mathematician who was
later to trigger off the priority dispute on the calculus, visited Huygens
and they studied together. In 1691 Fatio returned and again they
worked together for some time, studying an ambitious project of Fatio,
namely an analytical method for the solution of inverse tangent pro-
blems. From the manuscripts*! that have survived from this encounter
Huygens® great interest in the matter is quite clear. Together they
calculated through many examples. The result was disappointing, the
methods appeared to be applicable only to a restricted class of alge-
braical curves. The episode shows Huygens’ keen interest in the pro-
blem; most likely it also somewhat strengthened his distrust of analytical
methods.

By 1693, however, Huygens had seen so much of the new calculus
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that he began to acknowledge its force. Also, by that time Leibniz had
provided more information and Huygens was helped very much by the
clear and careful explanations in the letters he received from 1'Hopital
(who himself had learned the subject in 1691 from the eminent teacher
Johann Bernoulli). And so, near the end of his life, he learned the cal-
culus and was able to use it, but he never felt quite at ease with it.

6. Summary and conclusion

I have tried to review Huygens’ achievements in mathematics and his
place in the development of that science in the seventeenth century. I
have stressed that he was, in the practical style that pervades all his
scientific work, more concerned with material and problems in mathe-
matics than with methods and theories. I have indicated the three
important characteristics of his classical mathematical style, and have
shown how these characteristics often helped and sometimes restrained
him in his research. The care for Archimedean rigour earned Huygens
the beautiful and deep proofs in his theory of evolutes, but later he felt
that he should not spend too much time in bringing the presentation of
his results up to the standards of this rigour. His skill in axiomatizing
enabled him to introduce and justify the concept of expectation in
probability. Moreover, it helped him in setting up his theories of collision,
floating bodies, the compound pendulum and other parts of mathema-
tical physics. His geometrical way of thinking enabled him to explore
the new realm of transcendental curves and the important new use of
mathematics in physics through inverse calculus problems; for example
in his results on tautochrony of the cycloid, the study of fall in a re-
sisting medium and the catenary. But later that same geometrical way
of thinking prevented Huygens from following in the next step in the
development, the beginning of infinitesimal analysis. Such are the for-
mative forces I see in Huygens’ mathematical career and I hope that
through the examples I have given I have been able to clarify his style
and ways of thinking in mathematics.

But what did he achieve? That is not easy to pin down. Apart from
the theory of evolutes and probability — which are indeed great achieve-
ments — he did not work out self-contained theories or methods. Several
of his other explorations were published rather late and they were
sometimes duplicated by other mathematicians. But one great achieve-
ment stands out and wasrecognized by his contemporaries too: Huygens
showed the applicability of mathematics to the natural sciences. It is
the impressive proof of the explanatory power of the mathematical
method in the natural sciences which is Huygens® great achievement,
with regard to mathematics and to science in general.
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But speaking about Huygens’ achievements in this way I feel that I
present them too much as things in the past. And when we now, 350
years after Huygens’ birth, experience the encounter with his mathema-
tical work, it is not so much the achievements that are impressive, but
the genius of his mathematical mind, his brilliance in handling figures
and argument, his inventiveness and deep knowledge of his material.
Independently of the final measure of his achievements I experience
a real pleasure in the genius and beauty of his mathematical thought. I
hope that I have been able to transmit something of that feeling.

Notes

1. The terms “algebraic” and ‘‘transcendental” for these classes of curves are
modern. Descartes spoke about “‘geometrical” and “mechanical” curves. The
term “‘transcendental” was introduced by Leibniz.

2. Theoremata de quadratura hyperboles, ellipsis et circuli ex dato portionum
gravitatis centro, quibus subjuncta est GEGTO(OLC cyclometriae cl. viri Gre-
gorii @ St. Vincentio editae MDCXLVII, Leiden, 1651; C. Huygens, Ocuvres
Complétes (The Hague, 1888-1950, 22 vols.), 11, 271-337.

3. De circuli magnitudine inventa. Accedunt ejusdem problematum quorundam

illustrium constructiones, Leiden, 1654;0.C. 12,91-237,

The editors of the O.C. translate this title as “Pinvention de la grandeur du

cercle”, However, Huygens knew very well that he had not found the magnitude,

that is the quadrature, of the circle. Hence the translation “inventions about
the magnitude of the circle” seems better. Moreover, in a letter to Gregory of

St. Vincent of 3 July 1654, accompanying a copy of the book, Huygens wrote

“haec quoque inventa examini tuo subjicerem’ (O.C. I, 288), which corro-

borates my translation.

De iis quae liquido supernatant, first published in 0.C. 11, 81-210.

Cf.0.C. 1,237and 0.C. 12,5.

Theorems (note 2), th, 6 and 7.

0.C. 14,451-459.

Theorems (note 2), th. 4.

Theorems (note 2), th. 5.

0. R. Descartes, Géométrie, 1637, 340-341. The claim was not new; it is, in fact,
an Aristotelean doctrine. But Descartes had based on it a sharp distinction
between ‘‘geometrical” and “mechanical” curves (see note 1). Hence the first
rectifications of algebraic curves undermined one of the cornerstones of
Descartes’ theory of geometry.

11. O0.C. 14, 314. I have discussed Huygens’ method in some detail in my “L’éla-
boration du calcul infinitésimal, Huygens entre Pascal et Leibniz”, to appear in
Huygens et la France (ed. R. Taton, Paris, 1980). — About the same time van
Heuraet and others, independently of Huygens, found similar rectification
methods.

12. Tractatus de ratiociniis in ludo aleae, published in F. van Schooten, Exercita-
tionum mathematicorum libri quinque, Leiden, 1657. The Dutch version,
entitled Tractaet handelende van Reeckening in Speelen van Geluck, appeared
in F.van Schooten, Mathematische oeffeningen begrepen in vijf boecken,
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13.
14.

15.
16.

17.

18.
19.
20.
21.

22.
23.
24.
25.
26.

27.

28.

Amsterdam, 1660. O.C. 14, 1-179, contains the Dutch text with a French
translation by the editors of the O.C.

Prop. 3 in the treatises mentioned in note 12.

0.C. 16, 392-413; see also P. Costabel, “Isochronisme et accélération 1638-
16877, Arch. intern. hist. sci. 28 (1978), 3-20, and the article by Mahoney
in this volume.

0.C. 14,387-406;see also O.C. 17, 142-148, in particular note 2.

The latter is a modern term. Huygens spoke about “curva evoluta” (unwound
curve) and ‘“‘curva descripta ex evolutione” (curve described by the unwinding);
Horologium Oscillatorium (note 17), part 3, def. 3 and 4.

Horologium oscillatorium, sive de motu pendulorum ad horologia aptato
demonstrationes geometricae, Paris, 1673; O.C. 18, 27-438. The theory of
evolutes forms part 3 of this book.

Horol. Osc. (note 17), part 3, prop. 1.

Horol. Osc. (note 17), part 3, prop. 2 and 3.

Horol. Osc. (note 17), part 3, prop. 11.

Cf. O.C. 14, 337. The editors of the O0.C. have given a French translation of
this Latin text on pp. 191-192 (note 14) of the same volume. This translation
is as follows:

‘Quelquefois par les indivisibles. Mais on se trompe, lorsqu’on veut faire
passer leur emploi pour une démonstration. D’ailleurs, pour convaincre
ceux qui s’y connaissent il revient presque au méme de donner une démon-
stration formelle ou bien le fondement d’une telle démonstration, de sorte,
qu'aprés lavoir examiné, ils ne sauraient douter de la possibilité d’une
démonstration rigoureuse. Pavoue, il est vrai, que c’est aussi 4 la facon de
donner 4 cette derniéreune forme convenable afin qu’ell soit claire, élégante,
et plus appropriée que toute autre, qu’on reconnait la science et la sagacité
de I'auteur, comme dans toutes les oeuvres d’Archiméde. Néanmoins, ce qui
vient en premier leu, et ce qui importe surtout, c’est la maniére méme dont
I’invention a été obtenue. C’est cette connaissance qui réjouit le plus et qu’
on demande aux savants. Il semble donc préférable de suivre la méthode par
laquelle elle est apergue le plus vite et le plus clairement, et comme posée
devant les yeux. Nous nous épargnons ainsi du travail en écrivant, et les
autres en lisant; il faut considérer, en effet, que les savants finiront par ne
plus trouver le temps de prendre connaissance de la grande guantité des
inventions des Géomeétres (quantité qui va en croissant de jour en jour et
qui semble dans cet dge de science devoir prendre des développements
immenses) si les auteurs continuent 4 se servir de la méthode prolixe et ri-
goureuse des anciens.”

Horol. Osc. (note 17), part 2.

Horol. Osc. {(note 17), part 4.

0.C. 14,460-473.

See further the article of Cohen in this volume.

Cf. G, Loria, *“Le ricerche inedite di Evangelista Torricelli sopra la curva loga-
rithmica”, Bibl. math. (ser. 3} 1 (1900), 75-89.

Traité de la lumiére, ou sont expliquées les causes de ce qui lui arrive dans la
reflexion et dans la refraction, et particuliérement dans l'étrange refraction du
cristal d’Islande. Avec un discours de la cause de la pesanteur, Leiden, 1690;
0.C. 19, 451-548 (traité) and O.C. 21, 427-499 (discours). The section on the
logarithmic curve is on pp. 176-180 of the discours; 0.C. 21, 484-488.

0.C. 14,483-497,
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29.

30.

31.

32.

33.

34.

35.
36.

37.

38.

39.

40.

41.
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0.C. 19, 102-119. The mhnuscript is dated 28 October 1668. The results were
published in the discours (note 27), 168-173;0.C. 21, 478-482.

0.C. 19, 144-157. The study dates from 1669, its results are mentioned in the
discours (note 27), 173-176;0.C. 21, 482-484.

I. Newton, Philosophiae naturalis principia mathematica, London, 1687.
Motion in resisting media is treated in book 2.

Leibniz proposed the problem in an article “Réponse de M.L....”, Nouvelles
de la république des lettres (Sept. 1687), 952-956; G.W. Leibniz, Philosophi-
sche Schriften (ed. C.I. Gerhardt, Berlin, 1875-1890), vol. 3, 49-51. I have
discussed Huygens’ solution of the problem in my article cited in note 11.
“Solution du probléme...””, Nouvelles de la république des lettres (Oct. 1687);
0.C. 9,224-228,

Jak. Bernoulli, “Analysis problematis...”, Acta Eruditorum (May 1690), 217-
219; Jak. Bernoulli, Opera, (Geneva, 1744), 421-426.

0.C. 11,37-44, manuscript dating from 1646;see also 0.C. 1, 34-44.

“Solutio eiusdem problematis”, Acta Eruditorum (June 1691), 281-282;
0.C. 10,9598.

G.W. Leibniz, “De linea...”, Acta Eruditorum (June 1691), 277-281; G.W.
Leibniz, Mathematische Schriften (ed. C.I. Gerhardt, Berlin, 1849-1863) vol.
5,243-247.

Joh. Bernoulli, “Solutio problematis funicularii...”, Acte Eruditorum (June
1691), 274-276; Joh. Bernoulli, Opera Omnia (Lausanne, 1742) vol. ,48-51.
“Lettre...””, Histoire des ouvrages des scavans (Febr. 1693), 244-257; 0.C. 10,
407-417, see also 0.C. 10, 135-138.

I have explained this solution in my “Christiaan Huygens”, Dictionary of
scientific biography (ed. C.C. Gillispie, New York, 1968-) vol. 6 (1972}, 597-
613, esp. 601-602.

0.C. 20,506-541.

This article was written partly during my stay at the Institut des Hautes
Etudes scientifiques in Bures-sur-Yvette, France, November 1979. I wish to
thank that institution for its hospitality and support.







