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CHAPTER I

1.0 The subject of this study is the differential, the
fundamental concept of the infinitesimal calculus as it

was practised by Leibniz and those mathematicians who,

in the late seventeenth and eighteenth centuries, developed
the differential and integral calculus in the way which
Leibniz had initiated. More precisely, the study is con-
cerned with the influence of certain conceptual and
technical aspects of first and higher order differentials
on the development of the infinitesimal calculus from
Leibniz till Euler.

This part of the history of the calculus belongs to
the wider history of analysis. This makes it necessary to
discuss in this first chapter certain key processes in the
history of analysis, which form the context of the story
of the development of the concepts of differential, higher
order differential and derivative; and my study of this
story may provide some new insights in these processes.

The first chapter will also serve as an indication of
the relation which the subjects treated in the subsequent
chapters have to general questions in the history of

analysis.

1.1 There are three processes in the history of analysis
in the seventeenth and eighteenth centuries which are of
crucial importance for the history of the concept of
differential. The first is the introduction, in the 1680's
and 1690's, of the Leibnizian infinitesimal analysis within
the body of the Cartesian analysis, which at that time may
be characterised as the study of curves by means of
algebraical techniques.

The second process, occurring roughly in the first
half of the eighteenth century, may be described as the
"de-geometrization" of analysis. From being a tool for the
study of curves, analysis developed into a separate branch
of mathematics, whose subject matter was no longer the
relations between geometrical quantities connected with a

curve, but relations between quantities in general as
expressed by formulas involving letters and numbers.

This change of interest from the curve towards the
formula induced a change in fundamental concepts of analysis.
While in the geometrical phase the fundamental concept in

the analytical study of curves was the variable geometrical

guantity, the "de-geometrization" of analysis made possible
the emergence of the concept of function of one variable

which eventually replaced the variable geometrical quantity
as fundamental concept of analysis.

In this process of "de-geometrization" the differential
underwent a corresponding change; it was stripped of its
geometrical connotaticns and it was treated as a mere symbol,
like the other symbols occurring in formulas. However,
throughout the first half of the eighteenth century the
differential kept its position as the fundamental concept of
the Leibnizian infinitesimal calculus.

The third process in which we are interested brought
change in this situation too: it is the replacement of the
differential by the derivative as fundamental concept of
infinitesimal analysis. Usually this process is connected
with the works of Lagrange and Cauchy, but I shall argue that
an important aspect of the process is to be found in the

works of Euler.

1.2 Considering the chronological order of the above
mentioned three processes, it is clear that the early
Leibnizian infinitesimal calculus, as it was practised by
Leibniz and by his followers in the 1680's and 1690's, was
part of an analysis primarily concerned with curves or

Wwith the relations between variable geometrical quantities
as embodied in the curve. Thus the Leibnizian calculus
cannot be understood without keeping in mind its geometrical
preoccupation. I devote the second Ghapter‘of the present
study to a detailed description of the concepts of this
calculus, and I indicate there how far these concepts were
influenced by their geometrical context and how they
consequently were changed in the process of "de-geometrizat-

ion" of analysis. Thus it will become clear how far the
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early Leibnizian calculus differed from the mathematical

theory and practice which we now indicate by the term

"calculus".

Moreover, in cha
y Leibnizian calculus, showing the

pter 3 I discuss examples from the

practice of the earl
influence of the concepts discussed in chapter 2 on

both the choice of problems and the technique of the

calculus in its early stage.

1.3 As a preliminary to these chapters, I insert here

some general remarks on the geometricity of the seventeenth

century analysis.
tools (algebraic equations and operations, later the

differential and the rules of the calculus) for the study
of geometrical objects, namely curved lines. The first text-
book of the infinitesimal calculus had the most significant

title Analyse des 'infiniment petits pour 1'intelligence

This analysis was a corpus of analytical

des lignes courbes?’

The fundamental object o
curve. A curve embodies relations between several variable
geometrical quantities3 defined with respect to a variable
point on the curve. Such variable geometrical quantities -
hall call them for short - are for
ordinate, abscissa, arclength, radius,

f inquiry, therefore, was the

or variables as I 8§
instance (see figure):

7
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x: abscissa, y: ordinate, s: arclength, r: vradius,
a: polar arc, g: subtangent, T: tangent, v: normal,

Q = OPR: area between curve and X-axis

xy: circumscribed rectangle
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polar arc, subtangent, normal, tangent, areas between curve
and axes, circumscribed rectangle, solids of revolution
with respect to the axes, distance to the X-axis (or the
y-axis) of the centre of gravity of the arc, or of the
centres of gravity of the areas between curve and axes.

In the analysis, the relations between these variables
were expressed - if possible - by means of equations. This
was not always possible; until just before the end of the
seventeenth century there were no formulas for transcendental
relationships, and these were expressed by means of certain
circumlocutions in prose, which basically expressed a
geometrical construction method for the curve representing

the transcendental relation in question.

1.4 In the special case of algebraical curves, Cartesian
analysis used, with great success, algebraical equations to
represent and analyse the relations between the variables.
Usually the relation between ordinate and abscissa was taken
as the defining relation of the curve, and thus the curve
was represented by an algebraical equation involving the
two variables ordinate and abscissa.

For the purpose of my study it is important to notice
the role, or rather the absence of a role, of the concept
of function in this context of algebraical relations be-
tween variables. The concept of function as a mapping
x + y(x), as a unidirectional relation between an "in-
dependent" variable x and a "dependent" variable y, did not
play a fundamental role in the Cartesian analysisj; in fact
it was largely absent in that branch of mathematics.

The relations between the variables, studied in
Cartesian analysis, were not functions in this sense, be-
cause they were not considered as unidirectional. A relation
between x and y was considered as one entity, not as a
combination of two mutually inverse-mappings X = y(x) and
y + x(y). Thus the curve was not primarily seen or studied
as a graph of a function x -~ y(x), but as a figure embodying
the relation between x and y.

Also the variables themselves were not functions. This
because, contrary to the concept of function, the concept



of variable does not imply dependence on a single,
specially indicated "independent" variable. This con-
stitutes the fundamental difference between the two
concepts.

The fundamental concept of Cartesian analysis was
the variable. Thus in that analysis a problem
could be studied without previously choosing a special
variable to be considered as independent and
as the variable on which all the other variables
depend.

The absence of a special independent variable
in the problems, and hence the restricted role of the
concept of function and all those concepts which pre-
suppose the function concept, implies a fundamental
difference between the early differential calculus and
infinitesimal analysis in its later stages when the function
concept had acquired its predominant role. These differences
will be discussed below, suffice it here to remark that for
instance the concept of derivation presupposes the function

concept, and hence could not play a fundamental role in the

early calculus.

1.5 Before pursuing the implications of the

absence of a special independent variable for

the fundamental concepts of infinitesimal analysis, some
further remarks should be made about variables. The geo-
metrical quantities studied by the analysis in its geo-
metrical phase, were not real numbers. ' The difference be-
tween geometrical quantity (or quantity in general), as
conceived by seventeenth century mathematicians, and real
numbers, is that quantity lacks a multiplicative structure,
and, in particular, that quantity lacks a unit element.
This feature of quantity is related to the concept of
dimension. There were several categories of quantity which
were distinguished by their dimensions. Thus geometrical
quantities can have the dimension of a line (e.g. ordinate,
arclength, subtangent), of an area (e.g. area between curve
and axis) or of a solid (e.g. solid of revolution). Outside
geometry there are quantities of different dimension such

as velocity, corporeity (or mass), force etc. Furthermore,
the algebraical manipulation, especially with geometrical
quantities, led to dimensions higher than that of the
solid. Although these higher dimensional quantities, as
for instance powers like a* and b° of line segments a and b
were felt to be not directly interpretable in space, they
were accepted in amalysis and their dimension was determined
by the number of factors with the dimension of a line.

Only quantities of the same dimension could be added.
In certain cases the multiplication of quantities was
interpretable, as for instance in the case of two line
segments, whose product would be an area. But multiplication
was never a closed operation, that is, the product of two
quantities of equal dimension could not have the same
dimension. Hence within the set of quantities of the same
dimension there was no multiplicative structure and no unit
clement. A choice of a privileged element in the set of
quantities of the same dimension (as a base for measuring
for instance, or as fundamental constant for certain curves
or actually as unit element) was therefore always arbitrary;
the structure of quantity itself did not offer such a

privileged element.

1.6 These possibilities of multiplication and addition
made possible the algebraical treatment of quantities, al-
though with certain restrictions. The special nature of
the multiplication induced a law of dimensional homogeneity
for the equations occurring in this algebraical treatment:
all the terms of an equation had to be of the same dimension.
I+ is well known that already in 1637 Descartes had
indicated how the requirements of dimensional homogeneity
could be circumvened and how multiplication of line segments
~ as the prototype of quantity in general - could be defined
such that the product would again be a line segment’.
Descartes chose an arbitrary line segment as unit segment 1,
and defined the product of two line segments a and b as the
line segment ¢ satisfying the proportionality

1 :a=b 1 c.




In particular he interpreted powers in this way; if x

is a line segment, x2 is the line segment satisfying

1 ¢+ x = X @ x2 .

This solution of the dimension problem was useful
in the theory of equations in one unknown. These could now
be interpreted as relations between line segments and the
roots would be line segments too, by which both the problem
of irrational solutions and the problem of dimensions
higher than the solid were solved.

But in the analytical study of curves, dimensional
homogeneity of equations continued to be a major neatness
requirement until well into the eighteenth century®. This
is not too surprising7 because in that part of mathematics
dispensing with dimensional homogeneity had, apart from the
interpretability of higher powers, no direct advantages;
the introduction of a unit requires an arbitrary choice
which infringes on the generality of the treatment, and also
dimensional homogeneity assures natural geometrical inter-
pretation of every step in the algebraical analysis and thus
it provides a useful check on complicated calculations.

In a geometrical analysis which keeps to dimensional
homogeneity there is no necessity to introduce a unit
length, and therefore the geometrical quantities as length,
area, etc. are not scaled; they are not real numbers, re-
presenting a ratio to a standard unit. This is not to say
that real numbers did not occur in the analytical study of
curves; but they appeared only as integer or fractional
factors in the terms of equations, or as ratios of two

quantities of the same dimension.

1.7 In chapter 2 I shall explore the implications of the
fact that the early Leibnizian infinitesimal calculus was

a geometrical calculus. Here I will conclude the general re-
marks on geometricity by indicating how the geometrical
background of the early Leibnizian calculus explains why a
concept of derivative was absent in that calculus. First of

all the concept of derivative presupposes the concept of

function (because the derivative %% is the derivative of
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a function y(x) ), and as the latter was virtually

absent in the analysis of geometrical problems, see 1.4
above, so the former could not be there either. In the
configuration of the curve, the tangent and the connected
variables (see figure) the derivative %% , occurs only as
the ratio of the
ordinate y to the sub-
tangent ¢. This ratio
has no obvious central

? position in the con=-

A; y figuration and its
///////// choice as fundamental
 Rep—— P — f ____ > concept would therefore

be very arbitrary.
Indeed it would not be clear why % rather than § would be
chosen. Put in other words, the choice of % implies the
arbitrary choice of considering y as function of x, rather
than x as function of y, or both x and y as function of any
other variable.

But there is still another reason why the derivative
could not occur naturally in the geometrical context, and
this reason is connected with the dimensional interpretation
of geometrical quantities. If % is considered as the
derivative of the variable y, then the operation of derivation
would correlate a ratio (the derivative) to a variable that
has the dimension of length. This implies that the operation
cannot be repeated in a natural way because it is not clear
what sort of quantity it would correlate to a ratio. The
only way to introduce repeated derivation would be to
interpret the ratio % in some way as a line segment, and
then to plot a new curve along the X-axis with ordinate 7.
The ratio of ordinate and subtangent of this new curve would
then be the derivative of the derivative. But the ratio % is
a peal number, and therefore its interpretation as a line
segment will necessarily involve the choice of a unit length.
As the unit is not given from the outset, this implies an
arbitrary choice so that in the geometrical problem-
situation higher order derivatives are not uniquely defined.

Thus the derivative could not occur in the geometrical
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phase of the infinitesimal calculus, and this may help us
to understand why the early infinitesimal calculus was
built upon the concept of the differential with all its
concomitant problems concerning the infinitely small. I
may remark here that also in the case of the operation of
differentiation, interpreted as correlating a differential
to a variable, the repetition of the operation involves

an arbitrary choice, namely the choice of the progression
of the variables (cf. 2.16 sqq). This aspect of the concept
of differential forms one of the main themes of my study,
it is especially important in chapter 5.

1.8 Two separate causes for the non-appearance of the
derivative in the early period of the calculus have been
mentioned above: the absence of the function concept and
the requirements of dimensional interpretation. Both
features were changed in the process of "de-geometrization"
in the first half of the eighteenth century. This consisted
in a shift of interest from the curve and the geometrical
quantities themselves to the formulas which expressed the
relations of these quantities. Thus the analytical
expressions involving numbers and letters, rather than the
geometrical objects for which they stood, became the focus
of interest. The concern about the dimensional homogeneity
of formulas faded. Homogeneity in this sense only survived
as a technical term for a special property of formulas.
This meant tEat tacitly it was supposed that a unit quantity
was chosen, flor otherwise homogeneity would be an essential
requirement for formulas. Hence the letters in the formulas
represented scaled quantities, so that we may say that the
practitioners of analysis in this phase worked with real
numbers based on a number-line model; but there was little
interest in the question of what the letters in formulas

signified.

1.9 This change of interest towards the formula made
possible the emergence of the concept of function of one

variable. The term function has its origin in the

-13=

geometrical phase of analysis. Leibniz introduced it
into mathematics and used it for variable geometrical
quantities as coordinates, tangents, radii of curvature
etc. These were the M"Functiones"of a curve; they were
not considered as dependent on one specified independent
variable®. Later Johann Bernoulli wrote about the powers
of a variable "or in general any function" of this
variable®’, and Leibniz agreed‘o with this use of the term,
which thus lost its initial geometrical connotations and
became a concept connected with formulas rather than
figures.

Indeed it is only natural that in the process of "de-
geometrization" the basic component parts of formulas would
acquire the role of fundamental concepts, and thus the
function, as defined by Johann Bernoulli and Euler, is,
after the single letter or number, the simplest component
part of formulas; it is an expression involving constant
quantities (letters and numbers) and only one variable
quantity (letter).

Thus Bernoulli's definitiom:
Here we call function of a variable quantity, a

quantity composed in whatever way of that variable
quantity and of constants'!.

and Euler:

A function of a variable quantity is an analytical
expression composed in whatever way of that variable
quantity and of numbers or constant quantities'?.

Euler, in fact, moved slightly away from the %ctual
analytical representability; he allowed implibit relations
as functions!® and in his 1755 he gave a very general
formulation of the function concept:

If quantities depend an others in such a way that if
the latter are changed, the former undergo a change
as well, then the former are called functions of the
latter. This terminology is a very general one and
covers all ways in which one‘quantity can be
determined by others!®,

Also, Euler extended the function concept to expressions
involving more than one variable!®. The emergence of
functions of more than one variable in fact marks another

decisive move away from the geometrical paradigm of the
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curve with connected geometrical quantities, namely a
move from problems (as about curves) involving only

one degree of freedom, to problems with, in principle,
any number of degrees of freedom.

1.10 Thus the process of "de-geometrization" of analysis
introduced the concept of function and removed the
dimensional interpretation of the objects of study; tie

way was now open for the introduction of the derivati -e.
Still, the process of the emergence of the derivative
occurred much later than the process of "de-geometrization"
of analysis, so that the question why the derivative took
over the position of the differential as fundamental
concept of the infinitesimal calculus, needs further
scrutiny.

For it is not only the paving of the way for the
derivative which has to be explained, but also the question
why the differential was dismissed. During the phase of
"de-geometrization", the differential kept its position as
fundamental concept of the infinitesimal calculus. The
Leibnizian symbolism for the differential calculus made it
possible to deal quite naturally with differentials in the
context of formulas. Indeed, differentials are more easily
manipulated in formulas than visualized in geometrical
figures, where they have to be drawn as finite 1line
segments.

The eventual emergence, in the works of Lagrange,
Bolzano and Cauchy, of the derivative as fundamental concept
of the calculus, is usually considered as caused by an
embarassment, increasingly felt over the eighteenth century,
over the logical inconsistencies of the infinitely small,
and hence the inadequacy of the differential as fundamental
concept of the calculus!®., I show in chapter 4 that a
concern about the foundational problems of the infinitesimal
calculus already led Leibniz himself to a consideration of
the differential quotient as fundamental entity of the
calculus. But this research of Leibniz remained without
influence upon the development of the infinitesimal calculus.
I feel that the embarassment about the infinitely small

cannot have been the only reason for the emergence of

the derivative. After all, despite its logical in-
consistency, the differential has proved to be a powerful
starting point for research in analysisj; and analysis did
grow prodigeously while basing itself upon the insecure
foundation of the differential.

The strength of the first order differential as basic
concept in analysis is also shown by the fact that it has
withstood all attempts to eliminate it; it still appears
in mathematics, either as non-rigorously introduced, but
didactically helpful infinitesimal in introductions to
the calculusl7, or redefined as element of the dual of a
tangent space, or, again, but now rigorously introduced, as
infinitesimal in non-standard analysis!®.

Indeed, there were more reasons than the dissatis-
faction with the differential alone, for the emergence of
the derivative. One of them is the study of functions of
more than one variable. The usual conceptions and techniques
of differentials break down when applied to such functions
and the ensuing difficulties have to be solved by the
systematic use of derivatives and partial derivatives!?,

Another reason for the emergence of the derivative is
connected with the higher order differentials. I shall dis-
cuss this reason in chapter §, suffice it here to remark
that, unlike the hardy first order differentials, the higher
order differentials were abolished quite early from mathem-
atics. It is reasonable to suppose that the technical and
conceptual difficulties associated with higher order
differentials were so severe that these differentials had
to be eliminated. I shall argue in the fifth chapter that
this was indeed the case, and that the attempts, especially
those of Euler, to eliminate higher order differentials
formed one of the main causes of the emergence of the

derivative.
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CHAPTER 2

2.0 This chapter comprises an outline of the theory, the
techniques and the underlying concepts of the infinitesimal
calculus practised by Leibniz and his early followers

such as Jakob I and Johann I Bernoulli and 1'H&pital.

The presentation of such an outline presents
methodological problems connected with the idea of "under-
lying" concepts, for the concepts are not always made
explicit in the contemporary writings (as for instance in
the case of the progression of the variables, discussed
below). Still, even if not formulated explicitly,
particular concepts may strongly influence and direct the

development of a branch of science, and the historian
cannot understand such a development, unless he makes
these concepts explicit for himself.

Giving an outline of the Leibnizian calculus presents
therefore a twofold task: first to write as it were a
modern textbook version of the Leibnizian calculus, that
is, to give a unified and explicit mathematical theory
as close as possible to what Leibniz and his followers
thought and practised; secondly to indicate how far the
elements of such a unified and explicit theory are abstract-
ed from the actual practice in which they appeared.

In the following I make a typographical distinction
between these two aspects of the outline. The paragraphs
in italics contain the abstracted underlying theory; each
of these paragraphs is followed by a discussion of texts
on which the abstraction is based and an assessment of
the deviation between my presentation of the theory and
the actual practice.

Two further preliminary remarks are necessary. The
outline of the Leibnizian calculus does not cover the
genesis of this calculus in the 1670's, which is described
most fully in Hofmann 1949. Rather, it describes the
calculus after a certain consolidation, in which inconsist-
encies, induced by influences of the calculus of finite

number sequences?® and by the theory of indivisibles, were
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removed. Appendix 1 contains some remarks on the
relations between the Leibnizian calculus and indivisible
techniques. But the outline has to be understood as
covering the consolidated Leibnizian calculus from about
the year 1680.

The outline accepts infinitely small and infinitely
large quantities as genuine mathematical entities. To do
otherwise would be departing too far from the Leibnizian
calculus. By accepting these quantities, the outline
accepts all the inconsistencies which during the 18th
century were increasingly felt as embarassment and which
were removed in the 19th century by removing the infinitesi-
mal quantities altogether from the calculus. These in-
consistencies, and the resulting deficiency of the foundat-
ions of the calculus, have attracted more attention from
historians of mathematics than the question how on such
insecure foundations the calculus could develop in so
prolific a manner as it did from Leibniz to Cauchy. I shall
therefore accept the inconsistencies in the outline and
discuss them later only as far as they caused actual
technical difficulties to contemporary writers or induced
certain directions of development.

A preliminary explanation why the calculus could
develop on the insecure foundation of the acceptance of
infinitely small and infinitely large quantities, is
provided by the recently developed non-standard analysisz’,

which shows that it is possible to remove the inconsist-
encies without removing the infinitesimals themselves.
I discuss the question how non-standard analysis relates

to the Leibnizian calculus in appendix 2.

2.1 The Leitbnizian calculue has its origins in the theory
of number sequences and the difference sequences and sum
sequences of such sequences. Leibniz explored this theory
in the 1670's?. He applied it to the study of curves by
considering sequences of ordinates, abscissas esec., and
supposing the differences between the terms of these
sequences infinitely small (that is, negligible with
regpect to finite quantities, but unequal to zero). There-
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fore, the fundamental concepts of the Leibnizian in-
finitesimal calculus can best be understood as extra-
polations to the actual infinite of concepts of the cal-
culus of finite sequences. I use the term "extrapolation”
here to preclude any idea of limit taking; it wae not the
case that the differences of the terms of the sequences
were each considered to approach zero’?; They were
supposed fixed, but infinittely small.

Compare Leibniz's assert ion:

The consideration of differences and sums in

number sequences had given me my first insight, when
I realized that differences correspond to tangents
and sums to quadratures”® .

Also: . . dx
For instance % + % + %ﬁ + 57 + 3 etc. or fxx-l s
for x equal to 2, 3, 4, etc. is a sequence which,
taken entirely to infinity, can be summed, and dx
is here i. For in the case of numbers the differences
are finite. (...) But if x or y are not discrete
terms, but continual terms, that is, not numbers
whose differences are assignable intervals, but
straight line abscissas increasing continually, that
is, by inassignable intervals, so thaE the sequence
of terms constitutes the figure, ...

On Leibniz's opinion about infinitely small quantities,
the following quotation is relevant:

And such an increment (namely the addition of an
incomparably smaller line to a finite line) cannot

be exhibited by any construction. Tor I agree with
Euclid Book V Definition 5 that only those homogeneous
quantities are comparable, of which the one can be-
come larger than the other if multiplied by.a.number,
that is, a finite number. I assert that entitiles,
whose difference is not such a number, are equal.(...)
This is precisely what is meant by saying that the

difference is smaller than any given quantity?®

For Leibniz's further arguments about the nature of the

infinitely small see chapter b.

2.2 The importance of theoriés of finite sequences for
the geometrical problems about curves, to which the
Leibnizian calculus was primarily applied, lies in the
faet that for many problems it is useful to approximate
the curve by a polygon. The ordinates and abscissas
corresponding to the vertices of the polygon form finite
sequences?’., In accordance with the conception of the
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differential calculus as extrapolation to the actual
infinitte of the calculus of finite sequences, the
practitioners of the Leibnizian calculus emphasized that
the key to the calculus was to conceive the curve as

an infinitangular polygon.

The conception of the curve as an infinitangular
polygon played an important role in the new infinitesimal
methods developed in the 17th century. Leibniz stressed
its importance for his calculus for instance as follows:

I feel that this method and others in use up till
now, can all be deduced from a general principle
which I use in measuring curvilinear figures,

that a curvilinear figure must be considered to be
the same as a polygon with infinitely many sides:”

2.3 It will prove rewarding to study in detail the process
of extrapolation to the actual infinite of theories of
sequences as applied to curves and approximating polygons.
In the case of the approximation of a curve by a polygon

of a finite number of sidee (I shall refer to this case as
"the finite array", see the figure), the polygon induces
sequences of ordinates {y }, of abscissas
lengths {8i} P

{xi} , of are
of quadratures?? {Q;} , and in general of

all variables which may be considered in the problem at

hand. These sequences consigt of a finite number of finite

Y
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terms. (In the case that one branch of the curve 8
extended to infinity, the number of terms may be infinite,
but thie does not affect my argument.)

The operators of taking difference or sum sequences,
operators which I indicate by A and Z respectively, tf
applied to these sequences, yield again sequences consist-

ing of a finite number of fintte terms:

A{xi} = {Aix}
with v = _
and _ i
ete.

Leibniz dealt with the relations indicated here and
in the following paragraphs, in his early studies on

difference schemes and sequences in general.?®?

2.4 In the extrapolation from the finite array to the
actual infinite, the polygon becomes an infinitangular
polygon, whose eides are infinitely small. The infinit-
angular polygon is congidered to coincide with the curve;
its infinitely small sides, if prolonged, form tangent
lines to the curve.

The sequences of ordinates, abscissas etc. now congist
of infinitely many terms. Successive terms of these se-
quences have infinitely small differences; anachronistic—
ally speaking one might say that the terms lie dense in
the range of the corresponding variable. In the practice
of the Leibnizian calculus, the variable tis conceived to
take only the values of the terms of the sequence. Thus
the conception of a variable and the conception of a se-
quence of infinitely close values of that variable, come
to coinctde.

The operators 8 and Z of the finite array act on 8e-
quences. Thus, in the extrapolation to the actual infinite,
A and T are transformed into operators, dand | (see the
next paragraph), which act on the sequences of ininitely
close values of vartables. But as these sequences are in-
discernable from the variables themselves, d and J are

operators which act on vartables.

ks
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The conception of the variable as ranging over an
ordered sequence of values = Leibniz uses the terms
"series" and "progressio" - is clearly expressed in
the quotation given above in 2.1. Another example may be
cited here, it is from a discussion by Leibniz of the
rule d(xy) = xdy + ydx, and it shows that also the area
xy of the circumscribed rectangle was considered as a
variable ranging over a sequence of values:

d(xy) is the same as the difference between two

adjacent xy, of which one is xy, the other

(x+dx) (y+dy). Now d(xy) = (x+dx) (y+dy) - Xy or

xdy + ydx + dxdy, and this will be equal to xdy + ydx

if the quantity dxdy is omitted, which is infinitely

small with respect to the remaining quantities,
because dx and dy are supposed infinitely small

(namely if the term of the sequence represents lines,

increasing or decreasing continually by minima).
See also the quotations given below in 2.8 and 2.9.

Leibniz used the adjective "eontinuus" for a variable
ranging over an infinite sequence of values. He also used
terminology of growth and motion, speaking for instance
about "increasing by minima" ("per minima crescentes"),
"continually increasing by inassignables" ("continue
crescentes per jinassignabilia"), "momentaneously increasing"
("momentanee crescentes"), in which "minima" and "in-
assignables" stand for the differentials as differences be-
tween successive terms of the sequence. If these
differences are all equal, Leibniz sometimes used the

terminology "uniformly increasing" ("aequabiliter crescere").

2.5 Considering now how the finite difference sequences
and sum sequences are affected by the extrapolation to the
actual infinite, we see that a difference sequence 18
trane formed into a sequence of an infinite number of in-
finitely small terms; thege terms are called the
differentials. A finite sum sequence 18 tfansformed into

a sequence of an infinite number of infinitely large terms;

these termg are called the sums.
Differentials and sums form sequences and therefore

are, in the same way as the sequences of the ordinary
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variables discussed in the preceding paragraph, them-
selves variables. The differential is an infinittely
small variable, the sum ig an infinitely large variable.
Thus the operator B, by the extrapolation, trans forms
into an operator differentiation, indicated with the

symbol d, which assigns an infinitely small vartable to
to y. Similarly,

a finite variable, for instance dy
the operator X trangforms, by the extrapolation, into

the operator summation,indicated by the symbol [ , which
assigns an infinitely large variable to a finite variable,

for instance [y to ¥.

The latin terms are differentia or differentiale,

and summa; the latter was 1ittle used as it was soon re-
placed by the term integrale; for the operator [ according-
ly the terms summatio and integratio occur, see 2.10 and
2.11. The operator d is called differentiatio.

It is important to stress the conception of the

differential as a variable, and of differentiation as an

operator assigning variables to variables. On the concept
of variable see chapter 1; as I explained there, the con-
cept of variable differs from the concept of function in
that it is not necessary to specify on which "independent"
variable the variable depends. Differentials and sums have
different values according to where in the geometrical
figure they occur; although infinitely small, or infinitely
large respectively, they have thus the same characteristics
which make ordinate, abscissa etc. variables, they are
therefore rightly considered as variables. The fact that,
as I shall discuss in subsequent paragraphs, sometimes &
differential is supposed constant, is not at variance
with its status as variable; indeed constant variables
occur in many situations, as for instance the constant
ordinate of a horizontal straight line, the constant radius
of curvature of the circle and the constant subtangent of
the logarithmic curve.

A primary interest of historians in the difficulties
connected with the infinite smallness of differentials??

has distracted attention from the fact that in the practice

o e UL,
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of the calculus differentials as single entities hardly
occur. The differentials are ranged in sequences along
the axes, the curve and the domains of the other
variables; they are variables?®?® themselves depending on
the other variables involved in the problem, and this
dependence is studied in terms of differential equations.
' Moreover,to introduce higher order differentials (sée.2.8),

flrs? order differentials have to be conceived as variables
ranging over an ordered sequence; if only a single dx is
considered, ddx does not make sense. The following
quotation from Leibniz illustrates this:

F .

S torinse of the diffepences,  for the quantity

dx 1s not always constant, b i
] . , but indeed, usuall
itself increases or decreases continuélly.a“ v

2.6 The infinitely small differential and the infinitely
large summa are considered actually as a difference,
respectively a sum; the differenttal dy of a finite
variable y 18 conceived as the difference between yI and
¥y, tif yI i8 the ordinate next to y 1in the infinite
sequence of ordinates. The sum [y 18 conceived as the
sum of all the terme in the sequence of the ordinates,

from the ordinate at the origin (or another fixed ordinate)
to the ordinate y.

Compare Leibniz's explanation:

Here dx means the element, that is, the (in

éncre@ent or dgcrement, of the (continuaily?tigfaneouS)
reasing quantity x. It is also called difference
gi?ily the difference between two proximate x's wﬁich
ot er by an element (or by an inassignable), the one
riginating from the other, as the other increases or

decreases (momentaneously).?®

On the conception of sums, see the quotation in 2.9.
On the relatively scarce occurrence of infinitely large
?ums in the calculus, see appendix 1. As one example of
its occurrence I quote some lines of Johann Bernoulli, in

which he evaluates sums as quotients with infinitely small
denominators:
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Now because (if dz is supposed con?tant) Jz,s

2z z
etc. are equal to T5.Jz * 1.2.3.dz%2 ° 1 7.3.4.42°°
5
Z 36
T 3.0 5.dz" oot e

2.7 In the finite array, the ratios Ax:Dy:Ds are
tios 0:y:T of subtangent,

ordinate and tangent
(see figure). In the
extrapolation to the
actual infinite, the

. triangle becomes the

JI“' differential triangle

v with sides dx, dy and
ds. The hypotenusa of
the differential triangle
igs a side of the infinitangular polygon, . and therefore,
forms a tangent line to the curve. Hence

approximately equal to the ra

if prolonged,
dx:dy:de = 0:Y:7T ;
this fundamental relation underlies the applicability

of differentiale in problems about tangents.

Leibniz became aware of the importance of the
differential triangle while studying work of Pascal®?. In
his first publication on the calculus (168u4a) , Leibniz
used the relation dx:dy = o:y to introduce the
differential as a finite line. I discuss this definition,
which is rather anomalous in Leibniz's work on the
calculus, in chapter 4, where I also investigate the
reason why he adopted it for his first publication.

Compare further Leibniz's explanation:

...to find a tangent is to draw a straight line
which joins two points of the curve which have
an infinitely small distance, that is, the prolonged

side of the infinitangular polygon which for us
is the same as the curve.

2.8 The operators & and £ of the finite array can be

applied repeatedly:

2 3 b
J2, fz, fz,s
z“
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AA{yi} = {Aiy}
with

A%y = A, ,y - A = -

1 D 1+1 iy - y£+2 yi+1 + yi s

and

ss{y.} = {zt_. =J

y; ! (201 =y e,

etCO .

Accordingly d and [ can be applied repeatedly, which
application yields the differentio-differentiale oxr

higher order differentials, and the higher order sums.

In the case of the variable y, for instance, d applied

to the variable dy ytelde the second order differential
ddy, a variable infinitely small with respect to dy,

which can be conceived ae the difference between dyI and
dy, ©if dyI i8 the differential adjacent to dy <in the
infinite sequence of differentials. Further application

oﬁ d %ields the higher order differentials dddy (or dsy),
d’y, d'y, ete.
fly, a variable infinitely large with respect to [y,

f, applied to the variable [y, ytelds

whieh can be conceived ae the sum of the terms in the
szquence fy. Repeated application yields [ffy (or fsy),
[Ty, ete.

Compare Leibniz's explanation, already partly quoted
in 2.5:

Further is ddx the element of the elem

: : ent, or the
difference of the differences, for the q&antity

dx 1s not always constant, but usually dx itself
leo 1ncre§sgs or decreases continually. And in the
ame way, indeed, one ma roceed to 3
and so forth. ’ hE dddxom dx

On the repeated sums see the gquotation in 2.6.

2.9 The operators A and £ in the finite array are, in a
sense, reciprocal: - .

AZ{y . : =
These properties are reflected in a reciproecity of d
and [:

dfy =y s Jfdy =y.



-26-

In fdy = y, the expected constant is usually left out;
the relation is eastly visualised as stating that the
sums of the differentiale in a segment equals the length
of the segment. dfy = y hae not so obvious a geometrical
interpretation, because fy is a sequence of infinitely
large terms. However, if in stead of the finite variable
y an infinittely emall varigble, say ydx, te congidered,
then dfydx = ydx can be understood as stating that

the differences between the terms of the sequence of

areas fydx, are ydx.

Compare Leibniz's assertion:

Foundation of the calculus: Differences and sums are
reciprocal to each other, that is, the sum of the
differences of a sequence is the term of the
sequences, and the difference of the sums of a
seguence is also the term of the sequence. The forT?r
I denote thus: fdx = x, the latter thus: afx = x.

Elsewhere, Leibniz explained:

Reciprocal to the Element or differential is the

sum, because if a quantity decreases (continually)
¥ITI1 it vanishes, then that quantity is the sum of
all the successive differences, so that dfydx is
the same as ydx. And fydx means the area which is

the aggregate of all rectangles, any of yhlch has an
(assignable) length y and (elementary) width dx
corresponding in the sequence to y. There are also
sums of sums and so forth, for instance Jaxfydx,
which 1is the solid built up of all areas such as Jydx
multiplied by the elements dz which correspond in the
sequence.

2.10 The reciprocity of the operators d and | suggests the
possibility of introducing | as the inverse of d per
definitionem. In fact, such a definition underlies the
caleulus as developed in the early studies of the

Bernoullis.

Taking over the terminology introduced by the
Bernoullie, let integration, symbol [, be the operator
which assigne to an infinitely emall variable ite integral,
defined by the property that the differential of the
integral equals the original quantity. So defined, the

integral, like the sum, i8 a variable.
The contrast between integration and summation may
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be illustrated by the case of the quadrature

fyde = @ . (1)
In terms of summation, (1) asserts that the sum of the
infinitely small rectangles ydx equals Q. In terms of
integration (1) asserts that Q is a quantity whose

differential is ydx.

Jakob and Johann Bernoulli acquainted themselves
with the Leibnizian calculus between 1687 and 1690"2.
Until 1690 the only articles by Leibniz on which they
could base their studies were 1684a, which concerns
differentiation only, and 1686. The latter article mention-
ed summation, used the symbol S, and indicated the re-
ciprocity of sums and differentials; the sums mentioned
are sums of differentials. It is not surprising, there-
fore, that the Bernoullis developed a concept of integration
as reciprocal of differentiation. For example, in Johann
Bernoulli's Integral Calculus, the integrals are intro-

duced as follows:

We have seen above how the Differentials of
quantities are to be found; we will now show how,
conversely, the Integrals of differentials are found,
that is those quantities of which they are the
differentials.*?

Leibniz, who saw the terms integral for the first time
used in Jakob Bernoulli 1630, tried later to persuade
Johann Bernoulli to adopt the sum terminology:

I leave it to your deliberation if it would not be
better in the future, for the sake of uniformity

and harmony, not only between ourselves but in the
whole field of study, to adopt the expressions of sums
in stead of your integrals. Then for instance

fydx would signify the sum of all y multiplied by the
corresponding dx, or the sum of all such rectangles.
I ask this primarily because in that way the
geometrical sums, or quadratures, correspond best
with the arithmetical sums or sums of sequences.(...)
I do confess that I found this whole method by
considering the reciprocity of sums“and differences,
and that my considerations proceeded from sequences
of numbers to sequences of lines or ordinates.""

The request was occasion for Johann Bernoulli to
explain the origin of the term integral:
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Further, as regards the terminology of the sum of )

differentials I shall gladly use in the future Compare Johann Bernoulli's explanation of the
your terminology of sums in stead of our integrals. conservation of dimensio i iation:

T would have done SO already much earlier if the Th .n by differentiation:

term integral were not sO much appreciated Dby e parts of a solid, although infinitely small,
ceptain geometers [a reference to French mathemat- arefstlll solids; those of a surface are still
icians, especially 1'Hépital, who had studied Ber- iur aces, and the parts of a line are still lines
noulli's Integral calculus] who acknowledge me as or it is not possible that a kind of quantity ’
the inventor of the term. It would therefore Dbe 232n2§t;h§§89d by division into another kind of

thought that 1 would rather obscure matters, 1f I
indicated the same thing now with one term and now

with another. I confess that indeed the terminology 2.13 Differentiale and sums for L8tl
does not aptly agree with the thing itself (the of infinit ; forn clasees of disvinas onder
does not aptly agree with tho'l ng e ered the inity. Thus for instance dy is infinitely small
differential as the infinitesimal part of a whole or with respect to y; ddy is infint .
integral; 1 did not think further about it).*® dy, and © , kZI . f'nzfezy e
Ys a in general d Y 18 infinitely small with respect
The matter was left there, and gradually the integral to d y. Similarly fk+1y i8 infinitely large with r
‘ 3 ac : espect
terminology replaced Leibnizs original sum terminology. o fky’ Rl p
All first order differentials of finite variables
2.11 The calculus built on the concept of integration and have the same order of infinity (that is, any two of th
. . . 0 em
that built on the concept of summation also differ in have a finite ratio, except in singularilies) Congsequentlk
that the conception of summation leads naturally to in- for every k, all k% opder differentials have the sa "
me
finitely large quantities (see appendix 1), whereas in order of infinity. This by no means obvious rule relates to
2 calculus based on the concept of integration, such assumptions about the regularity of the infinitangular
a
quantities are lese likely to appear, as integration is polygon which I shall discuss in 2.18. Moreover, the order
L2 »
applied only to quantities which are themselves of infinity of kth order differentials is the same as
. . t
siffeventiale. that of k powers of first order differentials (that s
for instance, d y bears a inite ’ 3 ’ :
2.12 The differentials and sums, introduced by the operators Tt1 ,)k 1 . e oo
al . . es, to (dy) ). This rule also (see 2.18) results from
d and |, are quantities, and therefore they have a dimenston: assumpti )
ve qu . R . . umptions about the regularity of the infinitangular
If these 1nfzntteszmal quantities are of the same dimension polygon g
they can be added; also products of euch quantities can be Lmt
Similarly the sums and the
formed and the dimension of the product will be related to with distinet orde F infi o
» . . rg of infinity.
the dimensiona of the factors in the same way as in the menti ) finty. pecaun: of nee
o i ntioned relations between the elements of classes of
cage of fintte quantities (see 1.5). different orders of 1 finit h
. nfintty,
In the finite array, the terms of the difference and infinity is infinite, but dy e e ien
ite U ] infint
sum sequences have the same dimension as the terms of the small . ring B evzry et
a quantity has a finite ratio to (dx) for some

original sequence (if y,; are line segments, then 80 are s

natural number k and ev infini :
and z:1.;'=1 y; /e consequently, d and /| preserve the dimension: ery infinitely large quantity has

a finite ratio to |J ]k . ,
If y is a variable line gegment, then dy 18 an infinitely R yd' ijr some “natural number k (see,
s 2. appendix 2).

amall variable line gegment and fy 18 an infinitely large
variable line segment. If @ 18 a quadrature, dq ts an As an example of the terminology with which these
46 orders of infinity were indicated I quote some lines by

infinitely small area, etc.
Johann Bernoulli:
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Let a be a finite line, adx an infinitely small
of the first sort, dddy an infinitely small of
the third sort, it has to be proved that

%%%; is an infinitely large of the second sort.

To prove this, let %%%; be called z; hence adx =
zdddy; hence dx:dddy = z:a. Now dx is infinite-
infinitely larger than dddy; hence also z, which
is the quotient resulting from the division, will
be infinite-infinitely larger than a, which is a
finite line; it follows that z will be an infinite-
ly large of the second sort.*

It is instructive to cite in this context a proof
by Leibniz that ddx is a quantity infinitely small with
respect to dx. The proof occurs as a refutation of
Nieuwentijt's opinion*® that second order differentials
do not exist:

For whenever the terms do not increase uniformly,
the increments necessarily have differences them-
selves, and obviously these are the differences of
the differences. The renowned author [that is,
Nieuwentijt] concedes that dx is a quantity. Now
the third proportional of two quantities is again a
quantity, and the quantity ddx is of this kind with
respect to the quantities x and dx, which I prove
thus: Let x be in geometrical progression and y in
arithmetical progression, then dx will be to the
constant dy as x to a constant a, or dx = xdy:a.
Hence ddx = dxdy:a. Removing dy:a from this by
the former equatlon, one has xddx = dxdxg whence
it is clear that x is to dx as dx to ddx.

This passage has repeatedly bewildered historians of
mathematics.®! It is, however, a perfectly acceptable
argument, if one bears in mind that Leibniz does not state
in general that ddx is the third proportional of x and dx,
but that he gives an example in which this is the case.
The example then proves the existence of quantities
infinitely small with respect to dx. The curve in question
y/a), which
was usually defined as the curve in which a geometrical

is, of course, the logarithmic curve (x = be

sequence of ordinates (respectively abscissas) corresponds
to an arithmetical sequence of abscissas (respectively
ordinates). Hence Leibniz takes dy constant and knows

that the dx form a geometrical sequence.

s |

2.14 To avoid ambiguities, there are certain rules of
notation. If no brackete are used, the operators d, dd,d3,
ete. have to be interpreted as acting on the one letter
variable following it. If the operator 18 meant to act

on a composite variable, brackets must be added. Thus

dz? means (dx)?, as d acts only on x; the differential of
x? 48 indicated as d(z?). Stmzlarly d2x® means d3x)°®.
Differential quotzents lzke 3—% a—% ete. have to be
interpreted as 7%5%2 R 725%3 , ete. The operator | is
interpreted as acting on the whole letter expregsion which

follows it. Thus fydx means [(ydx).

Leibniz used overlining rather than brackets, e.g.
dxy for d(xy). He also used the comma as dividing symbol,
thus d,xy+a? for d(xy+a2). Euler gives these rules of

notation explicitly in 1755 (par.1iui).

2.15 I now turn to a difficulty which necessarily arises
i1f one tries to set up an infinitesimal calculus which
takes the differential as fundamental concept, namely the
indeterminacy of differentials.

The first differential dx of the variable x i8
infinttely small with respect to and 1t has the same
dimension as x. These are the only conditions it has to
satisfy, and they do not determine a unique dx, for if dx
satisfies the conditions then clearly so do 2dx and %dx
and in general all adx for finite numbers a. That 18, all
cuantities that have the same dimension and the same order
of infinity as dx might serve as dzx.

Moreover, there are even elements not from this class
which satisfy the conditions for dz; for instance dz*/a
and VYadz, for finite positive a of the same dimension a8 %.
dz?/a is infinitely emall with respeat to dx and Yadz is
infinitely large with respect to d?’ go Ehat there t8
even not a privileged class of infinite emallnese from
which dx has to be chosen; there is no "first" class of
infinite smallness adjacent to finiteness. Thus first
order differentials involve a fundamental indeterminacy.
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On this sndeterminacy of first order differentials,

compare appendix 2 (esp. 7-8), where I discuss a study

of Euler's from which it appea
this problem. It has to be stressed that the early

rs that he was aware of

practitioners of the Leibnizian calculus seem not to
have been aware of this indeterminacy.

1t is difficult to give reasons for, or to draw
the late occurrence of an awareness of
nt aspect doubtless is that the
he computational techniques

conclusions from,
this problem. One importa

problem does not influence t

or the interpretation of first order differential equat-

ions; geometrical intuition convinces that the finite
ratios dx:dy:ds are independent of the choice of dx in any
ciass of infinitely small quantities, SO that, although
the first order differentials themselves are indeterminate,
the relations between them are determined. Also the
summation of differentials is not affected by this in-
determinacy; fdx = X applies for every choice of the dx's.

Thus in the treatment of the most common problems of the

infinitesimal calculus, quadratures, tangent problems,

inverse tangent problems, rectifications, cubatures etcC.,

the indeterminacy of the fundamental concept did not in-

fluence the technique of the analysis.

However, there is another kind of indeterminacy,

which affects higher order differentials and which did

profoundly influence the concepts and the techniques of

the early differential calculus. 1 discuss this in-

determinacy in the following paragraphs.

9.16 There are many wWays to approximate, in the finite

array, a curve by a polygon. To fix ideas, I mention

three possibilities:
a. polygons with equal stdes
b. polygons, the projection of whose sides on the
X-axig are all equal

c. polygons, the projection of whose stdes on the

Y-axis are all equal.
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In these three cases the operators A and £ can be applied
to the relevant sequences, but the results of this
applicationkmay differ. In case a. 5,8 18 constant con-
sequantly 4,8 = 0 for k » 2; but intgeneral A@m a;d Akn

will not be equal to zero. kIn case b. Aix iszconstantiy
s —

(o gl e e B e

Loreover in case b Az;{eq?a% e

5 .y .} e 1 X
of the quadrature, in other wordi? the ::qZZiZ:xzzitton }
is approximately proportional to the sequence of 7= i
quadratures {Qi}' In cases a. and c. this approximation
does not apply; which shows that its applicability depends
on the special choice of the polygon.

The form of the polygon defines the sequences of
abseiseas, ordinates, arclengths ete. Conversely, tf the
sequence of values of one variable is given (and if it is
agreed that the vertices of the polygon are on the curve)

s

then the polygon ts determined and hence also the sequences

of values of the other variables. Cases b. and e., discussed
L

above, may thus be described as polygons induced by
arithmetical sequences of abscissas, and ordinates
respectively.

o The indeterminacy of the approximating polygon in the
f%?tte array, or the freedom to impose an additional re-
quirement (like arithmeticity) on the sequence of values of
one variable, is preserved in the extrapolation to the
actual infinite. Thus the concept of infinttangular poly-
gon implies an indeterminacy; it allows the free choicey
of an additional suppostition about the sequence over which
the values of one variable range. The most obvious way of
making such an additional supposition 18 to extend thz
concept of arithmetical sequence to the infinitesimal case
Thus the supposition that the sequence of values of x 8 .
arithmetical, becomes, in the infiﬁitesimgl case, the
supposition that dx is constant.

Corresponding to the three cases discusged above
there are the following possibilities for additional

suppositions about the infinitangular polygon:
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a'. ds constant
b'. dx constant
e'. dy constant.
In agreement with the terminology of contemporary
writers I shall refer to the imposing of an additional
suppostition about the infinitangular polygon as the

choice or the specification of the progression of the

variables; for one may concetve this choice or specificat-
ifon as concerning the way how the vartables proceed along
their domains.

The freedom of choice of the progression of the
variables is described in the following quotations of
Leibniz:

To take sums it is quite unnecessary that the dx or
the dy are constant and the ddx = 0, but one assumes
the progression of the x or y (whichever one wants
to take as abscissas) as one likes it.®?

... namely that the progression of the x can be

assumed ad libitum...%3

That many different progressions of the variables were
studied if such was felt necessary, appears from a letter
of Varignon to Leibniz, where he writes about a problem
involving variables X, ¥y, S, and z:

Apart from these 18 formulas (...) of which the last
12 ape deduced from the first six by supposing
successively dx, dy, ds, dz constant, one can still
deduce an infinity of other formulas from the first
six by supposing in the same way anything else
constant (...) for instance by supposing also

2
%¥, %;— ,  yhdx, ymds etc. constant.®*

As appears from this quotation, specification of the
progression of the variables is effectuated by indicating
which first order differential is supposed constant. Some-
times this is described fully in prose: "the arclength
growing uniformly" *° for dx constant.

2.17 The rules for the operators d and [ discussed so far
do not depend on the choice of the progression of the

variables, but as long as the progresgion 18 not specified,
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the wvariables introduced by the operators d and /| are
affected by the same indeterminacy as the infinitangular
polygon. For instance, in case a'., dds = 0 (because ds
is constant), but in case b'. dds 18 not equal to zero.
The differentials, and the relations between them, depend
on the progression of the variables. Also the sums depend
on the progression of the variables. The relation of

E{yi} to the quadrature, discussed in connection with b.,
transforms, by the extrapolation, into the assertion that,
under the supposition of a constant dx, fy ie proportion-
al to the quadrature @, with dx as infinitely small
proportionality factor: dxfy = Q. This relation does not
apply under any other supposition about the progression of
the vartables.

This point will be discussed further in relation with
Cavalierian theories in appendix 1. Suffice here the
following quotation, in which Leibniz explains that if dx
is taken constant, one may treat the quadrature as [y
("sum of all y"), as is done in the theory of indivisibles,
but if one wants to consider different progressions of the
variables, the quadrature has to be evaluated as fydx:

And this indeed is also one of the advantages of my
differential calculus, that one does not say, as was
formerly customary, the sum of all y, but the sum
of all ydx, or J[fydx, for in this way I can make
dx explicit and I can transform the given quadrature
into others in an infinity of ways, and thus find
the one by means of the other. s
2.18 The properties of the differentiale and the sums as
outlined above imply certain conditions of regularity of
the infinitangular polygon. The requirement that the
second order differentials are infinitely small with
respect to the firet order differentials tmplies that the
first order differenttale must vary smoothly; two ad-
jacent differentials must be approximately equal. Thisg
requirement does not follow immediately from the extra-
polation from the finite array. Indeed, in the finite
array one can imagine a polygon with sides of alternating

lengths h and 2h, in which the difference sequence 8.8



-36-

of the arclengths would be {h, 2h, h, 2k, h,...} and
the second difference sequence {h, -h, h, -h, h, -h,...}.
Extrapolated to the infinitesimal case the second order
differential dds would them be of the same order of
infintty as the first order differential ds.

Such anomalous progressions of the variables have
to be excluded, which 18 done effectively i1f one only
considers progressions in which the first differential
of one of the variables is constant. This can be under-
stood itn hindsight from the fact that the curves which
were studied implied, except in singularities, sufficient-
ly often differentiable relations between the variables.
Hence ©if u te the variable with constant first differential,
the corresponding sequence of, say, y (y = flu) )}, is
formed by extrapolation from a finite sequence like f(a),
fla+h), f(a+2h), f(a+3h),... . The property that dy, ddy,
d’y ete. are of successive different orders of infinity
then relates to the different orders of h of respectively

Ay = flath) = fla) = 0(h)
A2y = fla+2h) - 2f(a+h) + f(a) = 0(h?)

fla+3h) = 3f(a+2h) + 3f(a+h) - fla) = 0(h®).
From these relations it can also be seen that, if the first

ady

differential of one of the vartitables i8 supposed constant,
the kt" order differentials are of the same order of
infinity as the kth powers of the first order differentials.
The argument above suggests that the variable with
constant firet differential acquires the role of independent
variable. This aspect i8 discussed further in 2.20.

I have found very few traces of an awareness that
the usual suppositions about the progression of the
variables imply regularity conditions not implicit in the
concept of infinitangular polygon. Most likely this un-
awareness is caused by the fact that if the rules of the
calculus are followed and if one specifies the progression
of the variables by specifying a constant differential, one
does hardly ever encounter problems which throw up this
question. However, there is one such problem, and its

treatment shows the embarassment of contemporary authors.

-~37~-

It is connected with the fact that zero has no fixed
order of infinity. As an example I quote Jakob Bernoulli's
discussion of the differential of x2.%7 He wrote

d(x2) = (x+dx)? - x% = 2xdx + (dx)?,
and concluded from this that, for x # 0, d(x?) = 2xdx,
but that, for x = 0, d(x?) = (dx)?. The last formula
violates the regularity condition that first order
differentials must all be of the same order of infinity;
with respect to first order differentials, (dx)? has to
be discarded and d(x?) has to be evaluated as equal to

zero for x = 0.

2.19 The curve embodies relations between the relevant
variables. Like the fintte variables, the differenttals
bear relations to each other induced by the curve. The
equations which express these relations are the differential
equations. .
The terms of the equations which expreses the relations
between the finite variables are analytic combinations
(products, 8sums ete.) of these variables. Therefore these
terme are themselves variables and the operator d can be
applied to them. The rules of the calculus teach how the
differentials of such analytic combinations relate to the
differentials of their component terms and factors. These

rules are:

d(x+y) = dz + dy
d(xy) = xdy + ydz
d% - zdy ; gdx

dz? = axa-ldx (also for fractional a)
dlogx = E%E (a depending on the kind of
logarithm involved)

dap® = abdx (with a = lnb)

dsinx = coexdx -~ -
. dx
daresinxy = ———— ete.
V1-x2

These rules are independent of the choice of the
progression of the variables, one can therefore apply
them without making any suppostition about thig progression.
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In 1684a Leibniz published the differentiation rules
for sums, products, quotients, powers and roots.’® It may
be noticed that the applicability of the Leibnizian
algorithm to roots and complicated irrationalities
constituted one of its great advantages over the already
known tangent and extreme value rules (Fermat, Sluse),
which applied only to polynomial equations for algebraic
curves. The computation of such equations for given
curves (for instance Leibniz's example: the locus of
points whose distances to six given points add up to a
given constant) often required long and tedious
calculations because the roots had to be eliminated.
Hence the title of 1884a: A new method for maxima and

minima, and also for tangents, which is not impeded by
fractions or irrational quantities, and a singular kind
of calculus for these.S$?

The differentiation rules for non-algebraic composit-
ions of variables (exponentials, logarithms, trigonometric
relations) were not yet given in Leibniz's article. They
involve certain difficulties connected with the concept
of dimension, see note ¢,

2.20 By applying the operator d to both sides of the
equation of the curve, and working out the results using
the rules, the differential equation of the curve is de-
rived. Repeated application of d yields the higher order
differential equations of the curve. As the rules of the
caleulus are independent of the choice of the progression
of the variables, the resulting differential equations
are valid with respect to every such progression. However,
the choice of a progression of the variables may trang-
form the eecond and higher order differential equations
into simpler ones, which then, of course, are only valid
for the progression chosen.

Thie aspect of higher order differential equations,
which i8 related to the tndeterminacy of the infinit-
angular polygon discussed above in 2.16, may best be
tllustrated by an example, for which I take the parabola
ay = xz®. Repeated application of d on both sides of the
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equation yields the first and higher order differential

equations, applying for every progression of the

variables:
ady = 2xdx (o)
addy = 2(dzx)? + 2xddx
ad’y = 6dxddz + 2ad’x .
ady = 6(ddz)?® + 8dxd’x + 2zd’'x

ete.
If the progression of the variables s specified

by dy constant (ddy = 0), these equations are trans-

formed into:

ady = 2zdx
0 = 2(dz)? + 2xddzx (3)
0 = 6dzddx + 2xd’x
0 = 6(ddz)? + 8dxd’z + 2zd‘z

ete. ,

and if dxz is supposed constant, (ddz=0), the

equationg are transformed into:

ady = 2zdx
addy = 2(dx)?
ad®y = 0
ad‘y = 0

ete.

The example shows that the general highef order
differential equations of a curve may be ?onstderabzzaion
be simplified by the choice of an appro?rzate progr
of the variables. Hence there are two kinds of I
differential equations in the calculus, fhose w ooty
regardless of the progression of the vart?bZe:; ; [thoee
which apply only for a specified progression. . Zzear "
ing a differential equation, it has always to be e
which kind it belonge, and if it beZ?n?s tf t?ehaf 8
kind, the progreseion has to be spedifzedt whfc s:a s
by specifying which first order differential 18 pp

nt. '
const:igher order differential equati?ns of the sa::asion8
curve, but applying with respect to different pr:ieZ “
of the variables will differ considerably. Conve Ys
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same higher order differential equation, if considered as
applying with respect to different progressiong of the
variables will define different curves. I shall treat
thie dependence of higher order differential equations

on the partition im more detail in chapters 3§ and §.

In the contemporary techniques for the derivation of
higher order differential equaticns from physical or geo-
metrical problem-situations, and in the techniques for
the solution of such equations, the choice of appropriate
progressions of the variables plays a most important role.

I shall discuss examples of this technical aspect of the
Leibnizian calculus in chapter 3.

The choice of the progression of the variables is
related to what would be the choice of an independent
variable if one wanted to consider the variables as functions.
This is illustrated by equations (3) and (u4). Equations (3),
in which dy is supposed constant, correspond to

a = 2xx'

0 = 2(x")?% + 2xx'!

0 = 6x'x'' + 2xx'''

0 = 6(x"")% + 8x'x'"'"'" + 2xx''"!
etec. ,

in which x', x'' etc. are the derivatives of x as function
of y (x = Yay). Similarly, equations (4), which presuppose
dx constant, correspond to
ay' = 2x
ay'! =
ay''!' =
ay'''' = 0

ete.

where y', y'' etc. are the derivatives of y as function
of x (y = x%*/a).

The correspondence between the variable with constant
first order differential in the analysis of variables,
and the independent variable in the analysis of functions,
also becomes clear if we consider the question how the
arguments about the progression of the variables relate to

aljq] =

the formula which is at present still in use for the

second derivative,
a2
x
For y = £(x), the derivative is defined by

4y - 1in f(x+h) - £(x)

dx h-+0 h
The second derivative is usually introduced as the

derivative of the derivative. However, one can also
introduce it as

2 - -— —
%;¥ - limh+0[f(x+2h) f(x+h)]h£f(x+h) £(x)]

which is analogous to
2

g_; de - dy
dx% ~ dx

For this definition of the second derivative it is

essential that one takes the two segments h along the
X-axis equal. This becomes clear if we consider how the
second derivative could be defined directly as a limit of
a quotient of finite differences with respect to segments
h1 and h2 along the X-axis, which are not necessarily
equal. The numerator of such a quotient would be

[f(x+h1+h2) - f(x+h1)] - [f(x+h1) - f(x)].

But there is a problem of choice for the denominator, for
which hi or h; or, as a comprise, h1h2 might be chosen.
But, for whatever choice of the denominator, the double
limit for h
easily in the example f(x) = x. So we have to suppose

1~+0, h2->0 would not exist, as can be checked

hy = h2, which is equivalent to what in Leibnizian
terminology is rendered as supposing dx constant. Hence
only if dx is taken constant does d?y have a relation to
the second derivative of y as function of x.%!' The
variable whose first order differential is supposed con-
stant takes a role equivalent of that of“the independent
variable.

2.21 In equations (2), (3) and (4) it appears that the
firet order differential equations are not affected by the
change of the progression of the variables. This 78 a
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general rule, and tts effect ie that in the treatment of
first order differential equations the progression of the
variables need not be specified and can be left un-
determined. Hence in that case no variable need be singled
out to have a constant first order differential, and so
all variables have equal status in the calculus. Also the
solution of first order differential equations is not
affected by specification or change of the progression of
the variables.

The rule, which applies to first order differential
equations of any degree (i.e. the equation may involve
powers and products of first order differentials), may be
proved as follows: Differential equations are homogeneous
with respect to order of infinity (see 2.22). In the case
of equations involving only first order differentials this
means that they are homogeneous in these differentials.
Hence multiplication of all differentials with the same
factor does not affect the equation. Now in every point of
the curve, the relation

de : dy : de =0 : y : 1
applies independently of the progression of the variables.
Hence if dx, dy, ds and dx*, dy*, de* are induced by two
different progressions of the variables,

de : dx* = dy : dy* = ds : ds* ,
that is8, in changing from one progression of the variables
to another, the differentials are all multiplied by the
game factor, so that the relation between them, expressed
by the differential equation, remaing the same. (The
argument can be extended to cover cases involving other
variables than =z, y and s.)

The rule plays an important role in arguments of
Johann Bernoulli and Euler about the transformation of
higher order differential equations by different choices
of the progresgion of the variables which I discuss in

chapters 3 and §.

The progression of the variables is usually con-
scientiously specified by contemporary authors in those

cases where that is necessary. I have found few

B

T

examples where the specification is omitted. One such case
shows how crucial the specification is for understanding
the calculations. It occurs in Johann Bernoulli's

Integral Calculus:

Because s = adx:dy [this is the differential eguation
which Bernoulli discusses] we have

= JAvZ 1 A2
ds = v/dx* + dy? = addx:dy, and hence dy = @ddx:v/dx? + dyZ.
In order that on both sides the integrals can be
taken, both sides are multiplied by dx, which

results in dxdy = adxddx:/a;7—3_3§7. Taking integrals
we arrive at xdy = avYdx? + dyZ?, and after reducing
the equation, we find dy = adx:/x? - a2 as before.
{Bernoull@ had already discussed the latter different-
ial equation before.]?®?
These calculations are incomprehensible because Bernoulli
omits to indicate that he takes dy constant.

2.22 The geometrical interpretation of the quantities enter-
ing the analysis requires the equations to be homogeneous
in dimenston. In addition to this there is a second kind of
homogeneity, which requires that all the terms of an equation
should be of the same order of infinity. In faet this con-
stitutes the essence of the relation "infinitely small with
respect to": all terms in the equation except those of the
highest order of infinity (lowest order of infinite small-
nese) have to be discarded. For instance:

a + dx = a

de + ddy = dz

ete.

This digcarding results in equations satisfying this second
requirement of homogeneity.

Leibniz valued the two laws of homogeneity highly, as
appears from his 1710b, where he introduced a new notation
for powers and extended the notation for gifferentials in
order to expose the analogy between powers and different-
ials, and, correspondingly, the analogy between the laws
of dimensional homogeneity and homogeneity of orders of
infinity. He wrote pkx for xk, (thus stressing the fact
that taking powers is, like taking differentials, an
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operator), and he extended d"x to the case n = 0 by
defining d x = x. He then exhibited the analogy between Some examples may suffice for further elarification:
powers of sums and differentials of products, which is, ' a%%g is a finite ratio
in fact, "Leibniz's rule" 4
_ - - A line segment, infinitely large of
e _ 4.e. 0 ee-l 1., ele-1) e-2 2 a5/ = is a s
p (xty) = 1p"xp'y + 3P "Xp'VY 1.2 P Py second order
- - -3
ol i?§?32)pe xpy + etc. adx 18 an infinitely small area
-1 1 e(e-l) e-2 2 : d_s 4 » . ° . .
de(xy) = 1dexd0y + %de xd7y + 5 d xd“y + | Z ddx tz a line, infinitely small of third order
ete.

ele-1)(e=2) __3 3 6
1.2.3 d° "xd'y + etc. > 2.24% It is appropriate to end this outline of the Léibnizian

calculus by indicating how its key concepts differentiation

and he extended the analogy to sums of three terms and
products of three factors. After this Leibniz remarked:
And this analogy even goes so far that, in this way

and summation contrast with the concepts of derivation and

integration as used in present-day infinitesimal calculus

of notation (which may surprise you) also of real funetions. To be explicit: Derivation is the
p’(x+y+z) actually corresponds to d (XYZ) for operator which assigns to a function f its derivative f',
= = X Z 5 . . . .

and p’ (x+y+2) ! p’xp’® ypo which is agatin a function, defined by f'(x) =

n d%(xyz) = xyz = d?xd%yd’z . e f(m)
At the same time it appears that a transcendental = szh*ﬂ % ;5 and Integration (which term I now
law of homogeneity applies% which 1s ngt equaily use in a different sense as in 2.10 above, where I discussed
obvious in the usual way of notation. For instance, . i i ) i

if we use this new kind of Characteristica, it Bernoulli's concept of integration) is the operator which
appears that addx and dxdx are not only algebralcally agsigns to a function f an integral [f(t)dt of f, which is
homogeneous (as in both cases two quantities are i . )

multiplied), but that they are also transcendentally again a function, determined (modulo a constant term) by
homogeneous andzcomparable. For the fgrmgr can ge the requirement that ite derivative equals f, or, alternativ-
wpitten as d%ad and the latter as xd*x, and in . x . . Lo

both cases the dl%ferentlal exponents add up to the ely, defined as [f(t)dt, using a dirvect definition of the
same sum, for 0+2 = 1+l. The transcendental law of definite integral by means of limite of sums over refining

lgebraical law.® .. . .
homogeneity presupposes the alg partitions (Riemann integral).

2.23 Dimension and order of infinity of finite and Comparing these two pairs of concepts, three important
infinitesimal quantities are affected by multiplication contrasts are evident:
and by the application of the operators d and | as follows: (I) Differentiation and summation apply to variables,

Multiplication changes the order of infinity unless irrespective of the dependency of these on other
the factor is finite; it changes the dimension unless the "independent” variables; derivation and integration
factor is a number or a ratio. apply to functions of one specified variable.

The operator d preserves the dimension and changes (1I) Differentiation and summation depend on the progression
the order of infinity; for any variable quantity A, dA is of the variables in the sense that the first and
infinitely small with respect to A. higher order differentials and sume remain indetermined

The operator | preserves the dimension and changes the as long as the progression of the variables 18 not
order of infinity; [A is infinitely large with respect to A. specified ~ although in some cases the relations be-

tween the differentials and sums are independent of
the progression of the variables and are therefore
not affected by this tndeterminacy.
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(III) Differentiation and summation change the order of

infinity and leave the dimension unchanged;
derivation and integration change the dimengion and

leave the order of infinity (in this case, the

finiteness) unchanged.

The third point needs some elarification as here the
anachronism, implicit in any comparison of concepts which
were used in different periods, becomes evident:
dertvation and integration do not oeceur in q specifically
geometrical context. Nevertheless considering the obvious
geometrical interpretation of these operators is

illuminating. Let, therefore, x and y = f(z) have the
ffx+h);f(x)

dimension of a line, then y' = fl(z) = Zimh+0
the limit of a ratio of lines, is dimensionless (a ratio
or a number), and afmf(t)dt 18 an area. Hence derivation
and integration change the dimension. On the other hand
both f'(x) and afxf(t)dt are finite, go that the operators
congerve the order of infinity.

The three contrasts illustrate the fundamental
change which the infinitesimal caleulus underwent from the
time of Leibniz till roughly the end of the nineteenth
century. The change has been a gradual and most complex
process which cannot be understood if the conceptual
foundations of the calculus in its beginning stage are not
fully made explicit - which may be the justification of
this outline and indeed for the present study ae a whole.
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CHAPTER 3

3.0 In this chapter I discuss certain passages from the
writings of the early practitioners of the Leibnizian
calculus, which show how the conceptual foundations of
the calculus, discussed in the pPrevious chapter, in-
fluenced problem choice and techniques. I concentrate

on examples relevant to the indeterminacy of the progress-~
ion of the variables and the laws of homogeneity because
these are features which the calculus lost in its later
development, so that their discussion will contribute
most to the understanding of the early stage of the
calculus. There are three groups of examples; the first
two deal with techniques connected with the choice of
the progression of the variables, and the third with

the laws of homogeneity.

3.1.0 As I discussed in chapter 2, higher order
differential equations, and in general expressions in-
volving higher order differentials, depend on the
progression of the variables. The appropriate choice of
the progression can considerably simplify such expressions,
and different choices lead to different formulas for the
same geometrical relations or entities. Most higher order
differential expressions are interpretable only if the
progression of the variables with respect to which they
are meant to apply is indicated. As we shall see, the
choice of the progression can be made in different stages
of the argument; sometimes it can even be entirely avoided.
It is clear, then, that the choice of the progression of
the variables is a very important aspect of the
techniques of dealing with higher order qifferentials.

In this section I illustrate this aspect by various
contemporary deductions of formulas for the radius of
curvature in a point of a given curve. These deductions,
and the resulting formulas, differ greatly among each
other and it will become clear that these differences are
related to the different ways in which the choice of the
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progression of the variables is introduced in the

deductions.

3.1.1 As I shall restrict myself to the technical aspects
of the several deductions of formulas for the radius

of curvature, I give here only a concise indication of
the relation between the relevant texts.

When Johann Bernoulli arrived in Paris in 1691, he
possessed a formula for the radius of curvature, the use
of which impressed 1'H8pital so much that Bernoulli was
asked to become the Marquis's private teacher (cf Johann
Bernoulli Briefwechsel 136). Probably the formula involved
was the one which appears in Bernoulli's Integral Calculus,
whose deduction I shall discuss. Jakob Bernoulli, in-
dependently of his brother, possessed formulas for the
radius of curvature too, which he used in deriving the
results on diacaustic curves that were published, without
proofs, in Jakob Bernoulli 1693. In 1'HOpital 1683
(published in May 16943 1'HSpital provided the proofs of
Jakob Bernoulli's results, as well as deductions of
formulas for the radius of curvature, one in a kind of
polar coordinates and one in rectangular coordinates, the
latter derived in a way .slightly different from Johann
Bernoulli's in the Integral Calculus. (This derivation
of 1'H6pital also occurs, together with other formulas
for the radius of curvature, in 1'H8pital 1696 sect.77-79.)

Meanwhile Jakob Bernoulli published, in his 1694,
formulas for the radius of curvature, in rectangular and
a kind of polar coordinates, with an infinitesimal geo-
metrical deduction of the former. I shall discuss these,
as well as the proof for the formulas in polar coordinates
provided by the editor of Jakbb Bernoulli's Opera, G.Cramer.

Leibniz discussed Jakob Bernoulli's formulas in Leibniz 1694b

and gave other formulas, which I discuss, deduced by a
method related to his theory of envelopes.

The discussions on the radius of curvature in the
above mentioned writings were partly related to a contro-
versy between Jakob Bernoulli and Leibniz about the number

T —
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of coinciding intersections of the curve and the
osculating circle. Also, they reveal a growing tension
between the brothers Bernoulli. However, this is not

the place to discuss these aspects. Finally it may be
remarked that the authors did not use the term radius of
curvature, but rather radius of the osculating circle.

3.1.2 The first example is Johann Bernoulli's deduction

of a formula for the radius of curvature in his Integral

Caleulus (Opera III 437), dating from 1691. The radii

0D and BD, see figure, are perpendicular to the curve ABj;
they meet in the centre
of curvature D. OB is
the arclength different-
ial, corresponding to
the differentials dx
and dy. DB = r is the

.ﬁﬁ\\\\7;70 B radius of the curvature.

dx Because HB is normal to

y the curve,
S H// X AH = x + y%% .
GH is the differential

of AH, and Bernoulli

evaluates this after

choosing the progression
of the variables by
taking dx constant

("posito ddx = 0Y):
HG = d(AH)

d(x + y%%)

dy? + yddy
dx ¢

= dx +
HG occurs in the proportionality
BC : HG = BD : HD,
2 2 2 2
in which BC = SX9Y BD = r and HD = - BH = p - LY9X *dy_

so that r can be calculated, which yields

| —(dx? + dy?)YdxZ + dy’
ro= dxddy ’

a formula which is valid only under the supposition that
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dx is constant.

By substituting ds = vdx? + dy’, which Bernoulli
does not do in the passage discussed although he certainly
has seen the possibility, one gets

r = —951— for constant d
® dxady constan X

which is one of the formulas given by Jakob Bernoulli,

see below. As I have pointed out in 2.20, the choice of
the progression of the variables by taking a constant dx
corresponds to the choice of x as independent variable in a
treatment of the problem in terms of functions. The formula,
therefore, corresponds to the well-known formula

dxz 3y

2 [ 1+ 1

o= [g—iﬁ/[gxg] : dzdx :
[ 337l

3.1.3 In the example above, the choice of the progression
of the variables is made in the analytical part of the
deduction, after certain relations between first order
infinitesimals (GH, CB) are deduced from an inspection of
the figure. The next example
shows that relations between
higher order differentials
can be directly deduced from
a figure, in which case the
choice of the progression of
the variables can be made

in drawing the figure. The
example is Jakob Bernoulli's
deduction of a formula for
the radius of curvature as it
occurs in his 1634. In the
figure, it is supposed that

af is perpendicular to ab,

bf is perpendicular to bc,
so that f is the centre of

ds is constant, that is ab=bc.
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curvature and bf = r the radius of curvature. Furthermore,
ab is prolonged to h, bh = bc, whence al = bm, and the
following similarities hold (approximatively):

A bmh ~ A hoc¢
A heb ~ A abf
ho _ ho he
be he'be
bm ab
bh° bf
al ab
~ ab’'bf

Hence

(here the constancy of ds is used),

so that
ho _ al
bec = bf °
Now bf = p
al = dx
be = ds
ho = hm - nc = bl - nc = ddy
(note that no signs are taken into consideration). Hence
dx _ ddy
r ds
_ dxds
so that r = _EE§ , for constant ds.

As constant ds corresponds to taking s as independent
variable (see above) the related formula in terms of

functions 1is
_ . dx d2¥
r"[d_s"]/[dsl'
Jakob Bernoulli considers in this article also other
progressions of the variables; he deduces, by a similar

infinitesimal geometrical argument in which al is supposed

equal to bn (i.e. dx constant), the formula

r = —951— for dx constanit

dxddy ?
and analogously ,
_ _ds

r = dyadx for dy constant.

In terms of functions, these correspond to
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ds g2
[a§]7/}a§¥]

and ds, 3 d%x
r = [3371/[-&?1.

In the same article Jakob Bernoulli gives, without
deduction, formulas for the radius of curvature in a
kind of polar coordinates £ and n (differing from the
modern polar coordinates in that both have the dimension
of a line; £ is the arclength of a fixed base circle from
a fixed point A to the intersection of the radius n with
the circle; the base circle has radius a. (See figure.)
These formulas are:

adnds

' = 23Edn+nddk

for ds constant

_ andgds
r = RdtZ-=aaddn

for ds constant

_ ads?
T = Jfds?+dtdnZ-ndiddn

for 4§ constant

_ ads®
r ® JEdsZ+dEdnZ+ndnddt

for dn constant,

in which formulas, as Bernoulli
pointsout, the arclength differential ds has to be evaluated

as

2d 2+ Zan
ds = /n-dé aa .

3.1.4 The editor of Jakob Bernoulli's Opera (1744), G.Cramer,
has added a note to the reprint of Jakob Bernoulli 1684 in
the Opera, in which he provided an infinitesimal geometrical
proof for these formulas in polar coordinates (Opera 579).
The proof is remarkable because it does not make
suppositions about the progression of the variables in t?e
figure, and thus Cramer arrived at a formula for the radius
of curvature which applies to all progressions, namely

_ ads?®
T = JEdsZ+dfan?+ndnddi-ndtddn

?

B |

3 T

from which he derived the four formulas above by taking

dds = 0, ddf = 0 and ddn = 0 respectively. I shall not
give here the very complicated infinitesimal geometrical
deduction, but only its starting point, the indications

of the various differentials in the figure.

Ad = a, Aa = n, de = dg, C
1b = dn, em = dE+ddE, bgn
nc = dn+ddn, a
ab = ds = /azdn2+n2dgf/a,
bc = ds + dds, af = r, f
al = ndg
a

bn = Ndg+dndE+nddg
a

A
3.1.5 My last example is from Leibniz's article 1694b,

in which he commented on the formulas for the radius of
curvature in Jakob Bernoulli 1694%. Leibniz remarked that
these formulas are implicit in his own treatment of the
evolute (the locus of the centres of curvature of a curve)
as envelope of the family of the normals to the curve. In
his 1692a and 1694a Leibniz had discussed the calculus of
envelopes, or calculus differentialis reciprocus as he

called it, which learns to find the envelope of a family
F(x,y,c) = 0 (1)
of straight lines by differentiating (1) with respect to
the parameter c, and subsequently eliminating ¢ from the
resulting equation and (1).
This procedure can be
applied to find the
evolute of a curve as the
envelope of the normals
to.the cunve. The equation
of the normal in the point

y (x,y) of the curve is
g = (f-x)3%
: xf ! y-g = (f x)dy (2)
\\ and this equation describes

the family of normals
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if x and y(x) are considered as parameters (analogous to

¢ in (1) ). Thus one has to differentiate (2) supposing
g and f constant and x and y variable, which yields
dx

Xa-y- .

Now from the curve equation, in combination with (2) and

d
dy = (f-x)d% -d (3)

(3) the parameters x and y can be eliminated to yield the
equation in f and g of the evolute.

This procedure involves differentio-differentials,
but Leibniz indicated that these can be removed by calculat-
ing the differential equation of the curve, which yields an
expression of %% in terms of x and y; if this expression
is inserted in (3), no higher order differentials will
occur. The formulas for the radius of curvature which result
from this procedure of removing differentio-differentials,
are independent of the progression of the variables; this
property of the formulas consitutes in Leibniz's opinion
an advantage over Jakob Bernoulli's formulas.®®

In the actual deduction of the formulas Leibniz did

not explicitly use the calculus differentialis reciprocus,

80 that I can illustrate the procedure directly by his

deduction of two formulas, namely

_ dx . dy.
r = dy’/d[ag and r = (-)dx /d[ds] .
or, as Leibniz gives them in prose:

The radius of the osculating circle is to unity as
the element of one of the coordinates is to the
element of the ratio of the elements of the other
coordinate and of the curve.®®

The radius of curvature

CG (see figure) is per-
h 4 & pendicular to the curve
S
C - y ACC', whence
X
r : (£f-x) = ds : dy,
y
r dy . ¢ _
% or rzd f X.
P Leibniz differentiated
£

this equation, con-
sidering r and f as

constants, which gives
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rd gg] S

This procedure is the analogue of the procedure of differen-
tiating the equation of the family of normals with respect
to X and y, keeping g and f constant.It follows that

r = -dx/d[%ls’-l,
and, by a similar argument,

r = dy/d[g—)sc
is derived.

This example is important for three reasons. First

the formulas involve only first order differentials of
the finite variable quantities x, y, s, %g, gg, and are
therefore independent of the progression of the variables,
an aspect which, as we have seen, Leibniz valued highly.
Secondly, this independence of the progression of the
variables is achieved by introducing the differential

ds
the endeavour to find formulas independent of the progression

quotients dy and g% as new variables. These two features,

of the variables and the resulting introduction of different-

ial quotients, will be further discussed in chapter 5, where

I shall show that they underlay a program of Euler to

eliminate all higher order differentials from the calculus.
Thirdly, the example shows how different the

Leibnizian calculus is from the calculus involving functions;

indeed the formulas which Leibniz deduced, in contrast to

the formulas of the Bernoulli's, cannot directly be trans-

lated in terms of functions and derivatives, just because

the progression of the variables is not, and need not, be

specified.

A

3.2.0 The various derivations of analytical formulas for
the radius of curvature discussed in the previous sections
are related to a more general problem in the early
Leibnizian calculus, namely the relation between the
different formulas representing the same mathematical entity

with respect to different progressions of the variables.
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In the following I shall formulate this problem more
precisely and I shall show that it was recognised and
solved in the early eighteenth century. The way it was
solved will prove of interest because it exhibits the
special role of the differential coefficient or different-
ial quotient in such arguments and because it indicates
the continued predominance of the concept of variable
over the concept of function during that period.

3.2.1. The formulas for the radius of curvature are
expressions involving higher order differentials.

Such expressions in general depend on the progression

of the variables. That is, given a variable v,

whose definition involves higher order differentiation
(such as the radius of curvature), then analytical
expressions A; for this variable, calculated with
respect to different progressions P, of the variables,
will in general differ among each other; and there will
also be an analytical expression A which represents the
variable V with respect to every progression of the
vapiables®’. The question which suggests itself in this
situation is how Ai and A are related, and whether there
are transformation rules by which Aj and A can be calculated
from given Ay, Py and P;.

The same situation occurs in the case of higher order
differential equations. In chapter 5, I shall deal in some-
what more detail with the problems connected with the
dependence of higher order differential equations on the
progression of the variables. Suffice it here to remark
that a higher order differential equation E; = 0, valid
with respect to a specified progression P, of the variables
defines a curve, or a relationship between certain finite
variables (or, if no boundary conditions are imposed, a
set of curves or relationships). With respect to other
progressions P, of the variables, the same curve or relation-
ship will be defined by differential equations E; = 0, and
there will also be a differential equation E = 0 which

defines the curve or relationship with respect to every

o

progression of the variables (I shall use the term
"general differential equation" for E = 0).°® Again, the
obvious question to ask in this situation is how the E.
and E are related, and whether there are transformatio;

rules by which Ei and E can be derived from given El’ P

and P.. !
i

3.2.2. About the middle of the eighteenth century this
problem had been recognised and its solution had become
o?e of the standard techniques of the calculus.®*® I shall
discuss the solution as given by Johann Bernoulli in an
"Anecdoton" dating probably from shortly after 1715 but
published only in 1742.7%® The title of the short note is

Problem. To render inco i i i

gieir?iigag¥hdegreg comggiizf gggieEZTtigltigﬁ:Eéizs

R consizﬁé.}? which no differential has to be

Underlying Bernoulli's solution is the fact that,
fas I explained in 2.21), differential equations, which
involve only first order differentials of finite variables,
are independent of the progression of the variables. So if
one can transform the given differential equation into a
differential equation with this property, then one can drop
the restriction to the specified progression of the
variables. In his note Bernoulli worked this out for the
case of differential equations valid under the supposition
of a constant dx.

First he introduced differential coefficients (or
differential quotients, but Bernoulli did not use a separate
term for them) z, t, v, etc. These are finite variables,
and their definition involves only first order differentials,
so that they are independent of the progression of the
variables. z is defined by

dy = zdx ‘ : (4)
or z:dl-
dx °

Differentiation of (4) yields (because dx is constant)
ddy = dzdx,

and Bernoulli introduced t by
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ddy = dzdx = tdx? , (5)
¢ =4z
whence = 3dx ¢

Again, differentiation of (5) yields
d3y = dtdx?,

and v is introduced by
ddy = dtdx? = vdx?,

. _ dt
that is vV = i

Obviously, this process can be repeated till the highest
order differential involved is reached.

If now, in the original differential equation, the
following substitutions are made:

dy + dy, ddy » dzdx, d’y » dtdx?, d%y » dvdx?

eiteln
then the resulting differential equation will involve
only first order differentials of finite variables (namely
of x, y, z, t, v, etc.), and will therefore be independent
of the progession of the variables. From this resulting
differential equation, the differential coefficients have
now to be eliminated, but this without losing the in-
dependence of the progression of the variables. To do this
Bernoulli applied the rules of the calculus without making
a supposition about the progression of the variables

_ d . dxddy-dyddx
dz = d(3h = —
_ dz, _ dxddy-dyddx
dt = d(‘d_; = d( dx‘ )
. dx2d3y-3dxddxddy+3ddx?dy-dxdyd x
B dx*®
253, _ 2 3y -dxdvd ?
dv = d(%% - d(dx d’y 3dxddxd§§:3ddx_gy dxdy X

E%T(dxsd“y-sdxzddxd3y+15dxddx2ddy
~15ddx *dy-u4dx?d*xddy+10dxddxd *xdy
-dx?d"xdy)

By substituting these results a differential equation is
formed which is independent of the progression of the
variables (or, in Bernoulli's terminology, "complete") and
which involves only the original variables x and y and
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their differentials.

The introduction of the differential coefficients
2, t, v, etc. was necessary to prove the transformation
rules, which now can be stated directly: In order to
derive from the original differential equation applying
for constant dx, the general differential equation, one
has to perform the following substitutions:

dy =~ dy
dxddy-dyddx
ddy - Ix
d'v - dxzday-deddxddy+3ddx2dy-dxdyd3x
y IxZ

d'y » (dxad?y—dezddxd3y+15dxddx2ddy-15ddx3dy
-L&dxzd3xddy+10dxddxd3xdy-dx2d"xdy)/dx3

3.2.3 In a Scholium which follows these transformation
rules Bernoulli turned to the problem to derive the
differential equation for any specified progression of the
variables from the differential equation applying for the
Progression with constant dx, or, as he put it in not too
rigorous terminology:

This rule is of use in transforming constant
differentials into other constant differentials.”?

To do this, Bernoulli indicated, one first derives the
general differential equation by the transformation rules and
then one applies the property of the differentials implied
in the specification of the new progression of the variables
to transform the general differential equation into the
required differential equation. The procedure is explained
by examples: If the new progression of the variables re-
quires dy constant, all terms in the general differential
equation involving ddy, d’y etc. are to be.discarded. If

the curve element ds is supposed constant, it follows that
d/a;T:EJT = 0, whence dxddx+dyddy = 0, so that ddy = - dxg;x '
From this, by repeated differentiation, formulas for

d%y, d%y, etc. can be found, which, if substituted in the
general differential equation, yield the differential
equation applying for constant ds. Similarly Bernoulli
discussed the case that ydx is supposed constant.
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3.2.4 Two remarks on Bernoulli's treatment of the
transformation rules are appropriate. First, like in the
case of Leibniz's formula for the radius of curvature,
independence of the progression of the variables is
gained by introducing the differential coefficients, or
differential quotients z = %%, t = g% etc., so that we
see here an example of the fact that consideration of
problems relevant to the indeterminacy of higher order
differentials induces differential coefficients or
differential quotients to emerge.’® In chapters 4 and 5,
I shall discuss examples from studies of Leibniz and Euler
in which this process is also evident.

Secondly, as I indicated in 2.21, the choice of
progression of the variables corresponds to the choice of
an independent variable in a treatment of the problem in
terms of functions. However, in Bernoulli's study, as in-
deed in most of the writings on these transformation rules,
the terminology of constant differentials is used, that is,
a concept of function of one specified variable is not in-
volved, the problem is conceived and treated entirely in
terms of variables and their progressions. How strong
this conception was, is shown by the fact that when Cauchy,
in 1823, presented the transformation rules discussed above
as rules describing the change of independent variable, he
still used the terminology of the constant differential:

It is by substitutions of this kind, that one can
operate a change of independent variable (...)

To return to the case in which x is the independent
variable, it would suffice to suppose the
diff?rential dx constant, and hence d?x = 0, d% = 0,

LY

3.3.0 In seventeenth century analysis, relations between
variable quantities were usually represented by equations,
but this was by no means the only way. In fact, as I mention-
ed in 1.3, there were types of relationships which could not
be represented by equations, such as the relation between

-61-

the coordinates of transcendental curves. Another way of
representing relations between variable quantities which
was very common in the seventeenth century, was the
proportionality. It was used especially in those cases
where a representation by an equation would involve
dimensional difficulties.

For the representation of relations between infinitesi-
mal variable quantities both equations and proportionalities
were used. The former, of course, were the differential
equations, and I shall refer to the latter as differential
proportionalities. In this section I shall discuss the role
of the progression of the variables with respect to

differential proportionalities.

3.3.1 Differential proportionalities occur especially in
the treatment of physical, more precisely mechanical
problems, and I have to make, therefore, some preliminary
remarks about the mathematical treatment of physical
problems in the seventeenth and early eighteenth centuries.
This subject deserves more space and attention than I can
devote to it here; indeed the unfortunate habit of
historians of science to transfer the mathematical treatment
of physical problems directly into modern mathematical
symbolism has obscured many important aspects of seven-
teenth century physics and I am sure that an extended study
of the influence of the mathematical methods and styles on
the development of physics will show important new insights.
Mathematics is used in the treatment of physical
problems to represent and analyse the relations between
physical quantities such as length, weight, time, mass,
velocity, force, momentum etc. Representation of these
relations by equations involved, for the seventeenth century
mathematician, considerable conceptual difficulties connect-
ed with the requirement of dimensional homogeneity. As I
have indicated in 1.5, quantities of different dimension
could not be added, and multiplication of quantities always
involved a change of dimension. These conceptual difficulties

were solved later in the eighteenth and nineteenth centuries

I



-52=

by accepting in the formulas any combination of a
restricted number of basic dimensions (mass, length, time
and a few others), and by allowing dimensioned factors

in equations to make dimensions on both side of the
equality sign equal. But in the seventeenth century such
dimensioned factors were not acceptable, and thus direct

comparison of quantities of different dimension by means

of equations was virtually impossible.

In view of these conceptual difficulties related to
dimensional homogeneity it is not surprising that two
other ways of representing relations between physical
quantities were prominent in seventeenth century mathematic-
al physics, namely proportionalities and proportional re-
presentation by line segments. Proportionalities apply to
linear dependence between variable quantities, a relation
which is perhaps the oldest and certainly the most important
relation between physical quantities for which a special
technical terminology was developed. Two interdependent
variable quantities, say X and Y, are said to be proportion-
al, or to vary proportionally, if for any two pairs of
corresponding values X,Y and X',Y', always

X : X' =Y : Y' .

The terminology (X is "as" Y) as well as the interpretation
avoids all dimensional difficulties because it considers
only ratios between quantities of the same dimension. All
physical laws which seventeenth century natural philosophy
discovered and which concerned linear relations between
different physical quantities were represented in the

terminology of proportionalities.

3.3.2 To represent non-linear relations between physical
quantities the seventeenth century mathematician could use

a method which can be called proportional representatian

by line segments. This procedure involved the introduction
of variable line segments proportional to the original
physical quantities. Thus if a relation between the physical

variable quantities g and n was studied, one introduced

variable line segments x and y, X proportional to &,

y proportional to n, and the induced relation between

X and y could be represented by a curve drawn with

respect to an X- and an Y-axis. This introduction of line

segments proportional to physical quantities is very

clearly expressed in the following passage from an article

by Leibniz, in which he discussed a certain case of re-

tarded motion where a relation between velocity (v),

time (t) and space traversed (s) applied which we would

express by an equation as follows
ot - s = Bv

( o« and B constants), but which Leibniz

indicated as follows:

There are straight lines proportional to the times
elapsed, and if from these the straight line is
detracted which is equal to the corresponding

space traversed by the moving point, then the re-

maining straight line will be proportional to the

acquired velocity.’®

It is important to stress that both in the case of
proportionalities and proportional representation no unit
lengths or unit quantities were introduced. Hence the
relations are not reduced to relations between real numbers
(as in modern mathematical physics where the number re-
Presenting a quantity in fact represents the ratio of the
quantity to a unit quantity of the same dimension), but
essentially as relations between unscaled line segments.
The mathematical physics of the seventeenth century was a
truly geometrical physics.

Moreover, proportional representation, in the absence
of fixed units, implied a freedom of choice which the seven-
teenth century mathematicians often aptly used: if two
Physical quantities are proportional, one can take one
variable line segment to represent both. Thus for instance
in the case of free fall, where velecity is proportional to
time, both velocity and time can be represented by the same
geometrical quantity. This is indeed what Leibniz and
Huygens did in their discussion on motion in resisting media
(see 3.3.4). Thus, in their geometrical analysis, the law

of fall was taken as v = t; of course the final results
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were formulated again in terms of proportionalities

3.3.3 The branch of physics in which these geometrical
methods were applied with most spectacular success was
mechanics, especially the study of forces and of the
?esulting changes of motion. This study of change of motion
involved infinitesimals and thus we find differential pro-
p?rtionalities in dynamics. Like differential equations
differential proportionalities in general depend on the’
?rogression of the variables, that is, the same different-
1al proportionality may represent different relationships
between the variables involved according to the different
progressions of the variables with respect to which the
proportionality is supposed to apply.

. Unlike the case of first order differential equations
which are independent of the progression of the variables ,
t?ere are differential proportionalities, involving only ’
first order differentials, which do depend on the progressi
of the variables. An example is ”

. dy ~y
which means (see the figure) that for every corresponding
dy and y*,d*y : dy : d*y = y : y* "

Obviously this interpretation
is inconclusive unless the
relation between dy and d*y
is indicated; choosing

%ffd‘y different progressions of
the variables affects the

left hand side but not the

dy y right hand side. For in-
v stance if dx supposed con-

stant, dy ~ y implies
X, .
y = ce”; if ydx is
supposed constant dy ~y
N 3 and if dy is supposed constant the inter-
ation is not clear, because d

y ~ would i =

and dy = 0 . ) B

implies y =

Xl

» SO that y does not take i
. part in a pro :

———
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The cases in which differential proportionalities do

not depend on the progression of the variables are those

in which the proportionalities are directly reducible to
differential equations which are independent of the pro-
gression. That is, the differential proportionality

A~ B
is independent of the progression of the variables if A and
B are of the same order of infinity and both involve only
fiprst order differentials. In that case the proportionality
is equivalent to

A = cB
which is a differential equation of the type described in
2.21.

3.3.4 I turn now to a discussion between Leibniz and

Huygens which illustrates the difficulties connected with

the requirement of specification of the progression of the
variables in the case of differential proportionalities.
In his 188%a, Leibniz published some results on motion in
resisting media. He distinguished between two kinds of
resistance, absolute and relative, the distinction being

concerned with the dependence of the resistance on the

velocity. Leibniz considered resistance to be the action of

the medium which diminishes the "force" of the body. He
took the diminution of the body's velocity to be proportion-

al to the diminution of its "force".
His definitions of the two kinds of resistance were:

Absolute resistance is the resistance which absorbs
equal amounts of the forces of the moving body,whether
it moves with a small or with a large velocity, if
only it moves, and this resistance depends on the
glutinosity of the medium (...)

Relative resistance is the resistance which is caused
by the density of the medium, and it is greater in as

much as the velocity of the moving body is greater.’®
Later on in the article he made explicit that in the case of

the motion is retarded in proportion
is a

relative resistance,
to the velocity. Diminution of force, or of velocity,

differential, so these definitions imply differential

proportionalities, namely



absolute resistance : dv constant
relative resistance : dv ~ v . (7

Both proportionalities (and therefore both Leibniz's
definitions) are meaningless, unless the progression of
the variables is specified. In this case, that means unless
it is stated whether the diminutions are taken over equal
intervals of time (dt constant) or over equal intervals of
another variable. As appears from Leibniz's article he
considered the diminution over equal intervals of space
(ds constant), which is understandable because he consider-
ed the resistance as a property of the medium. Indeed he
specified that in the case of absolute resistance

The elements of the velocity which the body loses
are as the elements of the space traversed.?’’, (8)

and in the case of relative resistance

The diminutions of the velocity are in the
composite ratio of the actual velocity and the
increments of the space traversed.’® (8)

(8) corresponds to

absolute resistance : dv ~ ds , (9)
respectively
relative resistance : dv ~ vds. (9)

The formulas (9) are differential proportionalities be-
tween terms of the same order of infinity and involving
only first order differentials; they are therefore in-
dependent of the progression of the variables. But it is
clear that the translation of (6) into (9) only applies if
ds is taken constant, so that the specification of the
progression of the variables plays a crucial role in
translating the prose description of this kind of retarded
motion into effective mathematical symbolism: only if ds
is considered constant can the absolute resistance be
called independent of the velocity and the relative
resistance proportional to the velocity.

3.3.5 However, in his article Leibniz was not very explicit
about the necessity to specify the progression of the
variables, and he was forced to elaborate on this point in

a very revealing correspondence with Huygens on this matter.
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Writing to Huygens on 6-II+1691, Leibniz compared his
own results with Huygens's and Newton's studies on motion
in resisting media, and he found that the results on
what he called relative resistance, or resistance proportion-
al to the velocity, coincided with the results which
Huygens and Newton had derived for resistance proportional
to the square of the velocity. He concluded that this
discrepancy in the formulation of the starting points was
caused by the fact that Huygens and Newton had considered
change of velocity in equal intervals of time, whereas he
himself had considered change of velocity in equal inter-
vals of spacej; and indeed, if we consider the formula for
relative resistance (9) which is independent of the pro-
gression of the variables
dv ~ vds,
and if we suppose dt constant, then (because ds ~ vdt),
dv ~ vds ~ v%dt.

So, if dt is considered constant one can say that the
relative resistance is proportional to the square of the
velocity.

Leibniz objected to Huygens that he and Newton should
have made this clear:

To put it exactly, one is only allowed to say that
the resistances are proportional to the velocity, or
to the square of the velocity, if one also indicates
the time or the medium, as I have done.’’

He came back to this question in his addition 1691 to his
article on motion in resisting media, where he wrote:

About relative resistance I find that our arguments
are based on the same foundation, although at first
sight this may not seem to be the case. For they
[i.e. Huygens and Newton] suppose the resistances

in the duplicate proportion of the velocities, while
I, speaking in absolute terms, have stated that the
resistances (which I measure by the decrements of

the velocity caused by the density of the medium) are
in the composite ratio of the velocities and the
elements of the space which are traversed with the
corresponding velocities. But if then the elements of
the time are taken equal (in which case the elements
of the space to be traversed are proportional to the
velocities) the resistances are indeed in the
duplicate ratio of the velocities.®®
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Huygens eventually agreed that Leibniz's results
corresponded to his own and Newton's, but he still objected
to calling the resistance in that case proportional to the
velocity; he maintained that the constancy of the inter-
vals had nothing to do with the question, resistance was
a force in the same way as gravity is a force, and con-
sidering the diminutions of velocity in certain elements
of time or space as the resistance was taking the effect
for the cause (letter of Huygens to Leibniz 23-II-1691,

HO X 19). This statement is most illuminating because it
shows how difficult the concept of force still was in that
period. Indeed Huygens's assertion is wrong because in the
study of force in the Newtonian sense, namely in terms of
acceleration or change of motion, the variable time has

the role of independent variable; acceleration is the
derivative of velocity with respect to time. Hence if this
force concept is treated in terms of variables and
differentials, the progression of the variables with
constant dt has to be presupposed. Put otherwise, if one
applies the Newtonian concept of force, one can only compare
forces by comparing the changes of motion they produce in
equal (infinitesimal) intervals of time, that is again, one
has to suppose dt constant.

The whole discussion thus shows also how the algorithm
of the differentials and the treatment of differential pro-
portionalities within this algorithm, made explicit the
fundamental role of time in the Newtonian force concept.

3.3.6 Not only is the constant differential crucial in the
interpretation of differential proportionalities, it also
Plays an important role in the technique of treating and
eventually solving these proportionalities. In the trans-
formation of the proportionalities (7), above, into (9),

the constant ds is used to make the order of infinity on both
sides of the proporticnality equal. In order to transform

(9) further into differential equations the introduction of

dimensioned factors would have been necessary, which, as I

T
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indicated above, would involve conceptual difficulties for
the mathematician of the seventeenth century. However,

in the case of differential proportionalities between geo-
metrical quantities these difficulties were not felt; the
proportionality factor would have an acceptably interpret-
able geometrical dimension. Indeed, if the proportionality
factor has to be of dimension m and order of infinity n,
and if dt is the constant differential of a variable line
segment t, the required factor will be am_n(dt)n, in which
a 1is an arbitrary line segment.

An example of the use of the constant differential and
of dimensioned factors to reduce geometrical differential
proportionalities to differential equations is provided by
a series of problems which Leibniz proposed in his 1692b
in connection with the catenary. As Leibniz and others had
noted, the catenary satisfies the differential proportionality

ddx ~ (dy)? (ds constant) .

This property was for Leibniz occasion to put the question

which curves have the properties

ddx ~ (dy)? (ds constant)
and ddx ~ dy (ds constant).

Leibniz, in fact, described these differential proportion-
alities entirely in prose, and the passage is a good

example of this style:

Also I can solve without difficulty the following
problem: to find the line with the property that if
its arc increases uniformly, the elements of the
elements of the abscissas are proportional to the
cubes of the increments or elements of the ordinates;
it is very true that this occurs in the case of the
catenary or funiculary. But because this is already
noted by the Bernoullis I shall add here that if in
stead of the cubes of the elements of the ordinates,
the squares are taken, the required line will be
logarithmical. And I find that-if the<elements them-
selves of the ordinates are proportional to the
elements of the elements, or the second differentials
of the abscissas, the required line is the circle.®’

Now Jakob Bernoulli, commenting on these differential

proportionalities in his 1693, transformed them into
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differential equations by adjusting, in the way I indicated CHAPTER U
above, appropriate powers of an arbitrary line segment a

and of the constant ds. The result was: '
4.0 The present chapter is devoted to certain aspects of

Leibniz's studies on the foundations of the infinitesimal
(dy)? (ds constant) calculus. The importance of these studies lies primarily

in the fact that they show how deeply Leibniz understood

the questions about the nature and the existence of
differentials and higher order differentials and how
successful he was in his attempts to solve the problem of
the foundation of the calculus. Moreover, in examining these

adsddx = (dy)? (ds constant)

addx

addx = dsdy (ds constant)

It is of interest to note that if these differential
equations are transformed into the corresponding derivative
equations, the constant ds is used in a similar way: both

sides of the equation are divided by the appropriate power studies, we can achieve an explanation of the occurrence

of ds in order to make them finite. Thus the corresponding of an alternative definition of the differential TRy

derivative equations are: Leibniz's earlier articles on the calculus. Also, the

2 3
a%;% = (%§)3 (division by ds?) studies show how an interest in foundational questions
dZx dy .2 \ around the differential leads naturally to the introduction
337 °© (ds) (division by ds®) of the function concept and the differential quotient, and
2 .
a§g¥ - %% (division by ds?) thus to a concept which comes close to the concept of

derivative.

One preliminary remark has to be made however; these
studies of Leibniz have not exerted any influence on the
actual development of the calculus in the eighteenth century.
The prime source I discuss is a manuscript published only in
1846. Leibniz's studies share this lack of direct influence

with the other more publicly conducted discussions on the
foundations of the calculus, such as Nieuwentijt's critique®?,
the controversy in the French Royal Academy®® and the most
famous of the debates on foundation of infinitesimal mathemat-
. ics, those started by Berkeley®®. It seems that none of these
had significant influence on the actual practice and the
results of infinitesimal analysis in the first half of the

eighteenth century.

%.1 Most of the early practicionefs of the Leibnizian
calculus (although not Leibniz himself) accepted the existence
of infinitesimal quantities and justified the rules of the
calculus by appealing to this existence. The usual critique

on the calculus denied, or at any rate questioned the
existence of infinitesimal quantities. Leibniz himself had
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a much deeper understanding of the nature of the problem.
He was aware that in fact there are two separate
questions, one whether infinitesimal quantities actually
exist, the other whether analysis by means of
differentials, following the rules of the calculus,
leads to correct solutions of problems.®®

On the first, metaphysical, question Leibniz did not
commit himself definitively; indeed he doubted the
possibility of proving the existence of infinitesimal
quantities. His answer to the second question, the
justification of the calculus, had therefore to be in-
dependent of the first; he could not invoke the existence
of infinitesimals in answer to objections to the validity
of the calculus. Instead, he had to treat the infinitesimals
as "fictions" which need not correspond to actually exist-
ing quantities, but which nevertheless can be used in the
analysis of problems.®®

Leibniz attempted, with considerable success, to solve
the problem of the justification of the calculus. However,
in the writings that were published in his lifetime, he
always wrote rather elusively about the question, so that
his remarks caused more confusion than clarificationj; and
even after the publication, in the nineteenth and twentieth
centuries, of manuscripts which contain fuller accounts of
these attempts, much of the confusion about Leibniz's opinion
on these questions has remained.®’

4.2 Leibniz considered two different approaches to the
foundational questions of the calculus; one connected with
the classical "exhaustion" proof methods, the other in
connection with a continuity law. In the first approach he
conceived the calculus as an abbreviated language for the
exhaustion proof methods. €onsidered in that way, equality
between two expressions involving differentials meant
that, if instead of the differentials the corresponding
finite differences are substituted, the difference between
the values of these expressions can be made arbitrarily
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small (with respect to the values themselves) by choosing
the differences small enough. Thus the discarding of
differentials with respect to first order differentials,
could be justified.®®

This approach forms the background of Leibniz's remark
(in a letter to Pinson®?, which was published in 1701),
that the differential may be supposed to stand to the
variable in the proportion of a grain of sand to the earth:

For instead of the infinite or the infinitely small,
one takes quantities as large, or as small, as
necessary in order that the error be smaller than the
given error, so that one differs from Archimedes's
style only in the expressions, which are more direct
in our method and more conform to the art of
invention.®®

Understandably, this remark caused great confusion in
the French mathematical circle, in which 1'H6pital and
Varignon had always defended the Leibnizian calculus by
an appeal to the actual existence of infinitesimals. Now
the opponents of the calculus used the letter to Pinson to
attack Varignon with Leibniz's own words: the differentials
were finite. Varignon asked for clarification, which re-
sulted in Leibniz 1702a where Leibniz wrote:

And to this effect I have given once some lemmas on
incomparables in the Leipzig Acts, which one may
understand as one wishes, either as rigorous infinites,
or as quantities only, of which the one does not
count with respect to the other. But at the same time
one has to consider that these ordinary incomparables
are by no means fixed or determined; they can be
taken as small as one wishes in our geometrical
arguments. Thus they are effectively the same as
rigorous infinitely small quantities, for if an
opponent would deny our assertion, it follows from
our calculus that the error will be less than any
error which he will be able to assign, for it is

in our power to take the incomparably small small
enough for that, as one can always take a quantity

as small as one wants.’'!

- -

4.3 The chief source for Leibniz's second approach to the
justification of the use of "fictitious" infinitesimals in
the calculus is a manuscript®?, dating from after 1701 and
published by C.I.Gerhardt in 18u6. It is a draft for an
article in which the rules of the calculus, as published in
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e . £s
Leibniz 1684a, were to be proven. Leibniz based his proo
e —-———’

on a continuity law, which he formulated as:

If any continuous transition.is proPosedt§e§2;;a§1ng
in a Zertain limit, then 1t 1is p0551bi§e 0, for
general reasoning, which covers also

limit.®? . .
The law, not too clear in its formulation® " , was expla
€ ’

by some examples: in the case of intersecting lines, for
. ‘ i i i 1d be
instance, arguments involving the intersection co? .
. . . or-
extended (by introducing an "imaginary" point of 1in
ines
section and considering the angle between the 1 e
lismy a -
infini the case of paralle
"infinitely small") to .
ments about ellipses could be extended to parabolas by s
i r i
introducing a focus infinitely distant from the other, s
focus. . . -
Thus such extensions of "ratiocinationes" to llmltln% )
i r symbols whic
i lve the use of terms o
cases ("terminus") invo . -
become meaningless in the limiting case, while the a i
i i s the
they describe remains applicable, and in such cased. .
s > 1"
terms and symbols can be kept as "fictions". Accor 1ngd .
i is kind o
Leibniz., the use of infinitesimals belongs to this
b

®s
argument.

f the calculus based on
4.4 Leibniz's proofs of the rules o

. . be
this continuity law, as given in the manuscript, can

ised as follows’*®:
T Let (see figure) dx and dy

denote finite corresponding
differences, and let dx be
a fixed finite line segment.
For fixed x and y, define dy

/fﬁ;ﬁ;/ by the proportionality

= dx dy : dx = dy : dx, (1)
dy is finite, dependent on dx
’ and defined by (1) for dx #0.
: ax Leibniz argued that dy can
"""" g also be given an interpretat-

ion in the case dx =0, namely
as defined by
dy : dx =y : 0 ,

ST I

in which ¢ is the subtangent; that is, he accepted that
the limiting position of the secant is the tangent. It is
important to stress that forp this he did not invoke the
continuity law; as will be seen, he used the law later,

Presupposing that the limiting case of the secant is the
tangent.

Now in the case dx # 0, the ratio dy : dx can be
substituted for dy : dx in the formula expressing the
relation between the finite differences dx and dy. Once
this supposition isg made, the argument implicit in the
formulas can be extended, as indeed the continuity law
asserts, to the limiting case dx = 0, because in that case
dy : dx is still interpretable and meaningful as a ratio
of finite quantities. But then one may resubstiftute
dy : dx for dy : dx both in the cases dx # 0 and dx = 0,
interpreting, in the latter case, the dx and dy as "fictions".
To prove the rules of the calculus, it has now to be shown
that these rules of manipulating the fictitious dy and dx
in the case dx - 0, are indeed interpretable as correspond-
ing to correct manipulations with the finite dx and dy.

Such proofs Leibniz gave in his manuscript for the
rules covering addition, subtraction, division and powers
in general. The procedure appears most clearly in his proof
for the differentiation rule of a product, d(xv) = xdv + vdx,
which I quote here in full:

Multiplication Let ay

XV, then ady = xdv + vdx.
(x + dx)(v + dv)

XV + Xdv + vdx + dxdv,
discarding ay and xv, which are equal, this becomes

ay + ady

ady = xdv + vdx + dxdv

ady _ xdv
or ax I + v + dv,
and transferring the matter, where possible, to lines
which never vanish, this becomes .

ady xdv

dx = dx + v + dv ,

SO0 dv is left as the only term which can vanish, and
in the case of vanishing differences, because then
dv = 0, this becomes

ady = xdv + vdx
as was asserted. - -
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(...) Whence also, because dy : dx is always
= dy ¢ dx, one may feign this in the case of
vanishing dy, dx, and put

ady = xdv + vdx. *°’

4.5 I want to draw attention to two aspects of this
approach to the justification of the calculus which are
relevant to the general theme of my study. First, the dy,
introduced by Leibniz, is, in the case dx = 0, equal to

the differential as defined by Cauchy: if we call y = f(x),
then (1) asserts

AY gy = flx#ax) - £(x)

dy = 4x ¢ e ax (2)

and Leibniz's argument that for Ax = 0 the secant becomes
a tangent, corresponds to taking the limit in (2):
dy = £'(x).dx
Ax=0

Secondly, Leibniz's attempts show that an endeavour
to secure the foundations of the calculus naturally leads
to the introduction of the function concept. The choice
of a constant dx, and the introduction of the ratios
dy : dx, dv : dx to be replaced by dy:dx, dv:dx, is
equivalent to the choice of x as independent variable, as
functions of which the other variables are considered. As
will appear later in this chapter, this choice is also
equivalent to what in the context of infinitesimal
differentials is the choice of dx as constant different-
ial. This introduction of the function concept in a
primarily geometrical situation of a curve with respect
to axes, involves, as I have stated before (1.4 and 1.7),
a certain arbitrariness; indeed Leibniz might as well have
started by choosing a constant dy and by considering the
ratios dx:dy, dv:dy etc. Also, in order to substitute
the dx and dy for the differences dx and dy, one has to

consider the quotients %% » and, in the limit case, the

dy .
expression ai/ » which shows that the endeavour to
~ fdx=0

justify the calculus leads naturally to the concepts of

differential quotients and hence to derivatives.

T

s Ly

4.6 Turning now to the last part of Leibniz's study,

which contains an attempt to prove in the same way that

the second order differential of xv is xddv + vddx + 2dxdv,
I shall show how important it is that this approach implies
an introduction of the function concept. Indeed this part

of the study is a failure precisely because Leibniz did

not realise that he had to make the arbitrary choice of

an independent variable, necessary to introduce the function
concept. Although the text is often rather confused, I think
that the essence of it can be rendered as follows:

Leibniz considered a figure of which the essential
parts are indicated in the figure®® in which x and y are
fixed, and dx, ddx, dy and ddy are finite. B and C are

supposed to move simultan-
eously toward A until they
coincide with A at the

same moment. Leibniz did
y+ddy not assume that AB = BC
dy dx throughout this movement,
—_— that is, he did not
y a’x suppose the sequence of
the x-values to be
X |dx| qdx+ddx arithmetical. He also did
A B o not stipulate the smooth-

ness requirement for the
infinitangular polygon,
which I discussed in 2.18

and which requires that BO;QD tends to zero, so that ddx

becomes infinitely small with respect to dx.
Leibniz introduced two basic finite constant lines
dx and Q+x » which he allowed to be unequal, as can be
inferred from the figure he gives. He then introduced dy and
dv as defined by ~- o
dy : dx = dy : dx (3)
dv : dx = dv : dx,

and furthermore a g+y defined by

d'y : d'x = (dy+ddy) : (dx+ddx).
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Although eventually he did not use this Q+y in his
arguments, he seemed to assume that in the limit dy and
g+y are equal, which, however, is only the case if
dx = g+x.
Next Leibniz calculated from
ay = Xv ,
a(y+dy) (x+dx)(v+dv)

and a(y+2dy+ddy) (x+2dx+ddx)(v+2dv+ddv),
the difference equation

addy = xddv + vddx + 2dxdv + 2dvddx + 2dxddv + ddxddv

(%)

in which he divided each term by addx in order to introduce
quotients of differences:

ddy _ xddv v 2dxdv 2dv 2dxddv ddv
ddx  Fdax T a t 3dax =t adax - (5

To proceed similarly to the case of the first order
differential equation, Leibniz now had to introduce finite
variables, interpretable in the case dx = 0, and quotients
of which could replace the quotients of differences in (5),
To do this he introduced ddx defined by

ddx : dx = dx : g+x R (6)
and similarly ddy and ddv. He assumed
ddy _ ddvy
ddx  ddx
and
ddv _ ddv S0
ddx =~ ddx

This step remained entirely unjustified®®, and even if
Leibniz could argue it, it appears that he was not aware

that substitutions (7) will not solve the problem, because
the ddx, ddy and ddv as defined by (6) (which involves in-
homogeneous ratios) are not finite variables but infinite-
ly small variables, so that g%% and g%% are still uninter-

pretable in the case dx = 0.

To deal with iggiv Leibniz defined a finite variable ddx
by ddx : dx = addx : (dx)? . (8)

ddx is indeed finite, but the assumption that is is inter-

pretable in the case dx = 0 implies the neatness condition

for the infinitangular polygon that I mentioned above,
namely that ddx becomes infinitely small with respect to
dx. (Note the role of a in (8) to ensure homogeneity of
dimension and order of infinity.)

Now dxdv _ (dx)2dv
addx

dxdv (9)

Substitution of (7) and (9) in (5) yielded
ddy _ xddv 2dv N 2dv . 2ddvdx . ddv
ddx  addx ddx a addx a

v
+ — 4
a

which, as Leibniz assumed wrongly, was still interpretable
for dx = 0, in which case therefore

ddy _ xddv + Vo, 2dv

ddx addx a ddx °

whence, by the same argument as used with respect to the
first order differential equation, the differentials could
be kept, in the case dx = 0, as "fictions", so that

ddy _ xddv , v , 2dxdv
ddx - adax T a* addx

with which result the manuscript ends.

4.7 I have summarised this failed attempt to prove a rule
for higher order differentials, because the reason why it
failed is most illuminating. As I have indicated, the
approach which Leibniz followed implies the conception of
the variables as functions of one specified variable, in
this case x. Taking dx constant corresponds to taking the
sequence of x-values arithmetical. But apparently Leibniz
wanted to conserve the freedom of choice of the progression
of the variables and therefore allowed ddx # 0 and intro-
duced both a dx and a Q+x. So the failure of his attempt
is caused by an implied contradiction between considering
the variables as functions of one specified variable and
still trying to leave the progression of the variables un-

specified.
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4.8 It is of interest to note that once it is accepted
that one has to assume the differential of one arbitrary
variable to be constant, Leibniz's approach can be follow-
ed successfully. To show this I shall prove in Leibniz's
way that, for ay = xv, the second order differential
equation is addy = xddv + 2dxdv, under the supposition
that ddx = 0. To prove this, dy and dv can be introduced
as above and I define ddy and ddv by

ddy : dx = dxddy : (dx)?

ddv : dx = dxddv : (dx)? (10)

Note the use of dx to conserve homogeneity of
dimension and order of infinity. dx is chosen for that
purpose rather than an arbitrary constant a, because in
that way (10) is in agreement with (3):
d(dy)

dx a2
dy
d(dx dx)

) dx QX

ddy = d(dy)

"
3
Xl ™~

dx

—

Now I may divide by (dx)? each term of the difference
equation (4) (from which the terms with ddx are now left
out):

addy 5 xddv , 2dxdv , 2dxddv
dx dx* ax? dx? ’

and I may substitute the corresponding ratios of dy,dv,dx,
ddy, and ddv:

addy _ xddv '+29y R 2dxddv

(axy? “{axy? " 7dx ' Tax)°”
This formula remains interpretable in the case dx = 0
(the last term then vanishes), so that, folléwing Leibniz's
argument, I may use the differentials as "fictions" also
in the case dx = 0:

addy _ xddv 4 24v
dx? T~ dx?* dx

or addy = xddv + 2dxdv,

which is indeed the second order differential equation of

ay = xv under the supposition that dx is constant.

4.9 Leibniz must have had the fundamental idea of his
studies discussed above - namely to choose a finite fixed
dx and to define a finite dy by means of this dx -
already much earlier than 1701: indeed it appears in his
very first publication on the calculus, Leibniz 168ua,
and in his discussion with Nieuwentijt on the nature of
differentials in 1695.

In his 1684a Leibniz introduced differentials and
stated (without proofs) the rules of differentiation. The
definition of differential which he gave did not allude
to infinitesimals; he assumed a fixed finite line segment
called dx'°?, and he defined dy as the fourth proportional
to subtangent, ordinate and dx (see figure):

dy : dx =y : 0 (11)
The finite line segment dy,
so defined, he called a
differentia. Obviously,

this dy is the same as

dx dy [
—ax [axeo

y (see (5)).

///////// N Leibniz did not give
reasons for choosing this

¢ definition for the

differential, but it seems
most likely that he chose
it to avoid controversies on infinitesimals. That it was a
conscious choice may be inferred from a manuscript which
Gerhardt identified as an alternative draft for the first
publication of the rules of the calculus, in which the
101

differentials are introduced as infinitesimals

In Leibniz 1684%a the relations of the differentiae

as defined by (11) with infinitesimals is mentioned,
almost casually, after the enunciation of the rules of the
calculus:

The proof of all these things is easy for someone who
is well acquainted with these matters, if he leeps in
mind one point which has not yet been sufficiently
exposed, namely that the dx, dy, dv, dw, dz can be
considered as proportional to the differences, or the
momentaneous decreases or increases, of the
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corresponding X, y, v, w, z. (...) i t. In order to represent his argument
.+«. to find a tangent is to draw a straight line obd e e IR P . (11;
joining two points of the curve which have an I indicate the constant dx and the dy defined by
infinitely small distance to each other; or the ectively, now using the dx and dy
produced side of the infinitangularp polygon SIS T R resp. v e . . . £ Pal
which for us is equivalent to the curve. This exclusively to indicate the infinitesimal differentials.
infinitely small distance, however, can always o . hat, given a curve AB (see figure'®%),
be expressed by a given differential, such as dv, Leibniz explained that, g . 8L4a)
or by a relation to it, that is, by a given one can plot the dy (he referred here to his 1684a) as
tangent.'®?
In fact, in later articles (with one exception in his

answer to Nieuwentijt's objections) Leibniz did not use D

definition (11) but treated the differentials directly as
infinitesimals. Thus the choice of (11) as definition in
Leibniz 1684a was an anomalous and rather unfortunate one
(indeed, the term differentia in relation with this

definition is a misnomer). It must have further obstructed
the understanding of the article, which for other reasons
was already very obscure!®?,

4.10 Leibniz returned to definition (11) in his answer to
the critique of Nieuwentijt on the calculus. Nieuwentijt
(1694) could accept the existence of first order

differentials (he tought this was a consequence of the in-

finite divisibility of quantity) but he denied the existence <
of higher order differentials. In his answer (1685a) Leibniz
avoided the ontological argument in Nieuwentijt's objection;

differentials, he said, were infinitely small, and true ordinates along the X-axis, thus obtaining a new curve

quantities in their own sense: | CD whose ordinates vary proportionally to the differentials
Therefore I assume not only infinitely small lines, . . and d*x. d*vy are the infinitesimal
such as dx, dy, as true quantities in their own sort, S0 R e S PSS } ’ Y Lvel then
but also their squares or rectangles, such as dxdx, differentials corresponding to P and Q respectively,
dydy, dxdy. And similarly I accept cubes and other PP' : QQ' = dy : d*y = dy : d*y. (12)

higher powers and products, primarily because I have

found these useful for reasoning and invention.'®* Leibniz's remark in 1684a, quoted above, that the

But, feeling that this would not satisfy his opponent, Leibniz differentia as defined by (11) can be considered as pro-
returned to the question in a later addition (1695b) to the portional to the momentary increments, on.infinitesimal
article, in which he showed that, although the first and differentials, obviously also concerned the proportionality
higher order differentials are infinitely small, one can (12).
indicate finite variables which vary proportionally to them. Applying the same procedure to the curve CD yields a
Here he used definition (11) and his argument is curve EF, whose ordinates are proportional to the different-
important because again it shows how this definition implies ials of CD, and therefore to the second order differentials
the function concept and the supposition that the differential of AB:

PP" : QQ" = ddy . dtdﬁy.
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Obviously, the procedure can be repeated again, by
which Leibniz has shown that finite line-variables can
be given proportional to differentials of any order.
However, what Leibniz did not indicate is, that this
argument is only valid if one supposes dx = d*x, that is,
if one supposes the progression of the variables such
that dx remains constant.!®*

Indeed *
dy : d*y = % dx %7 dx
-4y, diy
dx - d*x .
So that dy : d*y = dy : d*y
only if dx = d*x

4.11 So the answer to Nieuwentijt shows clearly the
implications of the definition of differentials by (11):
such a definition implies the arbitrary choice of one
variable as independent variable whose differential must
then implicitly be supposed constant. Thus it needlessly
restricts the generality of the differential calculus as
it imposes the choice of a special progression of the
variables,

For instance, the deduction of differential equations
Or expressions from the inspection of figures, like in
the case of the radius of curvature which I discussed as
example of this approach in 3.1.3, would have been severely
hindered if this definition had acquired a significant
impact on the early calculus.

On the other hand, it is also evident from the Leibnizian
studies discussed in this chapter, that a concern about the
foundations of the caleulus does lead to an introduction of
differential quotients or even derivatives, and hence to
a predominance of the function concept. And indeed, as
the subsequent history of the foundations of the calculus
shows, it was in this direction that the solution lay.

*
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Thus the early stage of the calculus was not favourable
to foundational studies; such studies undermined, rather
than invigorated the calculus in that period. This ma¥
explain why Leibniz hardly published anything about his
studies in this direction, and also, in general, why
foundational studies could only become influentia% much
later, when the function concept had established itself

firmly in analysis.
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CHAPTER 5 But it is clear that the smaller the increment w is
taken, the nearer one approaches to this ratio (2x:1).

Hence it is correct and even very appropriate to

consider these increments first as finite and to

. : . . . represent them in figures, if necessary, as finites

differentials and higher order differentials. After and then to imagine the iﬁcrements to bécome smalle;

penetrating studies in the questions relating to the and smaller, and so their ratio will be found to
approach more and more to a certain limit, which it

indeterminacy of higher order differentials, Euler reaches only when the increments vanish into nothing.

came to the conclusion that, precisely because of their This limit, which is as it were the ultimate ratio
of the 1ncrements, is the true object of the

indeterminacy, such differentials should be banished differential calculus.!
from analysis. He also indicated by which methods thi
Y his The practice of calculations with differentials had to

could be achieved, and I shall show that in these
: . S be interpreted as deali in fact with these ratios:
methods the differential coefficient and the concept of ) lnA:tiozg: thz rzie:nga:nthey are usually presented
> ?

function of one variable play crucial roles. Thus the seem to concern previously defined evanescent in-
crements, still conclusions are never drawn from a
. consideration of the increments separatel but al-
the main causes of the emergence of the derivative as ways o? tﬁeig ratio. (...) But in grder tg,comprise
and represent reasonings easier in calculations,
the evanescent increments are denoted by certain
symbols, although they are nothing; and in this
situation there is no reason why certain names
should not be given to them.!

5.0 In this chapter I discuss Euler's treatment of

indeterminacy of higher order differentials was one of
fundamental concept of the calculus.

5.1 Euler was well aware of the problmms about the in-
consistencies of the infinitely small, and in the
Institutiones Caleuli Differentialie (1755) he devoted
a large part of the preface and of Chapter II to a
discussion of these problems. The aim of his arguments
is to establish that, although the concept of the in-
finitely small cannot be rigorously upheld, still the
computational practice with differentials leads to

The analysis of infinites, with which I am dealing

correct results. His arguments have been amply discussed now, will be nothing else than a special case of the
?

by hi i t Al 07 : . .

y historians of mathematics'®’, so that I can confine method of differences expounded in the first chapter,
which occurs, when the differences, which prev1ous1¥
were supposed finite, are taken infinitely small.’

So the argument justified the use of differentials,
and Euler proceeded to introduce the differential calculus
on that basis. After having treated, in the first two
chapters, the theory of finite difference sequences, he
defined the differential calculus as the calculus of

infinitesimal differences:

myself to a very concise summary. Euler claimed that in=-
finitely small quantities are equal to zero, but that

two quantities, both equal to zero, can have a determined
ratio. This ratio of zeros was the real subject matter

of the differential calculus, which was:

which is rather at variance with his remarks quoted above,
a contradiction which shows that his arguments about
the infinitely small did not really influence his

resentation of the calculus.

a method to determine the ratio of evanescent pres "

increments, which any functions take when an

eva 5 s i
nescent increment is added to the variable of 5.2 This introduction of the calculus as concerning

which they are functions.!®?®
infinitesimal difference sequences is very much akin to

Euler also considered this ratio of zeros as a limit; :
Leibniz's conception of the calculus as discussed 1n

discussing the ratio a(x)?:ax, or, for ax:w, 2x+uw:w,

he said: chapter 2. However, one significant difference, reflect-

ing the transition from a geometrical analysis to an
analysis of functions and formulas, should be indicated
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here: no longer are the infinitesimal sequences induced
by an infinitangular polygon standing for a curve, but
by a function which, if the dependent variable ranges
through an infinitesimal sequence x, x+dx, X+2dx, x+3dx,
+++5 yields the sequence f(x),f(x+dx), f(x+2dx),f(x+3dx),

Differentiation is, for Euler, an operator which
correlates to a function, or in general to a quantity,
its differential:

In the differential calculus the rules are taught by
which the first differential of any given quantity
can be found. The second differentials are found by
differentiation of the first, the third differentials
by the same operation from the second and in the

same way the successive differentials from the pre-
ceding; thus the differential calculus comprises the
Method to find all differentials of whatever order.
(...) Differentiation indicates the operation by
which differentials are found.!'!?

Integration is the inverse operation, but Euler also

indicated the relation of integration with summation.
Differentiation raises the order of infinite small-

ness; integration does the converse, by which the reigns

of the infinitely large are opened up. On the orders of

infinity, Euler expressed views like those which I discussed

in 2.13, but he gave openings to extensions of these ideas;
on this see appendix 2.

5.3 I now turn to Euler's treatment of higher order
differentiation and to the role of the differential
coefficient in it. In 1755 ch.IV (par.124), Euler intro-
duced higher order differentiation under the supposition
of a constant dx, or ddx = 0. This is in keeping with his
view of the differential calculus as an extrapolation of
the calculus of finite differences, for in the latter he
had studied sequences f(a), f(a+w), f(a+2w),... . Setting
now w = dx infinitely small, he arrived at the case where
dx is constant. Consequently in chapters V and VI of 1755
the differentiation of algebraic and transcendental
functions is treated under the supposition of a constant
dx.

However, already in Chapter IV Euler commented on
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the restriction implied in this supposition. He discussed
the dependence of higher order differentials on the
progression of the variables in three most important
paragraphs, from which I quote large parts here because
they contain a very clear exposition of the problems
concerning the indeterminacy of higher order different-
ials. In particular, the following points may be noticed
in the quotation: the progression of the variables is
arbitrary; first order differentials do not depend on

the progression but higher order differentials do; higher
order differentials of functions can be expressed in
terms of differential coefficients and the first order
differential of the independent variable; the progression
of the variables can be specified by specifying the
variable with constant first order differential.

128. We noted already in the first chapter that
second and successive differentials cannot be con-
stituted unless the successive values of x are
assumed to proceed according to a certain law. As
this law is arbitrary, we suppose these values in

an arithmetical progression, because that is the
easiest and also the most useful case. For the same
reason nothing can be stated with certainty about
the second differentials, unless the first different-
ials, with which the variable quantity x is supposed
to increase continually, proceed according to a
given law. We therefore suppose that the first
differentials of x, namely dx, dxI, dxII, etc., are
all equal to each other, whence the second
differentials are .

ddx = dxi- dx = 0, ddx® = dx l-dx! = 0 etc.

Thus the second and higher order differentials
depend on the order which the differentials of the
variable quantity x have among each other, and this
order is arbitrary. As this circumstance does not
affect first order differentials, there is an
immense difference, with respect to the way they
are found, between first and higher differentials.

129. But if the successive values of x, xI, xII,

xIII, xIV, are supposed not_to praceed as an
arithmetical progression, but following an¥ other

law, then their first differentials dx, dxI, dxII

etc. will not be equal to each other and hence the
ddx will not be = 0. For this reason the second
differentials of any functions of x acquire another
form, for if the first differential of.such a funct}on
y is = pdx, then, to find its second dlfferentla}, it
will not be sufficient to multiply the differential

~—
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of p with dx, but also one has to consider the
differential of dx, which is ddx. Now the second
differential arises if pdx is subtracted from its
succeeding value, which arises if x+dx is sub-
stituted for x, and dx+ddx for dx. Suppose there-
fore that the succedding value of p is p+qdx, then
the succeeding value of pdx will be

= (p+qdx)(dx+ddx) = pdx + pddx + qdx? + gdxddx ;

from which pdx is subtracted, so that the second
differential is:

ddy = pddx + qdx? + qdxddx = pddx + qdx? ,
because qdxddx vanishes with respect to pddx.

130. Although equality is the simplest and the most
useful relation which can be supposed between all
the increments of x, still it happens often that not
the increments of x, of which y is a function, are
supposed equal, but those of some other variable of
Which x itself is a function. Often also the
differentials of such another variable are supposed
€qual although the relation of this variable to X

is unknown. In the former case the second and higher
differentials depend on the relation of x to the
variable which is supposed to increase uniformly,
and they should be calculated in the same way as we
have indicated to calculate the second differential
of y from the differentials of x. In the latter case
the second and higher differentials of x have to be
considered as unknowns and they have to be denoted
by the symbols ddx, d3x, d“x, etc.!13

5.4 So the meaning of higher order differentials depends
on the progression of the variables with respect to
which they are meant to be considered. Hence the meaning
of formulas in which higher order differentials occur
depends in the same way on the progression of the
variables, and to the implications of this fact Euler
devoted a large part of the eigth and ninth chapters of
1755.

In paragraphs 251-261 of chapter VIII Euler intro-
duce d the indeterminacy of formulas involving higher order

333
differentials with the examples dgxaand §§%E§° If dx is
. - de“g. . 2 .
considered constant, ddx = 0 anf 3233?';0; But if d(x*) is
supposed constant, ddx = - %% and %;%E% = - 3x% "And
in ge?egal, if d(x™) is supposed constant, ddx = - E-)—:ldx2
x°d*x

—_ = . - 2
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For the case of formulas involving two interdependent

zddx+xddz
dxdy

which he showed to be dependent on the progression of the

variables by considering the special case of the relation
y = x? between x and y. In that case, if dx is constant,

variables x and y, Euler considered the formula

yddx+xddy _ xddy _ _x.2dx® _ 4 ;
dxdy ~  dxdy dx.2xdx
but if dy is constant: (2. =242
yddx+xddy _ yddx _ ‘2x SR
dxdy T dxdy dx. 2xdx 2

Euler concluded from this that an expression involving
higher order differentials of interdependent variables
will in general be dependent on the progression of the
variables. Only if the higher order differentials cancel
each other when the relation between the variables is
substituted, the formula is independent of the progression
of the variables. As an example of this occurrence he
presented dyddxaiﬁddy in which he substituted y=x?, y=x",
and y = -/1-x? respectively, showing that in each of
these cases the result is a finite expression in x only,
and therefore independent of the progression of the
variables. To prove that dyddz;gxddy is independent of
the progression of the variables for any relation between
x and y, Euler introduced the differential coefficients

p and q, defined by dy =pdx and dp =qdx. As these definit-
ions involve only first order differentials, the
differential coefficients p and q are independent of the
progression of the variables. Now

ddy = pddx + qdx?

whence
dyddx-dxddy _ pdxddx-dx (pddx+qdx®)_ _
dx?® - dx?3

q »

so that dydd2'§quy does not depend on the progression of
x .

the variables.!'!* - <

5.5 After these general indications of the implications
of the indeterminacy of higher order differentials, Euler
introduced a most important argument, namely that higher
order differentials in a sense do not really occur in

o
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analysis, because they can always be reduced to first
order differentials. As the higher order differentials
are affected by an undesirable vagueness, this reduction
should always be effectuated, by which the higher order
differentials would be banished from analysis. Indeed,

if a certain first order differential is considered
constant, then all higher order differentials can be
expressed in terms of powers of the constant differential
and finite functions. If no differential is assumed
constant, that is, if the progression of the variables is
not specified, then an expression involving higher order
differentials is either independent of the progression of
the variables (in which case the higher order different-
ials cancel each other and are not really but only
apparently involved in the formula), or it is dependent
on the progression, in which case the meaning of the
formula is vague whence it does not belong to analysis.

Therefore:
It follows from this that second and higher order
differentials in reality never occur in the
calculus and that, because of the vagueness of
their meaning, they have no further use in
Analysis. (...)
It was necessary, however, that we expounded the
method to treat them, because they are used often,
but only fictitiously, in the calculus. But we
will soon indicate a method by which second and
higher differentials can always be eliminated.'!®
5.6 Euler then went on to show how higher order
differentials can actually be eliminated from formulas.
The methods which he used for this elimination,
and which I shall summarise below, are very important in
the history of the fundamental concepts of analysis,
because they involve the systematic use of differential
coefficients. By the introduction of differential co-
efficients, Euler reduced higher order differentials to
first order differentials, thus gaining independence of
the progression of the variables.
Now the use of the differential coefficients p,q,r,
etc., of a relation between x and y, defined by dy = pdx,

dp = qdx, dq = rdx, etc., implies the choice of an in-

B ers

de pendent variable (in this case x) of which y, p, q, T,
etc. are considered to be functions. Thus differential
coefficients are computationally and conceptually very
close to derivatives =- only the use of limits in their
definition is lacking.

The emergence and the systematic use of differential
coefficients must therefore be considered as a most
important stage in the process of the emergence of the
derivative as fundamental concept of the calculus.

Euler's use of differential coefficients was direct-
ly connected with his conviction that the indeterminacy
of higher order differentials is so undesirable a
feature, that higher order differentials have to be
banished entirely from analysis. Thus we may say that one
of the main causes for the emergence of the derivative
was the indeterminacy of higher order differentials.

5.7 The methods to eliminate higher order differentials,
which Euler presented in 1755 (par.264-270), may be
summarised as follows: If an expression involves only
the variable x and its differentials, and if t is the
variable whose differential dt is constant, differential
coefficients p, g, r etc. can be introduced as follows:
dx = pdt dp = qdt dq = rdt etc.
The differentials can then be expressed as
dx = pdt ddx = qdt? d’x = rdt? ete.
substitution of which yields a formula in which the only

infinitesimal is a power of dt. Furthermore, as
at = &

and p, q, r, etc. can be considered as functions of x,
one has dZx = %dez dx = %dea etc.,
so that the expression can be reduced to a form in which
the only infinitesimal is a power of dx and in which t
does not occur explicitly.

For expressions involving two interdependent
variables x and y, the case of a constant dx is treated

by introducing the differential coefficients as
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dy = pdx dp = qdx dg = rdx etc.,
by which the first and higher order differentials of y
can be eliminated:
dy = pdx ddy = qdx? d%x = rdx? etc.
The case dy constant is treated analogously. If in general
dt is constant and x and y depend on t one may proceed by

dx = pdt dp = qdt dg = rdt etc.
ddx = qdt? d3x = rdt? etc.
dy = Pdt dP = Qdt dQ = RAdt etc.

ddy = Qdt? d3y = Rdt?® etc.

In the cases where the constant differential is
expressed in x, y, dx and dy, the elimination of the
higher order differentials may be performed using the
differential coefficients of the relation between x and y:

dy = pdx dp = qdx dqg = rdx .
Euler presented this procedure in the cases of the
progressions of the variables with ydx constant and with
Ydx2+dy? constant. As example I indicate his treatment
of the case ydx cénstant. One has then

yddx + dxdy = 0 ,

whence
ddx = - 9§§1 = - B oax?

from which formulas for d¥®x, d'x etc. can be obtained by

further differentiation. Further
2
ddy = d(pdx) = qdx® + pddx = (q - 5—)dx2,

from which formulas for d’y, d%y etc. can be derived. By
means of these relations, any proposed expression in-
volving higher order differentials under the supposition
ydx constant, can be reduced to an expression involving
as only infinitesimal a power of dx, and hence being
independent of the progression of the variables. Euler
closed his exposition of the techniques of elimination

of higher order differentials with a series of examples.

5.8 Obviously, elimination of higher order differentials
profoundly affects the treatment of higher order different-
ial equations. In fact, such equations are transformed

into equations between differential coefficients, and thus

acquire the form in which differential equations are

treated today (despite their name), namely equations
between derivatives.

It is of interest, therefore, to summarise in this
place Euler's arguments on the transformation of
differential equations into equations between different-
ial coefficients, which he inserted in the beginning of
the second volume, on the integration of higher order
differential equations, of his Institutiones Calcult
Integralies (1768).

Euler introduced differential coefficients already
in his definition of a second order differential equation:

Given two variables x and y, if dy = pdx and dp =qdx,
any equation defining a relation between x,y,p and q
is called a second order differential equation of
the variables x and y.!!'¢

As advantages of this use of differential coefficients,
Euler mentioned that the progression of the variables need
not be indicated, and that only finite quantities (for
also the first order differentials are absent in the
definition) occur in the differential equation.

After having shown how an equation between different-
ials, for a given progression of the variables,; can be
reduced to an equation between differential coefficients,
and vice versa, Euler stated as further advantage that in
this way the occurrence of a multitude of differential
equations for one and the same relation between x and y
is avoided. For in the customary way of treating
differential equations the same relation between x and y
gives rise to many different forms of the relevant
differential equation, according to the choice of the
progression of the variables.

In addition, the differential equations valid with
respect to the various progressions of the variables,
are usually much more complicated than the corresponding
equation between differential coefficients - a feature
which Euler illustrated with several examples.
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5.9 The occurrence of many differential equations
(according to the choice of the progression of the
variables) for one and the same relation between the
variables x and y, suggests the reverse question,
namely whether one equation between higher order
differentials may imply different relations between

x and y (different solutions) if it is considered as
valid with respect to different progressions of the
variables. This question of the dependence of the
solution of a differential equation on the progression
of the variables, is treated by Euler in the ninth
chapter of 1755. Indeed, although Euler had indicated
the way how higher order differentials can be eliminat-
ed from analysis, he still treated two further aspects
of these differentials, namely transformation rules for
formulas with respect to different progressions of the
variables, and criteria for the independence of
differential equations of the progression of the
variables.

5.10 On the transformation rules I shall be brief, because
Euler's treatment of these differs from Bernoulli's (dis-
cussed in 3.2.2-3,2.4) only in being more elaborate. The
formulas which arise by eliminating higher order
differentials by the introduction of differential co-
efficients, are independent of the progression of the
variables. If for the differential coefficients p, q, r,
etc., defined by dy = pdx, dp = qdx, dq = rdx, etc.,
in these formulas are substituted the corresponding
general (i.e. progression-independent) expressions in
terms of higher order differentials, namely

- dy
P = 3x
. dxddy-dyddx (1
1 dx?3 )
- dx?d?y-3dxddxddy+3dyddx?-dxdyd?x
dx>
etc. ’

then the result is a formula in higher order different-

ials which is independent of the progression of the

variables. Transformation of a formula applying with
respect to a progression Py of the variables into a
formula representing the same mathematical entity with
respect to a progression P2, can then be performed as
follows. First the higher order differentials are
eliminated by introducing the differential coefficients
in the way discussed above. Then substitution of ¢1) is
effectuated resulting in a formula involving higher
opder differentials but independent of the progression of
the variables. From this formula, by substituting the
relation between the differentials which characterises
the progression P,, the required formula is derived.
FEuler explained this process by means of examples
at great length, arriving finally at a list of trans-
formation rules giving directly the transformation for
formulas for the progressions of the variables with dx
constant, dy constant, ydx constant and /E;TIE§7 constant
respectively, to the progression-independent case; that
is, without the explicit introduction of differential

coefficients.

5.11 Euler now used these transformation rules in the
ninth chapter of 1755 to explore further into the
dependence of the solutions of higher order differential
equations on the progression of the variables. After an
exposition of the technique to reduce higher order
differential equations with specified progression of the
variables, to equations between the finite variables and
the differential coefficients, he put the question what
can be said about the solution of a higher order
differential equation if the progression of the variables
is not specified. In answer to this question he showed
how the transformation rules can._be used to ascertain
whether a given higher order differential equation without
indication of the progression of the variables, implies a
determined relation between x and y; that is, whether
there is a relation between x and y which satisfies the
differential equation for all possible progressions of
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the variables. One way to ascertain this is to suppose
different progressions of the variables and to see if
the resulting differential coefficient equations imply
the same relations between x and y (par.301).

Another, safer and easy method is to choose a
progression of the variables, for instance dx constant,
and to apply the transformation rules to deduce from
the given differential equation with dx constant, the
corresponding general (i.e. progression-independent)
differential equation. The comparison of the two forms
of the equation can reveal a condition for y(x) under
which the two forms coincide; an y(x) satisfying these
conditions may then be a progression-independent solution
of the differential equation (par. 302).

5.12 This Euler illustrated in the subsequent paragraphs.
He first considered the general second order differential
equation

Pd®x + Qd®y + Rdx? + Sdxdy + Tdy? = 0 (2)
Under the supposition dx constant, (2) becomes

Qd*y + Rdx? + Sdxdy + Tdy? = o0,
and, applying the transformation rule

d’y ~— 4%y - %X d®x ,

x

for transformation to the progression-independent case
(see 3.2.2), Euler found

_Q% d*x + Qd’y + Rdx® + Sdxdy + Tdy? = 0 . (3)

Comparison of (2) and (3) teaches that the function y(x)
satisfies (2) independently of the progression of the
variables only if

or
Pdx + Qdy = 0

(par.303). But if Pdx + Qdy = 0 (and P and Q are not
equal to zero, a condition which Euler did not mention),
then, by differentiation,

Pd®x + Qd?®y + dPdx + dQdy = 0 ,
which, compared with (2), yields

Rdx? + Sdxdy + Tdy? = dPdx + dQdy,

from which, using dy = - g dx, the differentials can
be eliminated, resulting in a finite equation, giving
the condition for y(x) in terms of a relation between

x and y. It needs then still to be checked whether y(x)
satisfying this condition also satisfies the different-
ial equation (2), but if so, this is a method to
calculate the progression-independent solution of (2)
without integration (par.304).

Euler gave two examples of this procedure, one in
which it leads to a solution and one in which it does
not. The first example was

x¥d%x + x2yd?y - y2dx? + x3dy? +a?dx? = 0 (4)
In this case, Pdx + Qdy = 0 means
x3dx + xy?dy = 0.
Differentiating this relation, one gets
xsdzx-kxy2d2y+3x2dxz~+2xydxdy+x2dy2 = 0.
Comparison with (4) gields
ad?x - y%dx - 3x%dx - 2xydy = 0.
Using dy = - ﬁdx, this is transformed into
a?dx - yzdx - x%dax = o0,

or ,
y? + x% = a?,

which Euler indicated as a solution of (4) applying
regardless of the progression of the variables (par.305).
The other example was

y2d?x - x2d%y + ydx? - xdy?+ adxdy = 0 .
The criterion is now

y2dx - x%dy = 0 ,
and the finite relation between x and y derived as in
par. 305 is

x¥ - y?¥ + axy = 2xy? + 2x3%y,
which, however, appears not to be compatible with y?dx -
x2?dy = 0, unless, Euler said, dx-and dy-<are both zero
(that is, x constant and y constant), but that solution

applies to every differential equation.

5.13 These researches of Euler imply as it were the
counterpart of his remark quoted above, namely that one
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of the disadvantages of higher order differential
equations is that one and the same relation between

x and y gives rise to many different differential
equations, according to the progression of the
variables chosen. Here, conversely, Euler showed that
one and the same equation between differentials may
imply many different solutions, and that only in
special cases there occur solutions valid for all
progressions.

The more reason, then, Euler must have had after
these explorations to pursue his program of eliminating
higher order differentials, and the concomitant in-
determinacy, by introducing differential coefficients.
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APPENDIX 1

6.0 This appendix deals with certain statements of
Leibniz concerning Cavalieri's method of indivisibles
and the difference between this method and his own
differential calculus.

The relation of the Leibnizian calculus to the
theories of Cavalieri is of importance especially for
the formative years of the Leibnizian calculus. This
episode is described in detail in Hofmann 1949, and
my present study is devoted to the Leibnizian calculus
in a later stage (see 2.0). I shall therefore confine
myself to a few remarks concerning the relevant
qQuotations of Leibnigz.

The importance of the quotations lies in the fact
that Leibniz expressed his opinions in terms of
progressions of the variables and the free or restricted
choice of these progressions. My study of this concept
may therefore provide some new insight in the question
of the relation of the Leibnizian calculus to the
methods of Cavalieri.

Moreover, the quotations are relevant to the question
of the role of the infinitely large in the Leibnizian
calculus., Compared with the infinitely small, the in-
finitely large hardly ever occurs in the calculus. This
feature might at first sight seem at variance with
Leibniz's conception of the operators differentiation
and summation as reciprocal (cf 2.9); for as
differentiation introduces infinitely small differentials,
so summation could introduce infinitely large sums. The
reason for the scarce occurrence of the infinitely large
is that Leibniz consistently evaluated quadratures as
(finite) sums of area-differentials’, and not as (infinite-
ly large) sums of ordinates. He consciously chose for
the former approach, having become aware that the dis-
advantages of the latter are apparent in the Cavalierian
method of indivisibles.
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6.1 The evaluation of quadratures as aggregates or
sums of finite line-variables is implied in Cavalieri's
method of in-
divisibles (cf Wallner
1803 and Boyer 19u1).
The area between the
curve OC and the axis

c'

OA was conceived as
c the aggregate of all
ordinates ac extending
from the axis OA under

a fixed angle towards
the curve. Cavalieri

used the term "omnes

lineae" ("all lines") for this aggregate.

This conception of the quadrature offers the possib-
ility to find relations between the quadratures of
curves from relations between their ordinates. For in-
stance, if, throughout AC, the ordinates of 0C and 0C'
are in a fixed proportion, ac:ac' = p:q, then the
quadratures are in the same proportion, 6CA:0C1A = P:q.
The conception that a figure is built up from its in-
divisibles can also be applied to space-figures, in which
case the indivisible "ordinates" are parallel plane
sections of the figure.

Cavalieri's method admits a far-reaching translation
into mathematical symbols. The aggregate of the ordinates
y of a curve can be denoted by omn.y, and with help of
this symbolism various relations between quadratures
can be represented analytically, and a calculus of these
quadratures can be elaborated.

6.2 Leibniz, following Cavalieri and Fabri, used such
a symbolism in his studies of October and November 1675
(Leibniz Analysie Tetragonistica), which may be considered
to contain the invention of the differential and integral
calculus (cf Hofmann 1949, 118-130).

One important step in the process of this invention was
Leibniz's decision to replace the symbol omn.l , which
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he considered to denote the sume of all lines 1, by
f1 "7, Thus, in these first studies, f1 denoted a
quadrature, not an infinitely long line. However, ali-
ready soon afterwards Leibniz became aware of the
necessity to introduce the differentials along the
axis in the symbol for the quadrature and to denote
the quadrature by fydx.

6.3 Leibniz has repeatedly stressed the importance of
the fact that in his calculus quadratures are evaluated
as sums of area differentials rather than as sums or
aggregates of lines. He emphasised that this aspect
constitutes the fundamental difference between his
calculus and Cavalieri's method of indivisibles. He
asserted that Cavalieri evaluated quadratures as [y,
the sum of the ordinates. If dx is supposed constant,
there is, according to Leibniz, only a formal difference
between Cavalieri's fy and his own fydx; but if dx is no
longer supposed constant, but arbitrary progressions of
the variables are to be allowed, then the treatment of
the quadratures as [y breaks down, whilst the use of
fydx is still acceptable; this because fydx is in-
dependent of the progression of the variables. It is
indeed essential that Leibniz should allow arbitrary
progressions of the variables in the study of quadratures,
for otherwise transformations of the variables cannot be
applied. For instance in the case of the transformation
Sfndx = fyds (n: normal to the curve, s: arclength),
it is impossible to suppose both dx and ds constant, 80
that at least one of the integrals cannot directly be
translated into Cavalierian terminology and symbolism.
Leibniz has appreciated this fact and hence, in his
opinion, the evaluation of the quadrature, as fydx
constitutes a great advantage of his calculus over

Cavalieri's.

6.4 The views of Leibniz summarised in the preceding
paragraph are expressed for instance in the following

quotations:
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Before I finish, I add one warning, namely that one
should not lightheartedly omit the dx in differential
equations like the one discussed above

a = fdx:/1-xx because in the case that the x are
supposed to increase uniformly, the dx may be omitted.
For this is the point where many have erred, and thus
have closed for themselves the road to higher
results, because they have not left to the in-
divisibles like the dx their universality (namely
that the progression of the x can be assumed ad libi-
tum) although from this innumerable transfigurations
and equivalences of figures arise.!'®

+++ I denote the area of a figure in my calculus
thus: fydx or the sum of all the rectangles formed
by the product of each y and its corresponding dx.
Whereby, if the dx are supposed constant, one has
Cavalieri's method of indivisibles.!'!®

And this indeed is also one of the advantages of my
differential calculus, that one does not say, as was
formerly customary, the sum of all y, but the sum of
all ydx, or fydx, for in this way I can make dx
explicit and I can transform the given quadrature

into others in an infinity of ways, and thus find tFre
one by means of the other.!?°

But this [i.e. Cavalieri's] method of indivisibles
contained only some beginnings of the art (...).

For whenever the space elements between parallel
ordinates (straight lines or Plane surfaces) are not
equal to each other, then, in order to find the
content of the figure, it is not allowed to add up
the ordinates to one whole; but the infinitely small
Space elements between the ordinates have to be
measured. (...) Indeed, this measurement of the in-
finitely small was beyond the power of the
Cavalierian method.!?

6.5 The fact that quadrature problems did not introduce
infinitely large quantities in the Leibnizian calculus

does not imply that these quantities were entirely absent -
in fact, the free manipulation with differentials in the
formulas led sometimes to expressions which have to be
interpreted as infinitely large quantities. Thus for in-
Stance Leibniz asserted:

Surely we conceive in our analysis a straight line
with infinite length, such as aa:dx.'??

And Johann Bernoulli wrote, in a passage already quoted

above (2.13), about the quantity %gg; as an "infinitely
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large of the second sort".
The infinitely large especially occurred in the
studies which Leibniz and Johann Bernoulli in letters

exchanged in 1695, devoted to the analogy between powers
and differentials in connection with Leibniz's rule for
the differentiation of a product. In these studies"’r on
which I shall not digress here because they fall outside
the scope of this appendix, positive integer pow?rs of
a line were compared with higher order differentials of
a variable, and, because of the reciprocity in both cases,
negative integer powers with higher order ?um?. Thus here
the reciprocity of the operators differentlatlon.a?d
summation indeed made the infinitely large quantitiles,
the sums, naturally enter the investigations. .

As an example of the occurrence of the i?finltely
large in these studies I quote a characteristic formula:

3 124
fndz = nz - dnfz + d?nf%z - d®n/f3z ete.
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APPENDIX 2

7.0 In this appendix I deal with the relation between
the Leibnizian infinitesimal calculus and non-standard
analysis. Non-standard analysis is a recently developed
approach to analysis which is due to the research of
A.Robinson (1966). Its relevance for the Leibnizian
infinitesimal calculus is stressed by Robinson himself
and by others.

7.1 In non-standard analysis, certain concepts and formal
tools of mathematical logic are used to provide a rigorous
theory of infinitely small and infinitely large numbers.
With help of this theory it is shown that the differential
and integral calculus can be developed by means of these
infinitely small and infinitely large numbers. That is,

it is shown that it is possible to define the fundamental
concepts of analysis (continuity, differentiation,
integration, etc.) in terms of infinitesimals rather than
in terms of limits.

Non-standard analysis not only provides a new approach
to the differential and integral calculus; its methods
also yield interesting reformulations, more elegant proofs
and new results in, for instance, differential geometry,
topology, calculus of variations, in the theories of
functions of a complex variable, of normed linear spaces,
and of topological groups.

The infinitely small and infinitely large numbers are
introduced in non-standard analysis by a method of mathemat-
ical logic which proves the existence of extensions of
models of certain mathematical theories; these extensions
are the so-called "non-standard" models of the theories.
Applied to the field R of real numbers, considered as a
model of the theory of real numbers, the method yields
extensions R* of R, such that statements about real numbers,
if re-interpreted according to the rules governing the
Process of extensions of theories, are valid for elements
of R*, It is found in particular, that the extension can
be performed in such a way that R* becomes a totally order-

.

-107~-

ed field, which is non-archimedean and which contains R
as a proper subfield. This implies that R* contains
elements i, unequal to zero, with the property that, for
every real number a > 0,

-a <1< a.
These elements i are called infinitesimals, or infinitely
small numbers; their reciprocals are called infinitely
large numbers. An element a of R*, which is not infinite-
ly large, has a unique standard part, defined as the
real number oa, whose difference with a 1s zero or an
infinitesimal. Further, to every given function f, R + R,
there is assigned a unique extension f*, R* + R*, which

preserves certain properties of f.
The field R* provides the framework for the develop-

ment of the differential and integral calculus by means of
infinitely small and infinitely large numbers. To give one
example, the derivative of a real function f can be de-

fined as

_ o f*(x+dx)-f*(x)
f(x) 5 ( dx ) 3

in which dx is an arbitrary infinitesimal.'?S®

7.2 Obviously, the use of infinitesimals in non-standard
analysis is reminiscent of the Leibnizian infinitesimal
calculus, and non-standard analysis might thus be con-
sidered by present-day mathematicians as a posthumous re-
habilitation of Leibniz's use of infinitely small quantities.
This view is strongly advocated by Robinson. He says that

his book shows "that Leibniz's ideas can be fully vindicated
and that they lead to a novel and fruitful approach to
classical analysis and to many other branches of mathematics"
(1966 2). The inconsistencies of Leibniz's infinitesimals
are removed in non-standard analysis and Robinson states
that "Leibniz's theory of infinitely small and infinitely
large numbers (...) in spite of its inconsistencies (...)
may be regarded as a genuine precursor of the theory in the
present book" (1966 269). The creation of non-standard
analysis makes it necessary, according to Robinson, to
supplement and redraw the historical picture of the develop-
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ment of analysis (1966 260). This because history is
usually written in the light of later developments,
and non-standard analysis has to be considered as a
fundamental change in these later developments, be-
cause "the theory of certain types of non-archimedean
fields can indeed make a positive contribution to
classical analysis" (1966 261).

7.3 It is indeed an interesting feature that, contrary
to what has been thought for a very long time, the
Leibnizian use of infinitesimals can be incorporated,
after some reinterpretations and readjustments, in a
theory which is acceptable to present-day standards for
mathematical arguments. Thus it is understandable that
for mathematicians who believe that these present-day
standards are final, non=-standard analysis answers
positively the question whether, after all, Leibniz was
right.

However, I do not think that being "right" in this
sense is an important aspect of the appraisal of mathematic-
al theories of the past. The founders, practitioners and
criticists of such theories judged with contemporary
standards of acceptability, and these standards usually
differed considerably from those of present-day mathematics,

Hence I disagree with Robinsons opinion about the in-
fluence which the occurrence of non-standard analysis
should have on the historical picture of the Leibnizian
calculus, or of analysis in general. I do not think that
the appraisal of a mathematical theory such as Leibniz's
calculus, should be influenced by the fact that two and
three quarter centuries later the theory is "vindicated"
in the sense that it is shown that the theory can be in=-
corporated in a theory which is acceptable for present-day
mathematical standards.

If the Leibnizian calculus needs a rehabilitation be-
cause of too severe treatment by historians in the past
half century, as Robinson suggests (1966 260), I feel that
the legitimate grounds for such a rehabilitation are to

be found in the Leibnizian theory itself, judged in its own

~-109-

terms; and I believe that, in order to prove its value as
a mathematical theory, Leibniz's calculus does not need
an adjustment to twentieth century requirements of
acceptability through a reformulation in terms of non-

standard analysis.

7.4 Apart from this general argument on the relevance of
non-standard analysis for an appraisal of the Leibnizian
infinitesimal calculus, I do not think that the two
theories are so closely similar that historical insight
in the latter can be much furthered by considering it as
an early form of non-standard analysis. To substantiate
this view, I mention some aspects in which non-standard
analysis and Leibnizian infinitesimal analysis differ
essentially.

Non-standard analysis provides a proof that there
exists (in the usual modern mathematical sense of that
term) a field R* with the properties indicated in 7.1,
that is, that there exists a field including the real
numbers and also infinitesimals. As Robinson indicates,
Leibniz and his followers, were not able to give such a
proof. Moreover, the many arguments in the later seven-
teenth and eighteenth century about the existence of in-
finitesimals, or about the acceptability of their use, did
not in any way come close to the methods of the existence
proof in non-standard analysis. Robinson quotes Leibniz's
argument "that what succeeds for the finite numbers
succeeds also for the infinite numbers and vice versa
(1966 266, cf 262) but I cannot agree with him that this is
"remarkably close to our transfer of statements from R to
R* and in the opposite direction", and in the context of
this passage Robinson shows himself that Leibniz did not,
and could not provide such a proof. .Thus the most
essential part of non-standard analysis, namely the proof
of the existence of the entities it deals with, was entire-
ly absent in the Leibnizian infinitesimal analysis, and
this constitutes, in my view, so fundamental a difference
between the theories that the Leibnizian analysis cannot
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be called an early form, or a precursor, of non-standard

analysis.

7.5 Another aspect in which the two theories differ,
concerns the conception of the set of infinitesimals.
Leibniz and most of his followers (though not Euler, see
below) conceived the set of infinitesimals to be made up
of infinitesimals of successive positive integer "order
of infinite smallness". Thus if dx was a first order
differential, then all other first order differentials
had a finite ratio to dx, in general all n'th order
differentials had a finite ratio to dx", and the set of in-
finitesimals consisted only of these classes of
differentials.

However, in the set of infinitesimals in R* of non-
standard analysis, there is not a privileged subset of
first order differentials or infinitesimals. (In the
definition of the derivative mentioned in 7.1 any
infinitesimal can be chosen for dx.) For a fixed in-
finitesimal h one miéht consider, as analogous to the
Leibnizian classes of infinitesimals of successive order
of infinite smallness, classes I, of infinitesimals, i €R*,
of which °(i/n™) exists and is unequal to zero. But it is
immediately clear that the union of these I, does not form
the whole set of infinitesimals in R* (h? is not included in
any In).”6

Hence the two theories differ in a most important
aspect, namely in the conception of the structure of the
set of infinitesimals.

7.6 A third difference between the two theories lies in

the fact that Leibnizian infinitesimal analysis deals with
geometrical quantities, variables and differentials,

while non-standard analysis, as well as modern real analysis
in general, deals with real numbers, functions and (not-
withstanding its acceptance of differentials) derivatives.
The problems connected with higher order differentiation of
variable quantities (see 2.16-2.21) therefore do not occur
in non-standard analysis. Robinson does define higher order
differentials (1966 79/80), but these are differentials of

a function f and they are defined by means of a constant
differential dx.

7.7 Although, for the reasons expounded above, I do not
feel that the occurrence of non-standard analysis in itself
necessitates a re-appraisal of the history of analysis,
there are certainly interesting historical questions about
earlier stages of analysis which non-standard analysis
could suggest. As an example of such a question I mention
the question of the structure of the set of infinitesimals.
As I indicated in 7.5, non-standard analysis shows that if
one requires the infinitesimals to be subject to the same
operations as the real numbers, then the structure which
Leibniz thought the set of infinitesimals to have, is in-
sufficient. One may therefore ask whether this problem

has occurred to mathematicians working with Leibniz's con-
ception of infinitesimals as divided over classes of
successive order of infinite smallness.

As I have indicated in 2.15, I have found no trace
of an awareness of this problem in Leibniz's writings.
Euler, however, was aware of it, and his attitude to the
problem was that he let himself without hesitation be
guided outside the Leibnizian orders of infinite small~
ness by the rules of the operations. His attitude is most
clearly shown in his article 1778, and I shall end this

appendix with a summary of this piece.

7.8 In the first part of the article (par.1-22) Euler
explored the different possible "degrees" ("gradus") of
infinity or infinite smallness. Two infinitesimal quantities
are of the same degree if their ratio is finite. Euler
considered an infinitely large quantity x and remarked that
x, x%, x¥, etc. are of different degrees. He showed that,
because y = x/1290 jg5 a1s0 infinitely large, the degree of
X is not the lowest degree, and that between the successive
degrees of x, x?, x*®, etc. there are arbitrarily many
intermediate degrees. The degrees of xa, a positive, he
called degrees of the first class.
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Then Euler showed that there are degrees of infinity
lower than all first class degrees. For this he considered
log x and he asserted that log x is infinitely small with
respect to xi/n for every n. Hence the degree of log x,
and of (log x)? for positive a in general, is not of the
first class, so that a wealth of new degrees is introduced
by the logarithm, even interspersed between those of the
first class, because xalog x is infinitely large with
respect to x%, but infinitely small with respect to
xa+(1/n) for every n.

A consideration of exponentials then led in a similar
way to a class of degrees of infinity higher than all
degrees of the first class.

These considerations of different classes of degrees
of infinity were shown to apply, mutatis mutandis, to
infinitely small quantities, "because these may be consider-
ed as reciprocals of infinitely large quantities".'?’

A remarkable aspect of Eulers arguments is the use
of 1'Hé6pital's rule in the proofs of his assertions. Thus

for instance the assertion that log x is infinitely small

with respect to xi/n for every n, was proved as follows:
Call xl/n
logx =V
1 .
Togx P
and
1‘
x"Tj_n‘q’
so that
v =28,
q

Now for x = =, we have p = 0 and q = 0. Hence 1'H6pital's

rule is applicable and

= dp

V—dq.

Now
~-dx
dp=—-——'2's
x(logx)

and

dq = dx

nx(l/n5+1 ?
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so that 1/n
nx
v = 5
(logx)
But we had
Y - x1/n
" Togx °
or
2 x2/n
vo= .
(logx) _
Hence .. !i _ ( 2/n ) ( nx1/n ) _ <1/n
v (logx)2 (logx)2 n
(in fact Euler found v = nxiln, which must be a calculating

error), so that v is infinitely large, which proves the
assertion.

The use of 1'H6pital's rule in these proofs is very
revealing, because it shows both Euler's style and the
difficulty of the absence of a clear definition of
infinitesimals. Indeed, application of the rule implies
the conception of the infinitely large x as a function
tending to infinity (and 1/x tending to zero). Thus it is
acceptable only in a theory which concieves infinitesimals
as functions tending to zero or infinity, so that the orders
of infinity correspond to the orders of approaching zero
or infinity. However, nowhere did Euler indicate that he
conceived the infinitesimals in this way; he took x as an
actual infinitely large quantity, and he applied 1'H6pital's
rule purely as a formal rule.

In the second part of the article Euler considered
functions like y = cx? and y = cxa(log(l/x))m, for
infinitely small values of x. He found, by formally applying
differentiation and integration rules, that dy and fydx

dx
are infinitely small, respectively infinitely large, with

respect to y. Applying the discarding rules for infinitesimals

he was able to compute the integral in some cases where this
could not be dcne directly if x is supposed finite. He
interpreted his results as assertions about the area under
the relevant curve infinitely near the origin.
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NOTES

1. Compare the opening sentence of the Préface of

1'Hopital 1696: "L'Analyse qu'on explique dans cet
OQuvrage, suppose la commune, mais elle en est fort
différente. L'Analyse ordinaire ne traitte que des
grandeurs finies: celle-ci penetre jusques dans
1'infini méme." The "common" or "ordinary" analysis
is the Cartesian analysis; compare the "communis cal-
culus" in the title of Leibniz Elementa.

1'Hépital 1696.

These variable geometrical quantities are, in terms of
Menger's classification of the concepts designated by
the term "variable" (cf 1955 xi-xii), of the type
which he calls "consistent classes of quantities" or
"fluents" =~ with one important restriction however.
Menger's "fluents" presuppose the choice of a unit. They
are pairs, consisting of a "thing" and a corresponding
number, the number indicating the value or the measure
of the thing with respect to a unit (1955 167). The
geometrical variable quantities of seventeenth century
mathematics (and also of physics in that period), how-
ever, were not, or not necessarily, related to a unit

and expressed as numbers; compare 1.5.
On the concept of quantity, compare Itard 1953.

Descartes 1637, opening sections.

. As an illustration of the persistence of the dimensional

interpretation of formulas I quote Johann Bernoulli's
definition of a homogeneous differential equation:

a differential equation in which "nullae occurrunt
quantitates constantes, quae dimensionum numerum
adimplent."”" (Bernoulli to Leibniz 19-V-1694; Math.Schn.
III 138-139) The definition presupposes homogeneity;
absence of constant quantities as factors to adjust the

homogeneity means that all terms are, apart from
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numerical factors, products of an equal number of
variable factors. Even in the 1720's Bernoulli ob-
jected to a mathematician who overlooked dimensional
homogeneity: "Pardon, Monsieur, c'est 13 encore une
fagon de parler contre l'usage des Géom&tres; car
vous savez que chez eux multiplier un rectangle par
une ligne, c'est faire un_parallelépipede, et non pas
un autre rectangle..." (Opera IV 164.)

One of the reasons why eventually the requirement
of dimensional homogeneity was left, was the emergence
of transcendental relations, especially the exponential
functions, Indeed, a® does not have a well defined

dimension. Compare 1'H8pital's reaction on Bernoulli's
treatment of exponential functions: "... car que peut
signifier m" si m et n marquent des lignes? une ligne
elevée 3 la puissance designée par une autre ligne?"
(1'H6pital to Johann Bernoulli 16-V-1693; Bernoulli
Briefwechsel 172.)

Boyer, in 1956 (esp. 84-85, 140, 162), emphasizes that
dimensional homogeneity was only abandoned almost a
century after Descartes; but he seems to consider this
as an explained delay in the development towards

modern analytic geometry.

As mathematical term, the word function occurs for the
first time in print in Leibniz 1692a, but Leibniz used
it already in much earlier manuscripts. In 1694a he

defined: "Functionem voco portionem rectae, quae ductis

ope sola puncti fixi et puncti curvae cum curvedine

sua dati rectis abscinditur." (Math.Schr. V 306.) As
examples he gave: abscissa, ordinate, tangent, perpendic-
ular, subtangent, subperpendicular, parts of the axes

cut off by the tangent and the perpendicular, radius of

curvature.

"... (curva) cujus applicatae FP ad datam potestatem

. Q ”"
elevatae seu generaliter earum quaecunque functiones...

(Appendix to a letter of Johann Bernoulli to Leibniz
5-VII-1698; Leibniz Math.Sehr. III 506-507.)




10.

11.

12.

13.

14,

15.

16.

17,

"Placet etiam, quod appellatione Functionum uteris more
meo." (Leibniz to Johann Bernoulli 19-VII-1698;
Leibniz Math.Sehr.III 525.)

"On appelle ici Fonction d'une grandeur variable, une
quantité composée de quelque maniére que ce soit de
cette grandeur variable et de constantes."

(Johann Bernoulli 17183 Opera II 241.)

"Functio quantitatis variabilis est expressio analytica
quomodocunque composita ex illa quantitate variabili

et numeris seu quantitatibus constantibus." (Euler

1748 par.h.)

"Quin etiam functiones algebraicae saepe numero ne qui-
dem explicite exhiberi possunt, cuiusmodi functio ipsius
z et Z, si definiatur per huiusmodi aequationem

Z° = azzZ?® - bz"2% + cz2%z - 1 .
Quanquam enim haec aequatio resolvi nequit, tamen
constat Z aequari expressioni cuipiam ex variabili z et
constantibus compositae ac propterea fore Z functionem
quandam ipsius z." (Euler 1748 par.7.)

"Quae autem quantitates hoc modo ab aliis pendent, ut
his mutatis etiam ipsae mutationes subeant, eae harum
functiones appellari solent; quae denominatio latissime
patet atque omnes modos, quibus una quantitas per alias
determinari potest, in se complectitur." (Euler 1755;
Opera (I) X 4.)

As for instance in Euler 1755 ch VII.

Compare Boyer 1949 (251, 268, 275). Unlike Lagrange,
Bolzano and Cauchy saw that, in order to attain a
sufficiently rigorous formulation of the calculus, the
derivative itself has to be defined in terms of the
limit concept.

Apostol has collected in his section on the differential
(1969 167-189) six articles from the Amer.Math.Monthly,
published between 1942 and 1952, on how to introduce and
use the differential in teaching practice. In the last

18.

19.

21,
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article the editors of the Monthly come to the
conclusion that "there is no commonly accepted
definition of the differential which fits all uses
to which the notation is applied." (186J)

Robinson 1966; compare appendix 2.

The usual conception of the differential was con-
nected with the conception of the variable as ranging
over an ordened sequence of values; the differential
was the infinitesimal difference between two success-
ive values of the variable (see 2.4 and 2.6).
Variables which are functions of two independent
variables cannot be conceived as ranging over an
ordened sequence in this sense, and hence the con-
ception of the differential as infinitesimal difference
between successive values of the variable breaks down.
The differential dV of a function V(x,y) is there-
fore directly introduced in terms of its relation

with the ordinary differentials of x and y:

dvV = Pdx + Qdy
(cf Euler 1755 par.213 sqq). Here P and Q are the
partial derivatives, which Euler (ibid. par.231) in-

dicated by using brackets:

_(av _ dv
Pl = (my
For such expressions the usual technique for dealing
with dx and dy (for instance the cancelling of
differentials in a quotient) cannot be applied; the dx's

in (g%] and in Pdx are not the same, g%)dx £ av.

The influence of the calculus of number sequences had
as effect that Leibniz's earliest studies on the
calculus (discussed by Hofmann ifi his 1949) were less
strictly geometrical than his later work. For instance,
in these earliest studies formulas often occur which

violate the requirement of dimensional homogeneity.

Robinson 1966.
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22. See Hofmann and Wieleitner 1931 and Hofmann 1949 6-13.

23. Thus the following assertion of Bourbaki (1960 208)

24,

25.

26.

27.

is misleading: "(Leibniz) se tient trds prés du calcul
des différences, dont son calcul différentiel se
déduit par un passage 3 la limite que bien entendu il
serait fort en peine de justifier rigoureusement."

For the same reason the following remark by Hofmann

on Leibniz's invention (1675) of the calculus must be
modified: "Schliesslich erkannte er (i.e. Leibniz) als
gemeinsame Grundlage der zahlreichen und bis dahin

nur umstdndlich durch individuellen Ansitze gewonnenen

Einzelergebnisse, den Grenzprozess." (1966 210.)

"Mihi consideratio Differentiarum et Summarum in
seriebus Numerorum primam lucem affuderat, cum animad-
verterem differentias tangentibus, et summas quadraturis
respondere." (Leibniz to Wallis 28-V-16973; Math.Schr.

IV 25.)

"Exempli gratia % + % + %g + %F + %3 etc. seu f§%§f s
posito x esse 2 vel 3 vel 4 etc. est series quae tota
in infinitum sumta summari potest, et dx quidem hoc
loco est 1. In numericis enim differentiae sunt
assignabiles. (...) Quodsi x vel y essent non termini
discreti, sed continui, id est non numeri intervallo
assignabili differentes, sed lineae rectae abscissae,
continue sive elementariter hoc est per inassignabilia
intervalla crescentes, ita ut series terminorum figuram
constituat; ..." (Leibniz 1702b; Math.Schr.V 356-357.)

"Nec ulla constructione tale augmentum exhiberi potest.
Scilicet eas tantum homogeneas quantitates comparabiles
esse, cum Euclide 1ib.5 defin.5 censeo, quarum una

numero, sed finito multiplicata, alteram superare potest.

Et quae tali quantitate non differunt, aequalia esse

statuo(...).Et hoc ipsum est, quod dicitur differentiam
esse data quavis minorem." (Leibniz 1695a; Math.Schr.V
322.)

Such sequences occur especially in Archimedean style

studies of geometrical problems, in which the method to
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prove the results was the so-called method of ex-
haustion, of which Whiteside (1961 331-348) gives an

authorative account.

28. "Sentio autem et hanc [methodum] et alias hactenus
adhibitas omnes deduci posse ex generali quodam meo
dimentiendorum curvilineorum principio, quod figura
curvilinea censenda sit aequipollere Polygono infini-
torum laterum." (Leibniz 1684b; Math.Schr. V 126.)
The method refered to is an infinitesimal method
which J.Chr.Sturm had exposed in an article in the

Aeta Erud. of march 1684,

28. The term "quadrature" is here used for the area between
curve, ordinate and axis, not for the process of
calculating (or squaring) this area. Both meanings of
the term occur in seventeenth century mathematical

texts.

30. See Hofmann and Wieleitner 13931 and Hofmann 1949 6-13.

31. "dxy idem est quod differentia duorum Xy sibi .
propinquorum quorum unum esto Xy, alterum x+dx in y+dy
(that is: (x+dx)(y+dy) ) fiet:
dXy aequ. X7dx in y+dy - xy seu + xdy + ydx + dxdy
et omissa quantitate dxdy, quae infinite parv? ?st
respectu reliquorum, posito dx et dy esse ?nflnlte .
parvas (cum scilicet per seriei terminum lineae continue

per minima crescentes vel decrescentes intelliguntur)

prodibit xdy + ydx." (Leibniz Elementa 15u4.)
32. The attitude is evident, for instance, in Boyer 1949.

33, The only reference I have found in works on the history
of mathematics to the fact that differentials are
variables and that the way in which they vary can be
chosen arbitrarily by choosing the progression of the

variables, is in Cohen 1883 (esp.75). However, a? -
Cohen's prime objective is to ascertain the reality ©

. A .

differentials in the sense of an Erkenntniskritik, th
i 1 ther

historical sections of his book are of 1little fur

interest for present-day historians of mathematics.




34,

35

36.

37.

38.

39,

4o,

41,
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"Porro ddx est elementum elementi seu differentia

differentiarum, nam ipsa quantitas dx non semper

constans est, sed plerumque rursus (continue) crescit
aut decrescit." (Leibniz 1710a; Math.Schr.VII 322-323.)

" - . - - b .

Hic dx significat elementum, id est incrementum vel
decrementum (momentaneum) ipsius quantitatis x (continue)
crescentis. Vocatur et differentia, nempe inter duas

pProximas x elementariter (seu inassignabiliter) differ-
entes, dum una fit ex altera (momentanee) crescente vel
decrescente." (Leibniz 1710a; Math.Sehr VII 222-223,)

"quoniam nunc (posita dz constante) [z, 2z, f3z, J%z
4

etc. aequantur ipsi 22 2’ &
zg PSIS T2.dz *1T23.d22 * T 73 7 a7

1'2'3ou051dz“ etc"'o"

(Johann Bernoulli to Leibniz 27-VII-1695 3Math.Schr.I11
1938.)

See Hofmann 1949 28-29.

" . .
++- tangentem invenire esse rectam ducere, quae duo

curvae puncta distantiam infinite parvam habentia jungat,
seu latus productum polygoni infinitanguli, quod nobis
curvae aequivalet." (Leibniz 1684a; Math.Schr.V 223.)

"Porro ddx est elementum elementi seu differentia

differentiarum, nam ipsa quantitas dx non semper con-
stans est, sed plerumque rursus (continue) crescit aut
decrescit. Et similiter procedi potest ad dddx seu d3x,

et ita porro; ..." (Leibniz 1710a; Math.Schr.VII 222-2234,)

" : : g
Fundamentum calculi: Differentiae et summae sibi reci-

procae sunt, hoc est summa differentiarum seriei est
seriei terminus, et differentia summarum seriei est

ipse seriei terminus, quorum illud ita enuntio: Jfdx
aequ.xj; hoc ita: dfx aequ. x." (Leibniz Elementa 153.)

"Contrarium ipsius Elementi vel differentiae est summa,
quoniam quantitate (continue) decrescente donec e;;;;gcat,
quantitas ipsa semper est summa omnium differentiarum
sequentium, ut adeo d/fydx idem sit quod ydx. At Sydx
significat aream quae est aggregatum ex omnibus rectangu-
lis, quorum cujuslibet longitudo (assignabilis) est y

2.

43.

Iy,

45.
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aliqua, et latitudo (elementaris) est dx ipsi y
ordinatim respondens. Dantur et summae summarum, et

ita porro, ut si sit fdz/ydx, significatur solidum

quod conflatur ex omnibus areis, qualis est Jfydx,
ordinatim ductis in respondens cuique elementum dz."
(Leibniz 1710a; Math.Schr. VII 222-223.)

Apparently, no manuscript record of these early
Bernoullian studies has survived. Especially Jakob
Bernoulli's diary, the Meditationes, do not contain
material on this crucial period, see Hofmann 1956 16.

"Vidimus in praecedentibus quomodo quantitatum
Differentiales inveniendae sunt: nunc vice versa quo-

modo differentialium Integrales, id est, eae quanti-

tates quarum sunt differentiales, inveniantur,
monstrabimus." (Johann Bernoulli Integral Calculus 387.)

"Unde Tibi deliberandum relinquo, annon, pro Integrali-
bus vestris, praestet in posterum uniformitatis et
harmoniae gratia non inter nos tantum, sed in ipsa
doctrina adhiberi Summatorias expressiones, ita ut,
exempli gratia, fydx significet summam omnium y in dx
respondentes ductorum, seu summam omnium hujusmodi
rectangulorum: praesertim cum tali ratione summationes
geometricae seu quadraturae optime cum arithmeticis

seu serierum summis conferantur. (...) Ego certe in
totam hanc methodum me fateor, ex hac consideratione
reciprocationis inter summas differentiasque, incidisse,
et a Seriebus numerorum ad linearum seu ordinatarum
considerationes processisse." (Leibniz to Bernoulli
28-I11-1695; Math.Schr.I1II 168.)

"Caeterum, quod nomenclationem differentialium summae
attinet, lubentissime pro integralibus nostris Tuas

in posterum adhibeo summatorias expressiones; quod diu
ante fecissem, si nomen integralium non adeo invaluisset
apud quosdam Geometras, qui me hujus nominis authorem
agnoscunt, ut satis obscurus visus fuissem, unam eandem-
que rem, nunc hoc, nunc alio nomine designans. Fateor

enim nomenclationem istam (quae, considerando differenti-
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47.

48,

49.
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alem tanquam partem infinitesimam totius vel integri,
mihi non ulterius cogitanti, venit in mentem) rei

ipsi non apte convenire." (Johann Bernoulli to Leibniz
30-IV-1695; Math.Sehr. III 172.)

The conservation of the dimension by the operator d
marks the fundamental difference between infinitely
small elements and indivisibles, compare Wallner 1903.

"Les parties d'un corps, quoique infiniment petites,
sont toujours corps; celles d'une surface, sont
toujours surfaces; et les parties d'une ligne sont
toujours lignes: n'étant pas possible qu'un genre de
quantité puisse &tre changé par la division en un
autre genre de quantité." (Johann Bernoulli Opera IV
162.)

"Soit a une ligne finie, adx un infiniment petit du
premier genre, dddy un infiniment petit du troisiéme
. adx e e
genre, il faut prouver que dady est un infiniment

grand du second genre. Pour cette fin, soit

dddy nommé z3; donc¢ adx = zdddyj; donc dx:dddy = z:a.

Or dx est infini-infiniment plus grand que dddyj; donc
aussi z, qui est le quotient de la division, sera
infini-infiniment plus grand que a, qui est une ligne
finie; et partant z sera un infiniment grand du second
genre." (Johann Bernoulli Opera IV 166.)

Expressed in Nieuwentijt 169u.

"Nam quotiens termini non crescunt uniformiter, necesse

est incrementa eorum rursus differentias habere, quae
sunt utique differentiae differentiarum. Deinde con=~
cedit Cl. Autor, dx esse quantitatem; jam duabus
quantitatibus tertia proportionalis utique est etiam
quantitas; talis autem, respectu quantitatum x et dx,

est quantitas ddx, quod sic ostendo. Sint x progressio-

nis Geometricae, et y arithmeticae, erit dx ad con-
stantem dy, ut x ad constantem a, seu dx = xdy:aj; ergo
ddx = dxdy:a. Unde tollendo dy:a per aequationem

priorem fit xddx = dxdx, unde patet esse x ad dx, ut

51.

52.
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dx ad ddx." (Leibniz 1685a; Math.Sehr. V 3253 compare
ibid. II 288.)

Compare Weissenborn 1856 99 and Boyer 1949 211,

"Es ist gantz nicht ndthig ad summandum, dass die dx
oder dy constantes und die ddx = 0 seyen, sondern man
assumiret die progression der x oder y (welches man
pro abscissa halten wil) wie man es gut findet."
(Leibniz to von Bodenhausen, Math.Schr.VII 387.)

"... ut scilicet progressio ipsarum x assumi posset

qualiscunque..." (Leibniz 1684a; Math.Schr. V 233.)

"Outre ces 18 formules (...) dont les 12 dernieres
sont déduites des six premieres en y supposant dx, dy
ds, dz successivement constantes, l'on peut encore

en deduire une infinité d'autres de ces six premieres
en y supposant de méme toutte autre chose de con-
stante, (...) par example en y supposant aussi

dy ds?
y vy
(Varignon to Leibniz 4-XII-1710; Leibniz Math.Sehr. IV
173.)

m m .
s ¥y dx, y ds etc. successivement constantes,.."

"arcu aequabiliter crescente"; "x uniformiter
crescentes." (Leibniz Math.Schr. V 285 and 233.)

"Und das ist eben auch eines der avantagen meines
calculi differentialis, dass man nicht sagt die summa
aller y, wie sonst geschehen, sondern die summa aller
ydx oder fydx, denn so kan ich das dx expliciren und
die gegebene quadratur in andere infinitis modis
transformiren und also eine vermittelst der andern
finden." (Leibniz to von Bodenhausen; Math.Schr. VII
387.)

Jakob Bernoulli Opera II 1088; -see fortfurther
examples Boyer 1849 251.

Leibniz 1684aj; Math.Sehr. V 225,

"Nova methodus pro maximis et minimis, itemque

tangentibus, quae nec fractas nec irrationales quanti-
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tates moratur, et singulare pro illis calculi genus."
(Leibniz 1684a; Math.Sehr. V 220.)

60. B i
ernoulli used the terms "complete" and "incomplete"

for the two kinds of differential equations, see
note 71.

61. This, incidentally, is the reason why the suggestive
cancelling of the differentials in the chain rule
for derivatives:

doe? not occur in the chain rule for higher order
derivatives. A similar cancelling of dx? in the case
of second derivatives would lead to

2 2

RS H®
but in order that this equation is interpretable as a
relation between second derivatives Qi; and §i¥
both dt and dx must be supposed constgﬁt, whichca;
only apply in the case that x = at + b. In general,

the relation between the second derivatives of y(t)
y(x) and x(t) is given by ’

d?y _ d?y ,(dxy2 = dy 42
d—t-¥ - #' (d_f) + a‘)‘%.ﬁ-’; A

in which indeed the last term vanishes in the case
that x = at + b.

62. "Quia s = adx:dy, erit ds = /(dx?+dy?) = addx :dy
ideoque dy = addx: V(dx2?+dy?). Ut utrobique ;ossit
s?mi integrale, multiplicetur utrumqgue per dx, habe=-
bl?ur dxdy = adxddx:/(dx?+dy?). Sumptis integralibus
erit xdy = a/(dx2?+dy?), reductaque aequatione, erit,
dy = adx:v/(xx-aa), ut ante." (Johann Bernoulli
Integral Caloulus 426.)

63. Leibniz Math.Sehr. V 379-380.

64, " i igi
Eaque analogia eousque porrigitur, ut tali scribendi

more (quod mireris) etiam p°(x+y+z) et do(xyz) sibi
respondeant et veritati, nam

65.

66.

67.
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1 = p°xp°yp°z

po(x+y+z)

et
Xyz = doxdoydoz.

a%(xyz)

Eadem etiam opera apparet, quaenam sit Lex homogene-
orum transcendentalis, quam vulgari modo scribendi
differentias non aeque agnoscas. Exempli gratia,

novo hoc Characteristicae genere adhibito, apparebit
addx et dxdx non tantum Algebraice (dum utrobique
binae quantitates in se invicem ducuntur) sed etiam
transcendentaliter homogeneas esse et comparabiles
inter se, quoniam illud scribi potest d°ad?x, hoc

dlxdlx, et utrobique exponentes differentiales con-
ficiunt eandem summam, nam 0 + 2 = 1 + 1. Caeterum

lex homogeneorum transcendentalis vulgarem seu Alge-
braicam praesupponit.” (Leibniz 1710b; Math,Schr. V
381-382; compare also ibid. IV 55.) The transcendent-

al law of homogeneity is also mentioned in Leibniz

1684a; Math.Sehr. V 224.

"Sed et pro centris non minus ac radiis circulorum
osculantium theoremata generaliora formari possunt,
quae certorum elementorum aequalitate non indigent."
(Leibniz 1694b; Math.Schr. V 309.)

" . padius osculi est ad unitatem, ut elementum unius

coordinatae est ad elementum rationis elementorum

alterius coordinatae et curvae." (Leibniz 1694b;

Math.Sehr. V 309.)

To take the radius of curvature as example:

V=r
A,: v = ds? for P,: dx constant
dxddy 1

. _ dxds .
A2’ r = 33§_ for P2. ds constant

. _ ds? - p
A,: v = 5;53; for P3. dy constant

A: r = ——%%— for any progression of the
d(zz variables.

It should be stressed that the Ai and A are not
uniquely determined, as is illustrated by the two
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formulas which Leibniz gave for the radius of

curvature independent of the progression of the
variables.

68. To take the third order differential equations of

the parabola ay = x? as example (cf 2.20):

E;: ad’y = 0 for P,: dx constant
E,: 0 = 6dxddx + 2xd®x for P,: dy constant
E ad®y = 6dxddx + 2dxd®x for any progression

of the variables

69. Euler dealt with the technique in great detail in his

70,

71,

1755, of which chapter 8 paragraphs 252-262 and
272-278 concern the case of formulas or expressions in
general, and chapter 9 paragraphs 298-306 (cf 5.11-
5.12) the case of differential equations. d'Alembert,
in his article Différentiel in the Encyclopédie, gave

rules to transform a second order differential equation

in which dx is supposed constant into the pertaining
general differential equation, and he noted: "Cette

regle est expliquée dans Plusieurs ouvrages, et surtout

dans la seconde partie du calcul intégral de M. de
Bougainville, qui ne tardera pas & paroitre. En

attendant on peut avoir recours aux oeuvres de Jean
Bernoulli, tom IV, pag.773..." (References are to
Bougainville 1754 and Johann Bernoulli Opera.)

Johann Bernoulli Opera IV 77-79. The note opened with
a reference to Taylor 1715. Taylor discussed there
the following problem: "Aequationem fluxionalem, in
qud sunt fluentes tantum duae z et X, quarum z fluit
uniformiter, ita transmutare ut fluat x uniformiter."
This, of course, is the formulation in the terminology
of fluxions of the problem to transform a differential
equation applying for constant dz into the correspond-
ing differential equation applying for constant dx.

"Problema. Aequationes differentiales incompletas
cujuscunque gradus reddere completas,

hoc est, eas
transmutare in alias, in quibus nulla

differentialis

72.

73.

4.

75.

76.
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supponatur constans." (Johann Bernoulli Opera IV 77.)
Thus the problem is, if expressed by means of the
notation introduced above, to derive E from Eq and P,.
Bernoulli used the adjective "complete" for the
general differential equation and conceived the
differential equations for specified progressions of
the variables as "incomplete", presumably because
they are derived from the "complete" differential
equation by discarding those terms which, in the case
of the specified progression of the variables, are

equal to zero.

"Hujus Regulae est usus in transformandis differentia-
1ibus constantibus in alias constantes." (Johann Ber-

noulli Opera IV 78.)

The fact is even more evident in Euler 1755, which

I discuss in chapter 5.

t
"C'est par des substitutions de cette nature qu on
peut opérer un changement de variable indépendente
(...) Pour revenir au cas ol x est variable indé-

pendente, il suffirait de supposer la differentielle

dx constante, et par suite d2x = 0, d%% = 0,..."
(Cauchy 1823; Oeuvres (II) IV 74.)

Later, t;;_;ssumption that the differential of.the
independent variable is constant caused confusion.
Compare for instance Hadamard 1935: "J'ai lu, comme
tout le monde, l'histoire de la différentielle de

la variable independente qui doit é&tre const%nte .
(et qui est d'ailleurs forcément variable pulsque 1in-

finiment petite)." (p.341)

"Dantur rectae proportionales temporibus insuTtis,

a quarum unaquaque si detrahatur recta a?q?alls .
respondenti spatio percurso a puncto mObl%lj restdua
recta erit proportionalis velocitati acquisitae.
(Leibniz 1689a; Math.Schr. VI 138.)

1" . . . .

11
moveatur, dummodo moveatur, et pendet a medil
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78.
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glutinositate (...)
Resistentia respectiva oritur ex medii densitate,

et major est pro majori mobilis velocitate Coodd”
(Leibniz 1689a; Math.Sehr. VI 136.)

", .. elementa velocitatum amissarum sunt ut elementa
spatiorum percursorum,..! (Leibniz 168%a; Math.Schr.

VI 137.)

"Diminutiones velocitatum sunt in ratione composita
velocitatum praesentium et incrementorum spatii."
(Leibniz 1689a; Math.Sehr. VI 1u40.)

"A parler exactement on ne doit pas dire que les
resistences sont en raison de velocité ny en raison
des quarrés des vélocités, si ce n'est qu'on adjoute
le temps ou le milieu, comme j'ay fait." (Huygens
Oeuvres X 12.)

"Circa respectivam (that is, resistentiam) video nos
iisdem fundamentis inaedificasse, etsi prima fronte
aliud videri possit. Ipsi (that is, Huygens and Newton)
enim statuunt resistentias in duplicata ratione velo-
citatum, ego vero absolute loquendo resistentias (quas
decrementis velocitatis a medii densitate ortis
existimo) esse dixi in ratione composita velocitatum

et elementorum spatii, quae scilicet velocitatibus
respondentibus decurri inchoantur; unde jam elementis
temporis sumtis aequalibus (quo casu elementa spatii
decurrenda velocitatibus proportionalia sunt) utique
resistentiae erunt in duplicata ratione velocitatum,..”
(Leibniz 16913 Math.Sehr. VI 144,)

"Caeterum a me quoque non difficulter solvitur illud
problema: Invenire lineam cujus arcu aequabiliter

crescente elementa elementorum, quae habent abscissae,
sint proportionalia cubis incrementorum vel elementorum,
quae habent ordinatae, quod in catenaria seu funiculari

succedere verissimum est. Sed quoniam id jam a

Bernoulliis est notatum, adjiciam, si pro cubis element-

orum ordinatarum adhibeantur quadrata, quaesitam lineam

82.

83.
8u.

85,

86'
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fore logarithmicam; si vero ipsa simplicia ordinatarum
elementa sint proportionalia elementis elementorum '
seu differentiis secundis abscissarum, inveni lineam
quaesitam esse circulum ipsum." (Leibniz 1692b;
Math.Sehr. V 285.)

Cf Nieuwentijt 1694 and 1696, Leibniz 1695a and 1695b,
and Hermann 1700.

Compare note 89.
See Boyer 1949 22u-229,.

"Interim an status ille transitionis momentaneae, ab
inaequalitate ad aequalitatem, a motu ad quietem, a
convergentia ad parallelismum, vel similis in sensu
rigoroso ac metaphysico sustineri queat, seu an
extensiones infinitae aliae aliis majores aut infinite
parvae aliae aliis minores, sint reales; fateor posse
in dubium vocari: et qui haec discutere velit, delabi
in controversias Metaphysicas de compositione continui,
a quibus res Geometricas dependere non est necesse.
(...) Si omnino ultimum aliquod vel saltem rigorose
infinitum quis intelligat, potest hoc facere, etsi
controversiam de realitate extensorum aut generatim
continuorum infinitorum aut infinite parvorum non deci-
dat, imo etsi talia impossibilia putet; suffecerit enim
in calculo utiliter adhiberi, uti imaginarias radices
magno fructu adhibent Algebristae." (Leibniz Cum

prodiieset Uu43.)

"Ego philosophice loquendo non magis statuo magnitudines
infinite parvas quam infinite magnas, seu non magis
infinitesimas quam infinituplas. Utrasque enim per
modum loquendi compendiosum pro mentis fictionibus
habeo, ad calculum aptis, quales etiam sunt radices
imaginariae in Algebra. Interim demonstravi, magnum

has expressiones usum habere ad compendium cogitandi
adeoque ad inventionem,..." (Leibniz to des Bosses,
17-I11-1706; Phil.Schr. 1I 305.)
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87. The most important manuscript in this respect is
Leibniz Cum prodiisset (1701 or somewhat later)
which was published by Gerhardt in 18463 Scholtz (1932)
for the first time stressed its significance for
Leibniz's ideas on the foundations of the calculus;
she also showed that Leibniz Quad.Arith.Cire. (1676)
contains valuable information on this matter.

It seems that Scholtz 1932 has not aroused the
interest which it deserves. Boyer (1959 210-213) has
not recognised any consistency in Leibniz's ideas on
the foundations of the calculus; he has therefore
pPresented the many quotations of Leibniz on this

subject in a random way - which of course strongly
suggests the absence of any inner structure in Leibniz's
thought.

88

-

Compare also the following lines on the rule dxy =

xdy + ydx: ".., restat xdy + ydx + dxdy. Sed hic

dxdy rejiciendum, ut ipsis xdy + ydx incomparabiliter
minus, et fit d,xy = xdy + ydx, ita ut semper mani-
festum sit, re in ipsis assignabilibus peracta, errorem,
qQui inde metui queat, esse dato minorem, si quis
calculum ad Archimedis stylum traducere velit." (Leibniz
to Wallis, 30-III~1699; Math.Schr. IV 63.)

89. The letter (Leibniz to Pinson, 29-VIII-1701; Math.Schr.
IV 95/96 - part of it was published as Leibniz 1701,
Math.Schr. V 350) was an important piece of evidence
in the controversy on the infinitesimal calculus which
raged the Académie des Sciences about 1701 and in
which the main contestants were Varignon and Rolle. The
letter was a reaction on certain remarks of le pére
Gouye (1701) on the differential calculus. Varignon
opened a correspondence with Leibniz on this matter
(Varignon to Leibniz 28-XI-1701; Math.Schr. IV 89/90),
and received a fuller account of Leibniz's views on
infinitesimals (Leibniz to Varignon, 2-II-1702; Math.
Sehr. IV 91-95) which was published in the Journal des
Savane (Leibniz 1702a). See further Ravier 1937 77
(nr.161).

90. "Car au lieu de 1'infini ou de l'infiniment petit,
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on prend des quantités aussi grandes et aussi petites
qu'il faut pour que 1'erreur soit moindre que

1' erpeur donnée, de sorte qu'on ne différe du stile
d'Archimdde que dans les expressions, qui sont plus
directes dans ndtre méthode et plus conformes a 1ltart
d'inventer." (Leibniz 17013 Math.Schr. V 350.)

91. "Et c'est pour cet effect que j'ay donné un jour des

lemmes des incomparables dans les Act?s de Léip?i?, ]
qu'on peut entendre comme on veut, soit des %nffnls a
la rigueur, soit des grandeurs seulement, qul n entrent
point en ligne de compte les unes au prix des a?tres.
Mais i1 faut considerer en méme temps, que Ce&€S in-
comparables communs mémes n'estant nullement.fixes‘ou
determinés, et pouvant estre pris aussi petits qu'on
veut dans nos raisonnemens Geometriques, font 1'eff?ct
des infiniment petits rigoureux, puis qu'un advers?lr
voulant contredire 3 nostre enontiation, il s'ensuit
par nostre calcul que 1'erreur sera moindre qu'aucun?
erreur qu'il pourra assigner, estant en nostre p?uv01r
de prendre cet incomparablement petit, assez petit pour
cela, d'autant qu'on peut tousjours prend?e une
grandeur aussi petite qu'on veut." (Leibniz 1702a;

Math.Schr. IV 82.)

92. Leibniz Cum prodiisset. The manuscript contains an

allusion to Gouye 1701, whence it must be dated after
or in 1701. As it deals with the problems which were
discussed in 1701-1702, it is probable that it.
originated in or not much later than 1701. I discuss
here the part of the manuscript which, in the 18L46-

edition, begins at page 40.

. . . : quem
g3, "Proposito quocunque transitu continuo in aliq

. S - -
terminum desinente, liceat ratiocinationem commun

1"
instituere, qua ultimus terminus comprehendatur.

(Leibniz Cum prodiisset 40.)

i 1 i ontinuity
gy. For other formulations of Leibniz's law of ¢

see Math.Schr. IV 93 and Phil.Sehr. I1IIT 52.
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g5. Leibniz thought that Archimedes must have used
infinitesimal arguments of this kind in finding
his theorems; he méntioned that such arguments
were occasionally practised by Descartes, who
considered the cycloid as an infinitangular poly-
gon, and also "Hugenius ipse in opere de Pendulo,
cum soleret sua confirmare rigorosis demonstra-
tionibus, nonnunquam tamen vitandae nimiae pro-

11

lixitatis causa infinite parve adhibuit,...

(Leibniz Cum prodiisset 42-u43.)

96. I have slightly changed Leibniz's notation; for
Leibniz's (d) I use d, so that (d)x, (d)dx, (dd)x
become dx, ddx, ddx, respectively. For Leibniz's
2(d)x I write g+x. In stead of Leibniz's

separating commas I use brackets.

97. "Multiplicatio. Sit ay = xv, fiet ady = xdv + vdx.

Demonstratio: ay + ady = (x+dx)(vedv)= xv + xdv +

vdx + dxdv, et abjiciendo utrinque aequalia

ay et xv fiet

ady = xdv + vdx + dxdv ,
ady - xdv
seu ax I + v + dv

et transferendo rem ad rectas nunquam evanescentes

qua licet, fiet

ady xdv
E;— = §§— + v + dv

ut sola quae evanescere possit, supersit dv, et in

casu differentiarum evanescentium, quia dv = 0, fiet

ady = xdv + vdx

ut asserebatur, (...). Unde etiam quia dy:dx
semper = dy:dx, licebit hoc fingere in casu dy,dx
evanescentium, et facere (...)

ady = xdv + vdx . "

(Leibniz Cum proditsset 46-47; the few words omitted
contain an obvious calculation error and are not

important for the argument.)

98. The figure is adapted to my rendering of the argument.

9g.

100.

101.

102.

103.

104.

It is here that Child (1920. 157), in his translation
of the manuscript, inserts a note stating that, be-
cause of this error, "there is not much benefit in
considering the remainder of this passage" -

a judgement with which I disagree.

Leibniz here used the notation dx, dy; not, as in his
later studies which I discussed above (d)x, (d)y
(cf note 96).

Leibniz Elementa; on the dating compare Gerhardt
1855 72.

"Demonstratio omnium facilis erit in his rebus versato
et hoc unum hactenus non satis expensum consideranti,
ipsas dx, dy, dv, dw, dz, ut ipsarum X, y, V, W, 2
(cujusque in sua serie) differentiis sive incrementis
vel decrementis momentaneis proportionales haberi
posse. (...)

«++. Tangentem invenire esse rectam ducere, quae duo

curvae puncta distantiam infinite parvam habentia,
jungat, seu latus productum polygoni infinitanguli,
quod nobis curvae aequivalet. Distantia autem illa
infinite parva semper per aliquam differentialem
notam, ut dv, vel per relationem ad ipsam exprimi
potest, hoc est per notam quandam tangentem."
(Leibniz 1684a; Math.Schr. V 223.)

Precisely in the definition of the differential, the
text in Leibniz 1684a was affected by severe printing
errors. It may be noticed that in the version
published in Math.Sehr. (V 220) Gerhardt has, without
indication, corrected these errors. It is important
to recall here that Leibniz 1684a and 1686 formed
the source from which the Bernoullis learned the
calculus in the years 1687-1690; cf 2.10 and Enestrdm
1308.

"Itaque non tantum lineas infinite parvus, ut dx, dy,
pro quantitatibus veris in suo genere assumo, sed et
earum quadrata vel rectangula dxdx, dydy, dxdy,
idemque de cubis aliisque altioribus sentio, praesertim

cum eas ad ratiocinandum inveniendumque utiles

d



105.

106.

107.

108.

1089.

110.
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reperiam." (Leibniz 1695a; Math.Schr. V 322.)

The figure, as well as the explanation by means of
(12), is mine; Leibniz's explanation in 1695b is
entirely in prose and not accompanied by a figure.

Jakob Hermann, who in 1700 repeated Leibniz's
arguments contra Nieuwentijt, also failed to mention

this condition.

E.g. Boyer 1948 243-245,

", .. methodus determinandi rationem incrementorum

evanescentium, quae functiones quaecunque accipiunt,
dum quantitati variabili, cuius sunt functiones,
incrementum evanescens tribuitur." (Euler 1755 praef;
Opera (I) X 5.)

"Interim tamen perspicitur, quo minus illud incrementum
w accipiatur, eo propius ad hanc rationem accedi; unde
non solum licet, sed etiam naturae rei convenit haec
incrementa primum ut finita considerare atque etiam

in figuris, si quibus opus est ad rem illustrandam,
finite repraesentare; deinde vero haec incrementa
cogitatione continuo minora fieri concipiantur sicque
eorum ratio continua magis ad certum quendam limitem
appropinquare reperietur, quem autem tum demum at-
tingant, cum plane in nihilum abierint. Hic autem
limes, qui quasi rationem ultimum incrementorum illorum
constituit, verum est obiectum Calculi differentialis."
(Euler 1755 praef.; Opera (I) X 7.)

"Quamvis enim praecepta, uti vulgo tradi solent, ad
ista incrementa evanescentia definienda videantur
accommodata, nunquam tamen ex iis absolute spectatis,
sed potius semper ex eorum ratione conclusiones de-
ducuntur. (...) Quo autem facilius hae rationes
colligi atque in calculo repraesentari possint, haec
ipsa incrementa evanescentia, etiamsi sint nulla,
tamen certis signis denotari solent; quibus adhibitis
nihil obstat, quominus iis certa nomina imponantur."
(Euler 1755 praef.; Opera (1) X 5.)

111.

112.

113.
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"Erit ergo analysis infinitorum, quam hic tractare
coepimus, nil aliud nisi casus particularis methodi
differentiarum in capite primo expositae, qui oritur,
dum differentiae, quae ante finitae erant assumtae,

statuantur infinite parvae." (Euler 1755 par.11u.)

"In calculo differentialli praecepta traduntur, quorum
ope cuiusvis quantitatis propositae differentiale
primum inveniri potest; et quoniam differentialia
secunda ex differentiatione primorum, tertia per eandem
operationem ex secundis et ita porro sequentia ex
praecedentibus reperiuntur, calculus differentialis
continet methodum omnia cuiusque ordinis differentia-

1ia inveniendi. (...) Differentiatio autem denotat

operationem, qua differentialia inveniuntur." (Euler
1755 par.138.)

"128. In capite primo iam notavimus differentias
secundas atque sequentes constitui non posse, nisi
valores successivi ipsius x certa quadam lege pro-
gredi assumantur; quae lex cum sit arbitraria, his
valoribus progressionem arithmeticam tanquam facilli-
mam simulque aptissiméﬁ tribuimus. Ob eandem ergo
rationem de differentialibus secundis nihil certi statui
poterit, nisi differentialia prima, quibus quantitas
variabilis x continuo crescere concipitur, secundum
datam legem progrediantur; ponimus itaque differentia-
lia prima ipsius x, nempe dx, dxt, dx!I etc., omnia
inter se aequalia, unde fiunt differentialia secunda

ddx = daxI - dx = 0, ddxl= ax'! - ax® = 0 ete.

Quoniam ergo differentialia secunda et ulteriora ab
ordine, quem differentialia quantitatis variabilis x
inter se tenent, pendent hicque ordo sit arbitrarius,
quae conditio differentialia prima non afficit, hinc
ingens discrimen inter differentialia prima ac

sequentia ratione inventionis intercedit.

. S I II
129. Quodsi autem successivi ipsius x valores X, X ,X

XIII, x*V ete. non secundum arithmeticam progressionem
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statuantur, sed alia quacunque lege progredi ponantur,

1 11 etc.

tum eorum quoque differentialia prima dx,dx™,dx
non erunt inter se aequalia neque propterea erit

ddx = 0. Hanc ob rem differentialia secunda quarumvis
functionum ipsius x aliam formam induent; si enim
huiusmodi functionis y differentiale primum fuerit

= pdx, ad eius differentiale secundum inveniendum non
sufficit differentiale ipsius p per dx multiplicasse,
sed insuper ratio differentialis ipsius dx, quod est
ddx, haberi debet. Quoniam enim differentiale secundum
oritur, si pdx a valore eius sequente, qui oritur,

dum x + dx loco x et dx + ddx loco dx ponitur, sub-
trahatur, ponamus valorem ipsius p sequentem esse = D +

qdx eritque ipsius pdx valor sequens
= (p+qdx)(dx+ddx) = pdx+pddx+qdx?+qdxddx;

a quo subtrahatur pdx eritque differentiale secundum
ddy = pddx + qdx? + gdxddx = pddx + qdx?,
quia qdxddx prae pddx evanescit.

130. Quanquam autem ratio aequalitatis est simplicissima

atque aptissima, quae continuo ipsius x incrementis
tribuatur, tamen frequenter evenire solet, ut non eius
quantitatis variabilis x, cuius y est functio, incre-
menta aequalia assumantur, sed alius cuiuspiam quanti-
tatis, cuius ipsa x sit functio quaedam. Quin etiam
saepe eiusmodi alius quantitatis differentialia prima

statuuntur aequalia, cuius nequidem relatio ad x constet.

Priori casu pendebunt differentialia secunda et se-
quentia ipsius x a ratione, quam x tenet ad illam
quantitatem, quae aequabiliter crescere ponitur, ex
eaque pari modo definiri debent, quo hic differentialia
secunda ipsius y ex differentialibus ipsius x definire
docuimus. Posteriori autem casu differentialia se-
cunda et sequentia ipsius x tanquam incognita spectari
eorumque loco signa ddx,d%x, d*x, etc. usurpari
debebunt." (Euler 1755 par.128-130.)

«137=

114, Speiser (1945 XXXVIII) has remarked that Euler's

studies on dependence and independence of the
progression of the variables may be considered as
containing a beginning of a theory of differential
invariants. Indeed, the choice of a progression of
the variables is equivalent to a choice of an in-
dependent variable, and hence independence of the
progression of the variables corresponds to in-
variance with respect to parametric representation.
There is, however, in Euler's studies not a con-
cern about invariance with respect to systems of
transformations of the mathematical object (for
instance the curve) itself.

"Ex his igitur sequitur differentialia secunda et
altiorum ordinum revera nunquam in calculum ingredi
atque ob vagam significationem prorsus ad Analysin
esse inepta. (...) Quoniam tamen saepissime apparenter
tantum in calculo usurpantur, necesse fuit, ut
methodus eas tractandi exponeretur. Modum autem mox
ostendemus, cuius ope differentialia secunda et
altiora semper exterminari queant." (Euler 1755
par.263.)

"Positis binis variabilibus x et y si vocetur dy = pdx
et dp = gdx, aequatio quaecunque relationem inter
quantitates x, y, p et q definiens vocatur aequatio
differentialis secundi gradus inter binas variabiles
x et y." (Euler 1768 (vol II) par.706.)

"Utile erit scribi f pro omn. ut f1 pro omn. 1,

id est summa ipsorum 1."

(Leibniz Analysis Tetra-
gontetica (29 oct.1675)). [ is the long script s,

standing for "summa".

"Antequam finiam, illud adhuc--admonee, ne quis in
aequationibus differentialibus, qualis paulo ante
erat a = fdx:/1-xx, ipsam dx temere negligat, quia
in casu illo, quo ipsae x uniformiter crescentes
assumuntur, negligi potest: nam in hoc ipso peccarunt

plerique et sibi viam ad ulteriora praeclusere, quod
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123,
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indivisibilibus istiusmodi, velut dx, universalitatem
suam (ut scilicet progressio ipsarum x assumi posset
qualiscunque) non reliquerunt, cum tamen ex hoc uno
innumerabiles figurarum transfigurationes et aequi-
potentiae oriantur." (Leibniz 1686; Math.Schr. V 233.)

", ..aream figurae calculo meo ita designo fydx, seu
summam ex rectangulis cujusque y ducti in respondens
sibi dx, ubi si dx ponantur se aequales, habetur
Methodus indivisibilium Cavalerii." (Leibniz Elementa
150.)

"Und das ist eben auch eines der avantagen meines
calculi differentialis, dass man nicht sagt die summa
aller y, wie sonst geschehen, sondern die summa aller
ydx oder fydx, denn so kan ich das dx expliciren und
die gegebene quadratur in andere infinitis modis
transformiren und also eine vermittelst der andern
finden." (Leibniz to von Bodenhausen; Math.Schr. VII

387.)

"Sed haec Indivisibilium Methodus tantum initia quae-

dam ipsius artis continebat (...) . Nam quoties ordina-

tim ductae inter se parallelae, nempe rectae lineae

vel planae superficies (...) intercipiunt inaequalia

quaedam elementa, non licet ipsas ordinatim applicatas l
in unum addere, ut contentum figurae prodeat, sed ipsa

intercepta Elementa infinite parva sunt mensuranda;

(...). Ea vero infinite parvorum aestimatio Cavalerianae
Setentiarum

methodi vires excedebat,...'" (Leibniz

gradus 597.)

"Certe in nostra Analysi concipimus rectam infinitam
aa:dx,..." (Leibniz to Grandi
IV 218.)

modificatam, ut
6-IX-1713; Math.Schr.

The most important relevant texts are to be found in
Leibniz Math.Sehr. III 175, 180-181, 199-200; compare
also 2.22,

Bernoulli to Leibniz 27-VII-1695; Math.Scehr. III 1989.

125.

126.

127.
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The existence of non-standard models for the real
numbers has been known since the 1930's (see Robinson
1966 48 & 88 for precise references), but Robinson
was the first to use these non-standard models for
the study of analysis in terms of infinitesimals.

Robinson defines (1966 79/80) higher order
differentials dny for a function y = f(x) with respect
to an arbitrarily chosen positive infinitesimal dx;

if we call dx = h, then the dny.so defined are

elements of In'

s e

" quippe quae spectari possunt ut reciproca infinite

magnorum." (Euler 1778 par.lih.)
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SAMENVATTING

In dit proefschrift bestudeer ik de grondbegrippen
van de infinitesimaalrekening, zoals die in de late zeven-
tiende en in de achttiende eeuw bedreven werd door Leibniz
en door die wiskundigen die de differentiaal- en integraal-
rekening ontwikkelden op de door Leibniz geintroduceerde
manier.

In hoofdstuk 2 geef ik een samenvatting van deze
Leibniziaanse infinitesimaalrekening, gelIllustreerd met
vele tekstfragmenten. In het bijzonder besteed ik aan-
dacht aan de begrippen differentiaal, hogere orde differen-
tiaal en som. Ik toon aan dat de oneindig kleine differen-
tiaal opgevat werd als variabele; dat echter de manier
waarop deze variabele varieert niet a priori werd vastge-
legd. Deze onbepaaldheid blijkt vooral van belang te ziin
voor de hogere orde differentialen. Ook laat de onbepaald-
heid toe dat men, in de behandeling van problemen, een
extra veronderstelling maakt over het gedrag der differen-
tialen. Het maken van zo'n veronderstelling blijkt equi-
valent te zijn met de keuze van een onafhankelijk variabele.

Hoofdstuk 2 wordt besloten met een overzicht van de
belangrijkste verschillen tussen de vroege Leibniziaanse
infinitesimaalrekening en de infinitesimaalrekening zoals
die sinds het begin der negentiende eeuw werd beoefend.
Deze verschillen houden verband met een karakterwijziging
van de analyse in de achttiende eeuw die '"ont-geometrise-
ring" genoemd kan worden. In hoofdstuk 1 bespreek ik deze
"ont-geometrisering” en ik toon aan dat in de geometrische
fase der analyse de begrippen funktie van één variabele
en afgeleide funktie niet als grondbegrippen konden optreden.
De grondbegrippen der vroege Leibniziaanse analyse waren
dan ook variabele grootheid en (oneindig kleine) differen-
tiaal. Het is gebruikelijk de latere opkomst van de afge-
leide als grondbegrip der differentiaalrekening te ver-
klaren uit de logische bezwaren die gevoeld werden tegen
het begrip differentiaal. In de hoofdstukken 4 en 5 toon ik
aan dat een tweede belangrijke reden gelegen is in de onbe-
paaldheid der differentialen.

De verschillen tussen de Leibniziaanse analyse in de
jaren rond 1700 en de latere vormen van die analyse zijn
ook terug te vinden in de technieken en de keuze van pro-
blemen. Dit wordt in hoofdstuk 3 nader geillustreerd aan
de hand van voorbeelden betreffende de afleiding van for-
mules voor de kromtestraal, transformatieformules en even-
redigheden waarin differentialen optreden.

- -
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Hoofdstuk 4 is gewijd aan Leibniz' studies over

de gFondslagen der infinitesimaalrekening. Hoewel deze
§tud1es in de achttiende en negentiende eeuw geen direkte
invloed hebben uitgecefend, zijn ze van belang omdat ze
tone? hoe Leibniz, in zijn poging tot rigoreuze grond-
legging der infinitesimaalrekening, door de onbepaaldheid
der differentialen gedwongen werd de variabelen op te
vatten als funkties en het begrip afgeleide in te voeren.

In hoofdstuk 5 bespreek ik gedeelten uit Euler's
leerboeken der infinitesimaalrekening. Euler was van menin
da? de hogere orde differentialen, vanwege hun onbepaald- ®
he}d, niet thuishoren in de analyse - tegen de onbepaald-
heid van eerste orde differentialen had hij geen bezwaar
eévenmin als tegen hun oneindig klein zijn. Hij werkte '
technieken uit om hogere orde differentialen terug te
b??ngen tot eerste orde differentialen. Euler moest hierp-
b11 afg?}eide funkties, in de vorm van differentiaal-
c?eff1c1enten, invoeren. De onbepaaldheid van hogere orde
d}fferentialen vormde dus een der oorzaken voor de invoe-
ring van het begrip afgeleide.

Twee appendices zijn toegevoegd. In de eerste be-
SP?eek 1¥ enige fragmenten uit Leibniz' werk, waarin hij
zijn infinitesimaalrekening vergelijkt met de indivisibilia
methode van Cavalieri. Hierbij aansluitend bespreek ik de
;;aaﬁtwéargm het oneindig grote een veel geringer rol

ee in de Leibniziaanse infini i i
oneindig Kieine. infinitesimaalrekening dan het

.In.dg tweede appendix bespreek ik de vraag in hoeverre
de Leibniziaanse infinitesimaalrekening beschouwd mag
worden als voorloper van Non-standard Analysis, en in hoe-
verre de laatste als rechtvaardiging van Leibniz' gebruik
van infinitesimalen kan gelden.
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