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1. INTRODUCTION

With enthusiasm, style and dedication, our Groningen colleagues have made
the Dutch mathematical community aware of the fact that here, 300 years ago,
Johann Bernoulli embarked on a professorship in mathematics which he was to
hold for 10 years. It was, therefore, easy to decide on a main character for this
lecture: Johann Bernoulli (see Figure 1).

While in Groningen, Bernoulli lived in ‘Oude Boteringestraat’. Yesterday
evening 1 went there to experience the feeling of walking in his footsteps. 1
must confess I did not experience much. In Oude Boteringestraat he left no
noticeable traces; but in mathematics he did. Yet there is always something
elusive in the relation between a person — a historical person or a contemporary
— and her or his longer-term significance for some field of knowledge. It seems
such an obvious question: This mathematician, what did he do? Or conversely:
This part of mathematics, who created it? But even a slight acquaintance with
historical literature on mathematics makes it clear that these questions are
much too simple. Not infrequently theorems are due to others than those whose
name they bear, and anyway there is always a story behind the naming. These
arguments of naming and origin concern the relation between mathematicians
and mathematics. The relation is at the same time elusive and fascinating. On
the one hand, there is the single person, the mathematician, whose writings
one can read, and by reading one can form an image of this person at work.
On the other hand, there is the millenia-old tradition of doing mathematics,
with its long-term changes which determined how we see mathematics now,
and why we find our mathematics self evident.

Considering these things I had little difficulty in finding, as well as the
protagonist, a focus for my lecture; it would have to be a piece of mathematics
with which Bernoulli was engaged around 1695 and which could serve to explain
the fascination which, for me, lies in the relation between the single person
and the great lines of the development of mathematics. Such a fragment of
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F1GURE 1. Johann I Bernoulli. From: Opera Omnia 1 (1742). Courtesy
University Library, Groningen

Bernoullian mathematics is indeed available. It is not a magnificent piece of
work, but neither is it without significance. It is about exponential curves and
the exponential formulas used to represent them.

2. BERNOULLI

Let me start with the person Johann Bernoulli. T imagine how, sometime late
January 1697, he walked through Oude Boteringestraat from his home to the
lecture room. He had just written a letter to Leibniz (Figure 2) in which
he mentioned exponential equations. He considered these as his intellectual
property (be it shared with Leibniz) ~ why he did so will become clear later
on. Exponential equations had appeared in publications in the previous few
years in a way with which Bernoulli was decidedly unhappy. This had to do
with a Dutch scholar, Bernard Nieuwentijt. Nieuwentijt (Figure 3) left hardly
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F1GURE 2. Gottiried Wilhelm Leibniz

any traces in mathematics, but at that time he had published three works
of mathematics which created some uneasiness about the new differential and
integral calculus of Leibniz. In his books he had voiced several objections
against the fundamental concept of Leibniz’ new technique, namely the dif-
ferential. Bernoulli considered these objections nonsensical, but they did not
bother him and he gladly left the defence of the new method to Leibniz. Worse
was Nieuwentijt’s claim that Leibniz’ new method could not deal with expo-
nential equations. Nieuwentijt himself had presented some calculations about
these equations and had even derived a single correct result. How did Nieuwen-
tijt come to be interested in these equations? Bernoulli must have wondered
about that. Nothing really informative had been published about exponential
equations; only in the secure shelter of the private correspondence between
Bernoulli and Leibniz had they been dealt with. Two and a half years ago
Bernoulli had sent his version of the exponential calculus to Leibniz, as one of
the personal treasures which he proudly showed to the admired inventor of the
new differential and integral calculus. Leibniz had written back with praise,



4 Henk J.M. Bos

Ficure 3. Bernard Nieuwentijt

noting that he — Leibniz — had developed the same approach earlier but that
in some respects Bernoulli had come further than he. So, exponential equa-
tions were Bernoulli’s business. But now Nieuwentijt had really spoiled the
matter. Nieuwentijt could not differentiate exponential expressions (of course
he couldn’t; it was not that easy), so he had publicly alleged that this was a
weakness of the calculus. This had prompted Leibniz to publish the rules of he
exponential calculus in a brief article. He had mentioned that Bernoulli had
found the rules independently, but nevertheless the game had lost its suspense
and Bernoulli’s profit out of it was minimal.

Something had to happen — Bernoulli decided to publish his own version of
the exponential calculus. The article soon appeared in the March 1697 issue of
the journal Acta Fruditorum. It is this article ([5]) which I want to discuss in
the present lecture, but first some previous history has to be told. (For a short
chronology of the events around exponentials see Table 1.)

3. EXPONENTIAL CALCULUS

The context of Bernoulli’s (as well as Leibniz’) version of the exponential cal-
culus was the differential calculus as first published by Leibniz in 1684. At
present we know the differential and integral calculus as a theory about func-
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tions, their derivatives and their integrals, which themselves are also functions.
In its Leibnizian form the calculus was different; it was a theory of variables
and their differentials. Variables were the variable quantities in mechanical or
geometrical problem situations; thus the height and the velocity of a projectile,
or the coordinates of a point on a curve, were variables. Differentials were the
infinitely small increments or decrements of these variables, occurring if suc-
cessive (or infinitely near) stages (of the projectile in flight, or of the position
of points on the curve) were considered. Nieuwentijt’s objections in particular
concerned these infinitely small differentials. Leibniz’ calculus featured two
operations, differentiation, symbol d, and integration, symbol f (Leibniz orig-
inally called it ‘summation’). In his first article on the calculus of 1684 ([12])
Leibniz had given the rules for differentiation of variable u, v:

d{u+v) = dutdv
dluv) = udv+vdu
U vdu — udv
d— = —5—.

v v
The rules only concerned the algebraic operations addition, subtraction, mul-
tipliction, division and root extraction. In particular, they did not cover ex-
pressions in which the exponents were variable. The exponential calculus pro-
vided additional rules applicable to such exponential expressions. The rule that
Leibniz published in 1695 (in reaction to Nieuwentijt’s objections and with due
recognition of Bernoulli’s independent discovery) was:*

d(u”) = v’ log udv + vu® " 'du . ' (1)

In the corresponding modern form (with functions instead of variables) it is
the familiar rule

(w?) = u’logu.n +vu’ "t (2)

in which © and v are functions of some independent variable ¢ and ' indicates
differentiation with respect to t.

Now this was a really new result. The rule itself was new, but the essential
novelty lay in the fact that variable exponents had hardly been studied before.

2 [14] pp. 324.
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c. 1640  Analytic Geometry {Descartes, Fermat); equations involving +, —,
X, —, roots but no variable exponents.

1679  Leibniz writes to Huygens about z” + =z = 30.

1682  (Feb.) Leibniz publishes the equation z* + z = 30 [11].

1684  (Oct.) Leibniz’s first article on the differential calculus [12].

1690-91  Leibniz discusses exponential equations in correspondence with Huy-
gens; he solves an inverse tangent problem, finding l%i = b**¥ as the
equation of the curve.

1692 (July) In an article in the Journal des S¢avans ([13]), Leibniz men-
tions exponential equations and the need to study the related curves.

1692  (Fall) Bernoulli develops his exponential calculus.

1694  Niewentijt publishes Considerationes ([17]) in which he claims that
the Leibnizian calculus cannot deal with exponential expressions.

1694  (Sept.) Bernoulli sends his treatise on the “Calculus Percurrens” to
Leibniz.

1695  (June) Review ([1]) of Nieuwentijt’s Considerationes in the Acta
Eruditorum.

1695  Nieuwentijt’s Analysis Infinitorum ([18]) appears.

1695  (July) Leibniz answers Nieuwentijt’s criticisms, publishes the
rules for differentiating exponential expressions, mentioning that
Bernoulli also, and independently, had found the rules ([14]).

1695  (Oct.} Bernoulli arrives in Groningen.

1696  Nieuwentijt publishes his Considerationes secundae ([19]).

1696  (Febr.) Review of Nieuwentijt’s Analysis infinitorum in the Acta
Eruditorum ([2]).

1697  (March) Review of Nieuwentijt’s Considerationes secundae in the
Acta Eruditorum ([3]).

1697  (March) Bernoulli’s treatise on exponentials appears in the Acta
Eruditorum ([5}).

1697  (June) The Acte Eruditorum publishes excerpts from Nieuwentijt's
Considerationes Secundae ([4]).

TABLE 1. Brief chronology of the events around exponentials.

4. VARIABLE EXPONENTS
Exponential expressions occur in formulas, and formulas are a relatively recent
phenomenon in mathematics. Viete was the first (around 1600) to introduce
letters to represent both unknowns and indeterminates. Descartes streamlined
this approach and in his writings we find algebraic formulas much like the ones
~we are used to. Moreover, Descartes and Fermat elaborated the method of
representing curves by equations (in two unknowns) and thereby introduced
-analytic geometry. However, their formulas only involved the operations +, —,
x, = and root extraction. In fact, for philosophical reasons, Descartes held that
only these operations ought to be accepted in pure, exact geometry. Thus there
were no formulas involving exponentials, logarithms or trigonometric relations.



Johann Bernoulli on exponential curves 7

It was Leibniz who first introduced variable exponents. In 1679 he wrote
to Christiaan Huygens about the equation 2% — x = 24, which can easily be
‘seen’ to have a solution z = 3, but for which none of the known methods of
solution of equations applied.® Huygens, however, saw no use for this symbolic
speculation. Leibniz also mentioned the equation briefly in an article published
in 1682 ([11]).

Some ten years later, Leibniz mentioned exponential expressions again to
Huygens. Their correspondence had been interrupted for some time, but in
1690 Leibniz resumed it and tried to convince Huygens of the power of his
new calculus. Huygens was sceptical* and suggested that Leibniz should test
his method on a number of problems. For this purpose Huygens took two
algebraic curves and calculated their tangents by methods that had been known
for some time. He introduced some rewriting of the resulting expressions so
Leibniz would not be able to guess what the curves were by reconstructing
the tangent calculation; then he sent the result to his correspondent with the
challenge to determine which were the original curves. Problems of this type
— to determine a curve from a given property of its tangents — had become
important at that time; they were called ‘inverse tangent problems’. In modern
terms they lead to first-order differential equations. Huygens determined the
tangents by calculating the so-called ‘subtangent’ o, which is the distance along
the axis between the points in which the tangent and the ordinate respectively
intersect the axis (see Figure 4). However, he omitted to make clear that he
took the subtangent to be positive if the tangent intersected the axis to the left
of the ordinate. As it happened, Leibniz used the opposite convention for the
sign of the subtangent. Thus Leibniz saw himself confronted with a different
problem than the one Huygens had in mind, in fact a more difficult one; its
solution was not an algebraic curve, it involved a logarithmic relation. Leibniz
wrote the equation of the curve he had found in terms of variable exponents:

23_-7{ — b2y
h 3

and sent this formula to Huygens. Understandably Huygens was unimpressed;
whatever the formula meant, it was not the correct solution; apparently Leibniz
was playing empty symbolic games which did not solve problems. It took
Leibniz a good number of letters to clear up the misunderstanding and to
convince Huygens that his new calculus was more than new notations for old
methods, but in the end Huygens did change his mind. Meanwhile, Leibniz
had once more mentioned variable exponents in an article; in 1692 ([13}) he
wrote about the equations % + x = 30 and ¢® = ab®!. The latter could
be solved by logarithms (z = %), but for solving the former (that is,
finding the obvious solution z = 3 by a general method), Leibniz asserted,
one needed non-algebraic curves. He probably had in mind that the solution
of 2% + z = 30 was the z-coordinate of the point of intersection of the line

3 Letter to Huygens of Sept. 8, 1679, [10] vol. 8 pp. 214-219
4 The arguments I summarise here started with Leibniz’ letter to Huygens of July 25, 1690,
[10] vol. 9 pp. 448-452,
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y = 30 — z and the curve y = z®. In the article he called such non-algebraic
curves ‘transcendental’ because, as he wrote, “they pass through all degrees”®

Probably it was this article of 1692 which induced Johann Bernoulli (and
perhaps also Nieuwentijt) to study exponential expressions. Bernoulli worked
out his method for differentiating such expressions in 1692. He gave some hints
about it in a letter to PHopital (whom he had taught the Leibnizian calculus
in Paris) and it is interesting to note in the Marquis’ answer how difficult the
concept of a variable exponent was:

As to your new logistic calculus I cannot imagine at all what you have
in mind, for what can m™ mean if m and n represent lines? A line to
the power indicated by another line?®

The passage shows the conceptual problem connected to exponential expres-
sions: Mathematicians generally regarded variables in equations to represent
line segments; exponents, however, indicated dimensions or powers and had
therefore to be integer or at least rational numbers.

In 1694, as I mentioned, Bernoulli sent his exponential calculus, or “calculus
percurrens” as he called it, in a letter to Leibniz. In the same year Nieuwentijt
expressed his opinion that exponentials could not be dealt with by Leibniz’
calculus, and, as we have seen, this prompted Leibniz to publish the rules for
differentiating exponential expressions in 1695. But Nieuwentijt made it clear,
in publications of 1695 and 1696, that Leibniz had not convinced him. And so
we are back at the situation which (so I imagine) Bernoulli considered on his
walk from home to his lecture in late January 1697.

5. BERNOULLI'S ARTICLE OF 1697

I now turn to the article in which Bernoulli published his version of the ex-
ponential calculus. It took up 8 pages of the journal Acta Eruditorum, one
of the earliest European scientific journals, founded, by Leibniz and others,
in 1682. The journal contained mostly reports on books on a wide range of
subjects that would interest the ‘Erudite’. But with some regularity there also
appeared mathematical articles such as the one by Bernoulli. Its one and only
figure (see Figure 7) was placed, together with two figures of another mathe-
matical article, in a small corner of a figure sheet mostly devoted to instruments
for amputations and methods for dressing amputation wounds.

Bernoulli started by explaining how exponential expressions should be inter-
preted. He referred them to one fundamental curve, the Logarithmica, which,
he claimed, was “truly the simplest of all transcendental curves”.” The logarith-
mica (Figure 4) had been studied from ca. 1650. Bernoulli gave two equivalent
definitions of the curve:

5 [18] p. 279: “parceque il n’y a point de degré qu’elles ne passent” — which is an apt
characterization of the exponential expression z*.

6 Letter of 'Hépital to Bernoulli of May 16, 1693, [8], p. 172: “& l'egard de vétre calcul
logistique je ne m’en puis former aucune idée, car que peut signifier m™ si m et n marquent

B des lignes? une ligne elevée a la puissance designée par une autre ligne?”

" 5] p. 180: “omnium profecto curvarum transcendentium simplicissima”.
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FiGURE 4. The Logarithmica

1. A Logarithmica is a curve whose subtangent o (along an axis as in
Figure 4) is constant.

2. A Logarithmica is a curve for which any arithmetical sequence of
abscissas (along an axis as in Figure 4) corresponds to a geometrical
sequence of ordinates (and vice versa).

Both definitions determine a family of curves; Bernoulli fixed one curve in
particular by taking the vertical axis (which he used as X-axis) along the
ordinate whose length was equal to the subtangent o, and by taking the unit
along the axes equal to . The Logarithmica defined the relation z < logz:
the ordinate x corresponded to the abscissa logz.

In modern terms the equation of Bernoulli’s Logarithmica is © = e”. How-
ever, it is important to note that Bernoulli did not introduce the curve on the
basis of any equation, but by geometrical properties which implicitly define the
relation between abscissas and ordinates. In particular, Bernoulli did not use
exponentials or powers in his definitions.

6. THE RULES OF THE EXPONENTIAL CALCULUS
Bernoulli then listed the rules of the exponential calculus. The first was:

log(u®) =vlogu . (3)

The rule was evident, Bernoulli wrote, from the well known logarithm tables.
Such tables were indeed available since c. 1600, but it should be noted that these
early tables were not based on the conception of logarithms as the inverse of
exponentials. Rather, logarithm tables were conceived of in the sense of the
second definition of the logarithmica mentioned above: the tables consisted
of corresponding arithmetical and geometrical series, useful for transforming
multiplications into additions. The second rule was

_du

d(logu) (4)

(2



10 Henk J.M. Bos

This rule followed geometrically from the first defining property of the Logarith-
mica; the familiar configuration with the characteristic triangle at a point with
abscissa log v and ordinate u on the curve (cf. Figure 5) yields du : d(logu) =
u : o, and because the unit is taken to be equal to o, we arrive at Equation 4.

du

T
d(log u)

Logarithmica

’ ~log u’

F1GURE 5. Derivation of the second rule
The third rule was:
d(u®) = vu'"du + v’ log udv ; (5)

this was the rule published earlier by Leibniz, cf. Equation 1. To derive Equa-
tion 5 Bernoulli wrote w = u”, derived from this logw = vlogu by the first
rule, and differentiated using the second rule, arriving at
d d
AL log udv , (6)
w U
from which Equation 5 follows by re-inserting w = u". Figure 6 shows the
passage in Bernoulli’s article containing the third rule.

7. THE CURVE y = z°

Bernoulli illustrated the use of the new rules with several examples. 1 discuss
one of these, namely the exponential curve y = x®. Bernoulli first explained
what the equation meant. To do so he proposed the following procedure:

ConsTRUCTION 1 & - Construction of points on the curve y = z°
Given: a ‘Logarithmica’ AB (see Figure 7 which gives the figure as it appeared
in the Acta Eruditorum article), with subtangent o = 1; AD = 1; it is required
to construct points on the curve represented by y = x*.

Construction: 1. Take an arbitrary point B on the Logarithmica
with abscissa DC' and ordinate BC'
2. Take line segment DM along the axis such that AD : BC = DC

8 [5] pp. 184.
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DM.

3. Draw M N, take F'F equal to M N.

4. The point F'is on the curve y = z%.

5. To find more points on the curve, repeat this procedure starting
from other points on the Logarithmica.

Putting BC = z and DC' = logz, it is easily seen that this procedure is the
translation in geometrical terms of the relation logy = zlogz which follows
from the equation of the curve by applying the first rule.

It should also be noted that the procedure does not in fact provide the curve
as a whole, but only an arbitrary number of points on the curve. Such con-
structions of curves were called “pointwise”. During the seventeenth century,
mathematicians came to accept pointwise constructions as adequate representa-
tions of curves, be it that most mathematicians prefered continuous procedures



12 Henk J.M. Bos

X4 3 .
/\ [ 4 } ®
o 9 » 71
L.
R
H D ‘CM

F1cure 7. The figure from Bernoulli’s 1697 article

for tracing curves.

Having thus fixed, by a pointwise construction, the meaning of the expres-
sion y = %, or in other words, having actually giwen the curve by means of
this construction, Bernoulli went on to derive further results about the curve.
He first dealt with drawing tangents, explaining the following construction:

CoNSTRUCTION 2 ? — The tangent to y = 7

Given: a Logarithmica AB with respect to perpendicular axes through D (cf. Fig-
ure 7), AD = 1, further the curve y = x*, drawn in the left-hand quadrant with
respect to a vertical X -axis and a horizontal Y -axis, F is a point on the curve;
it 18 required to construct the tangent at F' .

Construction: 1. Draw the horizontal ordinate F'L of IV, L is on the
vertical axis; F'L prolonged intersects the Logarithmica in B; draw the
ordinate BC of B.

2. Take E'L along the vertical axis with (AD 4+ DC): AD = AD : FL.
3. LF is the required tangent at F.

If we put DE =2, FF =y =2% and BB = DC = logz, it is easily seen that
the procedure in step 2 is the geometrical translation of the formula
. dx
141 l=1:y— 7
(14 logx) Y a0 (7)
which follows directly from a calculation of dy according to the third rule:
dy = d(z®) = 2"(1 +logz)dz = y(1 + log z)dz . (8)

9 (5] pp. 184.
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It is noteworthy that Bernoulli felt that Equation 8 was not sufficient in this
case, but that the relation it expressed had to be presented in geometrical form,
that is, by an explicit construction.

I mention briefly three further properties of the curve y = 2% that Bernoulli
explained in his article!® (cf. Figure 7). Two of these relate to special points
on the curve. He determined the z-value DR of the point O on the curve with
minimal distance from the vertical axis. His (correct) result is equivalent to
the equality DR = e™!. He also stated that the curve meets the horizontal
axis in a point H with HD = AD, which in modern terms implies the result
limg o xz* = 1. '

The third property of the curve was a virtuoso result, a fitting proof of
Bernoulli’s mastery; it concerned the quadrature of the curve. Bernoulli claimed
that the area bounded by the curve, the ordinate GA, the segment AD of the
vertical axis and the initial ordinate DH could be expressed as the following
series:

1. .1 1 1
i i 9
22 * 3% 44 + 5° ©)
Bernoulli did not explain how he derived his result. From his correspondence
with Leibniz!? we know that he developed fow z®dx as a double series in x and

1

logz. In the special case of fol z%dx (which corresponds to the area GADH)
the series reduces to the one in Equation 9. Leibniz had these results on the
‘quadrature’ of the curve y = % in mind when he acknowledged that Bernoulli
had pursued the study of exponentials further than he himself had done.

8. A COROLLARY

At the end of his exposition on exponentials, Bernoulli added a corollary which

1s illuminating. He considered the exponential curve y = a® (a a constant)
dx

and calculated its subtangent o = Yy Applying the third rule gave dy =

a”logadxr = ylogadz, and hence o = oga So the subtangent was constant
which meant that y = a” represented a Logarithmica. The result, as it were,
closed a circle in Bernoulli’s treatment of exponential expressions: it proved
that the curve he took as the basis for his theory, and which he introduced
by its geometrical properties, independently of powers or exponents, was itself
also an exponential curve. Thus only at the end of his treatment we find what
from our modern point of view we would expect to be placed at the beginning,
namely the explanation of the nature of the simplest exponential curve, y = a®.
The fact that this result comes as a final corollary underlines once more the
primacy of the geometrical, constructional definition of the logarithmic relation
in Bernoulli’s exposition of the theory.

This is not to say that Bernoulli underestimated the significance of the
corollary. He commented (not missing the opportunity to refer to Nieuwentijt’s
insufficient understanding of the matter):

10 15] pp. 184-185.
11 Cf. letter to Leibniz of September 2, 1694, [15] vol. 3 pp. 143-152.
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Thus by one stroke of the pen I have disclosed the clear and royal road
which Mr. Nieuwentijt asked for, namely the way to reduce the loga-
rithmica — a curve which at present anyone knows - to an exponential
equation.?

9. ASSESSMENT

I have dealt with Bernoulli’s article it in some detail in order to show how
much was involved in the first appearance of such a simple rule as the one
for differentiating an exponential expression. However, I opened this lecture
with the question of the relation between the mathematician and mathematics,
between the single person and the main lines of development, so I should turn
now to these more general considerations. Bernoulli’s article is one of the
traces he left in mathematics, and we want to assess its significance in the
global development of mathematics. To do so we need an outline of this global
development which may serve as background or framework for interpreting the
significance of Bernoulli’s contribution. As the article contained an important
innovation in analysis, a natural choice for such a framework is the global
history of Analysis.

During the 100 years of which Bernoulli’s Groningen period roughly forms
the middle, three key processes occurred in the history of analysis (cf. Ta-
ble 2): the creation of analytic geometry, c¢. 1640, by Descartes and Fermat,
the creation of the differential and integral calculus, c. 1690, by Newton and
Leibniz, and the creation of the specific 18th-century style of analysis by Euler
c. 1740. In their new analytical approach to geometry, Descartes and Fermat
developed the use of algebra in solving geometrical problems. Most of these
were construction problems, but some also involved curves, and in this connec-
tion the two mathematicians pioneered the method of representing curves by
equations. The new methods of Newton and Leibniz were developed to deal
with more complicated problems, such as the determination of tangents and
areas of curvilinear figures and, most importantly, the “inverse tangent prob-
lems” mentioned above. For these problems the algebra of analytic geometry
was insufficient. Newton and Leibniz created new concepts and symbolisms
which made it possible to deal with the infinitesimal processes, implicit in the
determination of tangents and areas, by means of symbolic procedures. Their
new methods were an extension of algebra by the addition of new operations
equivalent to differentiation and integration. Finally, Euler was the key figure
in establishing of the characteristic 18th-century style of analysis. Whereas in
Newton’s and Leibniz’ period the problems of analysis were still primarily geo-
metrical, now these problems had themselves become analytical: 18th-century
analysis centred on the solution of differential equations.

In the course of these hundred years the very meaning of the term ‘anal-
ysis’ changed fundamentally. In the 1640’s it designated algebraic techniques
for finding solutions of geometrical (and number theoretical) problems. The

12 5] p. 186: “unico ergo ductu calami planam regramgue qualem Dn. Nieuwentiit desiderat,
viam aperui, Logarithmicam, hoc tempore nulli non cognitam, ad aequationem exponen-
tralem reducends.”
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Protagonists Problems The growing | The changing
arsenal challenge
c. 1640 | Fermat, Geometrical Algebra Construction
Descartes construction
problems
c. 1690 | Newton, Tangents, Differentiation Explicit
Leibniz Quadratures, and construction
Inverse Integration of curves
tangent
problems
c. 1740 | Euler Differential ANALYSIS Best
equations analytical
expression

TABLE 2. Analysis c.. 1640 — c. 1740

new techniques of Newton and Leibniz were first called “infinitesimal” analy-
sis, to distinguish them from the earlier analysis which only dealt with finite
quantities. Then, in the eighteenth century, the indication “infinitesimal” was
dropped, analysis came to mean the study of formulas, “analytical expressions”,
involving infinitesimal procedures such as differentiation, integration and series
expansion. The terminological change accompanied an impressive process of
growth; the analytical textbooks of Euler, written in the middle period of the
eighteenth century, display a richness of material and methods which is all the
more imposing if one considers that 100 years before there was nothing of its
kind available in mathematics.

Taking this very rough sketch of the developments in analysis at the time
as a framework for an assessment, we recognise Bernoulli’s achievements with
respect, to exponential expressions and curves as a considerable innovation and
extension; he (and Leibniz likewise) created a new and powerful kind of ana-
lytical expressions, and rules for their manipulation.

10. THE ROLE OF THE-FRAMEWORK

This assessment of Bernoulli’s achievement is sound enough, but it leaves lit-
tle room for the aspects which are so striking when one studies the article in
detail, in particular, the strongly geometrical approach and the absence of the
interpretation of m™ as m to the power n. The chosen framework, namely the
development of analysis seen as evolution towards the later 18th-century style,
leaves little room for interpreting these remarkable aspects; rather they ap-
pear as deplorable obstacles which temporarily blocked the smooth progress of
mathematics and thereby produced a more haphazard process of development
than would have been necessary or logical. In particular, the significance of the
actual form of the article, the style in which Bernoulli wrote it, is lost within
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this framework. As a result, the connection between the person Bernoulli, who
composed the article in his own style, and the main lines in the development
-of mathematics, remains underexposed and elusive. The framework entails the
danger that the development of mathematics is seen as a sequence of great
inventions, larded with endearing anecdotal stories of strange, inefficient be-
haviour of mathematicians.

11. AN ALTERNATIVE FRAMEWORK: THE CHALLENGES
When we put the main lines of the development of analysis central, we look at
history with foreknowledge of the present. But, of course, that was not how
Bernoulli saw his mathematics. For him the contemporary challenges of math-
ematics determined his moves, not the endpoints of the lines of development.
So, if we look for an alternative framework in which to assess Bernoulli’s trea-
. tise on exponential expressions and curves, we may consider how the challenges
of mathematics changed. ‘

Throughout the period ¢. 1640 — c. 1740 (cf. Table 2) the main challenge
of mathematics was to find methods for solving problems. What were these
problems and what did it mean to solve them? The problems which, around
1640, led to the analytical inventions of Descartes and Fermat were geometrical
problems. Characteristically, they presupposed a given geometrical figure, and
it was required to construct additional lines or figures satisfying certain given
conditions. Thus, in the famous problem of angle trisection, an angle was
supposed to be given and two straight lines should be constructed through the
vertex, dividing the angle in three equal parts. Constructions of such problems
should preferably be performed by ‘ruler and compass’ (that is, by straight
lines and circles), but for problems that were not solvable in that way (such as
the trisection problem) early modern mathematicians searched for other, more
potent means of construction.*?

Fifty years later, at the time Bernoulli wrote his treatise on exponentials,
the challenges had changed. New problems had arisen, notably those for whose
solution the methods of the differential and integral calculus were created. The
problems were mentioned above: the determination of tangents and areas of
curvilinear figures and the “inverse tangent problems”. Solutions of such prob-
lems were still constructions, which meant that inverse tangent problems, or,
in general, problems that required the determination of an hitherto unknown
curve, were considered solved only if the curve in question was somehow con-
structed. We have seen one way of constructing new curves in Bernoulli’s
explanation of the meaning of the formula y = 2%, namely, a pointwise con-
struction using another curve (the Logarithmica) which was assumed given.

Around 1700 a crucial change occurred in this constellation of problems and
their solution; the explicit geometrical construction of the solution was less and

I3 It is indeed a sign of how strongly the challenges of mathematics have changed, that
at present the main interest of the trisection problem is in the proof that it cannot be
constructed by ruler and compass. For 16th and 17th century mathematicians the challenge
was not to prove the impossibility of trisecting by ruler and compass, but to find other
procedures of construction by which it could be done.
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less considered to be a real challenge. The differential and integral calculus
offered a new means to attack problems involving unknown curves, namely
differential equations. Soon mathematicians saw these differential equations
themselves, rather than the geometrical problems they represented, as the main
challenge. At the same time they no longer required an explicit construction of
the required curve as solution. Rather, they considered differential equations
solved if an analytical expression (an equation) was found which in some sense
expressed the nature of the curve in the best possible way.

This development in mathematics is easily overlooked from a modern point
of view. It was, however, a most remarkable one. It concerned the role of
equations in analysis. In the mid seventeenth century mathematicians saw an
equation F(z,y) = 0 primarily as a challenge: make clear which curve is repre-
sented by this equation; do so by explicitly constructing the curve. A hundred
years later, equations were primarily seen as objects, with no challenge at-
tached to them other than to determine, if possible, a more appropriate equiv-
alent equation. Explicit construction as basis for understanding the objects
of mathematics was replaced by a trust in the formula, based on a gradually
established conviction that the equations of analysis always, explicitly or im-
plicitly, defined an ob ject, and that therefore this object could be accepted as
given or as existent. A process of habituation to the world of formulas and
equations finally eliminated the demand for a geometrical explanation.

12. SIGNIFICANCE

I now return to Bernoulli’s article. The considerations above provide us with
an alternative framework to assess the significance of his treatise on exponen-
tials, namely the contemporary mathematical challenges. Bernoulli took up
the challenges presented by exponentials. They were: 1) to use the exponential
expressions, but also, 2) to corroborate the security of their use according to
the requirements that were then current, that is, by explicit construction of
the objects represented by the expressions. By accepting both challenges he
did more than creating a new analytical method, he also contributed decisively
to the habituation of the mathematical public to exponential expressions, and
analytical expressions in general, as reliable mathematical objects.

13. CONCLUSION
By realizing what the challenges were in mathematics around 1700, we under-
stand the unfamiliar geometrical approach to the material and we can recognize
Bernoulli’s treatise as one step in the transition from explicit construction to
implicit function. To realize this, an an interpretational framework was needed
such as the second one I discussed. This framework was informed by the ques-
tion of the interaction between mathematics and the mathematician — how
mathematics appeared in the eyes of mathematicians, which challenges, in their
perception, mathematics posed. For me the fascination with the mathematical
enterprise lies primarily in this interaction and in its changes over time.

I think that the interaction between mathematics and the mathematician
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is too often overshadowed by the attention to results. Results are tangible, we
work with them, we know them. In historical accounts of mathematics there is
usually more emphasis on the results of mathematicians from earlier times than
on the challenges that provoked these results. This imbalance often stands in
the way of a real understanding of past mathematics and its development.

But the imbalance is not restricted to the understanding of past mathemat-
ics. Even now, the interest in the interaction between mathematics and the
mathematician is easily overshadowed by a preoccupation with results. As in
the case of past mathematics, this may stand in the way of a full understanding
of our field. I feel that this is an issue of some importance, and therefore it has
been a privilege for me to have the occasion, in this opening lecture of your
congress, to call your attention, by an example from history, to the interaction
between mathematics and the mathematician.
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