Did Copernicus steal ideas from Islamic astronomers?

November 2023

Viktor Blåsjö

Utrecht University

Ptolemy
Alexandria
2nd century

Copernicus Poland
I6th century
|3th-I4th centuries

PART1

"The question therefore is not whether, but when, where, and in what form he learned of Maragha theory."

A CRITIQUE OF THE ARGUMENTS FOR

 MARAGHA INFLUENCE ON COPERNICUSA rebuttal of recent arguments for Maragha influence on Copernicus

VIKTOR BLÅSJÖ, Utrecht University

Mathematics, the mathematical sciences, and historical contingency: Some thoughts on reading Netz
F. Jamil Ragep

Institute of Islamic Studies, McGill University, Montreal, Canada

For the most part, historians of science have accepted the influence of Islamic astronomy on Copernicus. ${ }^{14}$
${ }^{14}$ Despite some recent, rather insubstantial claims to the contrary, the Islamic background to Copernicus is fairly well established; see Ragep (2007) and, more recently, Nikfahm-Khubravan and Ragep (2019).

lunar model

Islamic

 Science and the Making of the European RenaissanceTrying to solve the same problem with the same tools leads to similar outcomes.

simple moon model doesn't work

WAN'TED:

Ptolemy's solution: bring epicycle alternately closer and further away

Problem for Ptolemy:

distance to moon varies unrealistically

WANTED:

Without greatly varying the radius.

Copernicus's and Ibn al-Shatir's solution: One more epicycle

"consensus"

Amir Mohammad Gamini

Routledge Handbook on the Sciences in Islamicate Societies
 Practices from the 2nd/8th to the 13 th/19th Centuries Edited by Sonja Brenties

The connections between Coperncicus, Ibn al-Shāṭir and earlier members of the Marāgha school have been intensely studied by historians of astronomy since their discovery in the 1950s. Despite some recent controversy, the main consensus is that Copernicus obtained information from works of al-Ṭūsī, al-'Urḍī, and Ibn al-Shāṭīr, probably during his education in Italy, and incorporated their ideas in his own astronomical work (Swerdlow and Neugebauer 1984; Nikfahm-Khubravan and Ragep 2019). A central problem concerns the transmission of

THE MERCURY MODELS OF IBN AL-ŠĀṬIR AND COPERNICUS

SAJJAD NIKFAHM-KHUBRAVAN

Institute of Islamic Studies, McGill University, 3485 McTavish St., Montreal, Quebec, H3A 0E1, Canada
Email: sajjad.nikfahmkhubravan2@mail.mcgill.ca

F. JAMIL RAGEP

Institute of Islamic Studies, McGill University, 3485 McTavish St.,
Montreal, Quebec, H3A 0E1, Canada
Email: jamil.ragep@mcgill.ca

Noel Swerdlow, throughout his career, has insisted that the similarities between Copernicus' models and those of his Islamic predecessors "is so close that independent invention by Copernicus is all but impossible ${ }^{7}$ ". But for Mercury (as well as for Venus) this creates something of an unacknowledged conundrum for Swerdlow. Since Ibn al-Šāṭir's Mercury model and Copernicus' in De revolutionibus are virtually the same, one must then explain why the Commentariolus model (from some 30 years earlier) is different, not to say flawed, if, as Swerdlow has maintained, Copernicus did have Ibn al-Šāṭir's one and only Mercury model when composing the Commentariolus. Swerdlow has provided a complex scenario, most recently repeated in an article, that culminates with the Commentariolus model ${ }^{8}$. But it has seemed odd to us that Copernicus substituted a flawed model when, according to Swerdlow, he had a much better one immediately at hand. We are also uncomfortable with the numerous ad hoc assumptions Swerdlow needs to make in order for Copernicus to reach, over a 30-year period, essentially what he had all along. Thus part of the purpose of this paper is to suggest an alternative account that we believe provides a more straightforward explanation ${ }^{9}$. Inasmuch as Swerdlow has already offered a critique of some of the central points in this paper, we will need to respond to his criticisms ${ }^{10}$.

Transmission believers

now

diametrically disagree with each other.

JHA Copernicus's Derivation of the Heliocentric Theory from Regiomontanus's Eccentric Models of the Second Inequality of the Superior and Inferior Planets

Journal for the History of Astronomy

Because Copernicus does not use Ibn al-Šāṭir's parameters, and in fact makes some ill-advised choices, we think it much more likely that he had diagrams but not Ibn al-Šāṭir's text.

JHA Copernicus's Derivation of the Heliocentric Theory from Regiomontanus's Eccentric Models of the Second Inequality of the Superior and Inferior Planets

Journal for the History of Astronomy
2017, Vol. 48(I) 33-61

Marketing department terminology trick to try to make people think there is a connection to heliocentrism.

When we say Ibn al-Šāṭir's models have a "heliocentric bias", we mean that Ibn al-Šāṭir has made the Earth the center of mean motion (α). This gives his system a certain "bias" that makes the transformation from a geocentric to heliocentric system much easier.

Ibn al-Šāṭir's models were easier to transform into the heliocentric models of the Commentariolus and De rev. than the other possibilities available to Copernicus.

So the fact that the earth is at the centre of the sphere in Ibn ash-Shātir's model, Professor Ragep's "quasi-homocentricity" and "heliocentric bias," has no significance for the very transformation he shows since Ptolemy's model would do just as well, for the transformation affects only the second inequality. The same would be true of the model in De revolutionibus in which the larger epicycle is replaced by an equal eccentricity on the apsidal line, and all that Professor Ragep writes at such length about why it cannot be done with Ptolemy's model, or any model with eccentricities on the apsidal line, about "centering on the Earth," "quasi-homocentricity," and "heliocentric bias," as well as his objection to a "bifurcated" derivation, is beside the point, in fact simply wrong.

Mercury model

THE DERIVATION AND FIRST DRAFT OF COPERNICUS'S PLANETARY THEORY
A TRANSLATION OF THE COMMENTARIOLUS WITH COMMENTARY
NOEL M. SWERDLOW
Assistant Professor of History, The University of Chicago
PROCEEDINGS OF THE AMERICAN PHILOSOPHICAL SOCIETY, VOL. 117, NO. 6, DECEMBER 1973
Copernicus's description
is utter nonsense as a description of the apparent motion of Mercury.
he copied it
without fully understanding what it was really about. Since it is Ibn ash-Shāțir's model, this is further evidence, and perhaps the best evidence, that Copernicus was in fact copying without full understanding from some other source, and this source would be an as yet unknown transmission to the west of Ibn ash-Shāṭir's planetary theory.

Islamic

 Science and the Making of the European RenaissanceWikipediA The Free Encyclopedia

Ibn al-Shatir

Article Talk

From Wikipedia, the free encyclopedia
'Abu al-Ḥasan Alā' al-Dīn bin Alī bin Ibrāhīm bin Muhammad bin al-Matam al-Ansari ${ }^{[1]}$ known as Ibn al-Shatir or Ibn ash-Shatir (Arabic: ابن الشاطر; 13041375) was an Arab astronomer, mathematician and engineer. He worked as muwaqqit (موقت, religious timekeeper) in the Umayyad Mosque in Damascus and constructed a sundial for its minaret in 1371/72.

Possible influence on Nicolaus Copernicus [edit]

Copernicus's
Mercury model was flawed in the fact that he was not able to properly understand the model first created by lbn al-Shatir.

THE DERIVATION AND FIRST DRAFT OF COPERNICUS'S PLANETARY THEORY a TRANSLATION OF THE COMMENTARIOLUS WITH COMMENTARY

NOEL M. SWERDLOW
Assistant Professor of History, The University of Chicago
PROCEEDINGS OF THE AMERICAN PHILOSOPHICAL SOCIETY, VOL. 117, NO. 6, DECEMBER 1973
Copernicus's description ${ }_{\text {accurate }}$
is utter nonsefise as a description of the apparent motion of Mercury.
he copied it
without fully understanding what it was really about. Since it is Ibn ash-Shāṭir's model, this is further evidence, and perhaps the best evidenee, that Copernicus was in fact copying without full understanding from some other source, and this source would be an as yet unknown
transmission to the west of Ibn ash-Shāṭir's and this source would be an as yet unknown
transmission to the west of Ibn ash-Shāṭir's planetary theory.

no evidence

at all

Swerdlow's reply on his Mercury argument:

"You got me there. I should not have said that."

Re: Questions concerning the relation of Copernicus's models to Maragha models
Miktor Blåsjö Dear Professor Swerdlow, I was very happy to receive your thorough comments o... 14/06/2014
\therefore Noel Swerdlow I have made some comments on what you have written. I am also sending this, a... © 17/06/2014

Blåsjö does point to an illuminating mistake in Swerdlow's understanding of the Mercury model that will figure in our own analysis.

But as Blåsjö has recently shown, and as we will discuss below, Swerdlow based his assessment on a misunderstanding of what Copernicus was saying regarding the behavior of the Mercury model.

Ragep agrees that I disproved what Swerdlow called "perhaps the best evidence."

Blåsjö also wishes us to believe that by showing that Swerdlow misunderstood what Copernicus was saying, this somehow disproves Swerdlow's conclusion that Copernicus was copying Ibn alŠāṭir's model. Although this is an unwarranted leap on Blåsjö's part, his analysis does provide a key to showing an even stronger connection between Ibn al-Šāṭir and Copernicus.

Of course I never said any such thing.

Ptolemy's Venus: epicycle + equant

Copernicus's
Commentariolus Venus: epicycle + epicycle

Ptolemy's Mercury: epicycle + equant + variable radius

Copernicus's
Commentariolus Mercury: epicycle + epicycle

+ variable radius (Tusi)

Standard Ptolemaic epicycle

Tusi couple

Ptolemy's Mercury: \approx + variable radius

Copernicus's
Commentariolus Mercury: epicycle + epicycle

+ variable radius (Tusi)

Ibn al-Šāṭir's Mercury model is quite distinct, and its virtual identity with the De rev. model is not something that can be dismissed as a "natural" outcome.

Allegedly can't be "natural" because there were many Mercury models.

There was a wide array of non-Ptolemaic Mercury models
Quṭb al-Dīn al-Šīrāzī claims to have invented nine different Mercury models ${ }^{79}$, and Khafrī presents four

Ibn al-Šāṭir's Mercury model is quite distinct, and its virtual identity with the De rev. model is not something that can be dismissed as a "natural" outcome.

There was a wide array of non-Ptolemaic Mercury models
Quṭb al-Dīn al-Šīrāzī claims to have invented nine different Mercury
models ${ }^{79}$, and Khafrī presents four
So making up models is easy.
Why would Copernicus copy anyone then?

Ibn al-Šāṭir's Mercury model is quite distinct, and its virtual identity with the De rev. model is not something that can be dismissed as a "natural" outcome.
\uparrow No equant.

All with equants. \downarrow

There was a wide array of non-Ptolemaic Mercury models
Quṭb al-Dīn al-Šīrāzī claims to have invented nine different Mercury models ${ }^{79}$, and Khafrī presents four

Lettering / Tusi diagram

WILLY HARTNER

Professor of the History of Science, Johann Wolfgang Goethe University, Frankfurt proceedings of the american philosophical society, vol. 117, no. 6, december 1973

The Tūsì couple in Naṣir al-Din's Tadhkira fī cilm al-hay'a

The same in the Editio Princeps of De revolu tionibus (Nuremberg, 1543), fol. 67a.

However, what proves clearly that we have to do with a case of borrowing, is the lettering of the diagrams found in the Tūsī manuscripts and in De revolutionibus.

The letters are not even the same.

Copernicus's F needs to be a Z.

Desperate attempts to defend an absurd thesis:

Figure 6.3
A medieval Arabic manuscript exhibiting the similarities between the letters zain $=Z$ and $f \vec{a}^{\prime}=F$.

Lettering argument still repeated uncritically today in scholarly publications, such as:

Ragep, F. J.. Copernicus and his Islamic Predecessors: Some Historical Remarks. History of Science 45 (2007), 65-81.

Saliba, George. Islamic Science and the Making of the European Renaissance. MIT Press, 2007.

Vodigitur ifte motus apparentïs' confentiat am= mododeclarabimus. Interim uero quxret aliquis, quo nam modo pofsit illarum librationum xqualis Atem xqualè effe, uel exxqualibus ac circularibus côpofice Hic autt utrobiç duo motus in uno apparét fub utrifog ter minis, qु bus neceffe eft ceffa tionẽ interuenire. Fatebimur quidem geminatos effe, at ex ¢qualibus hoc modo demon itrantí.Sit rectalinea $\underset{\text { A }}{ }$, quę quadrifariã fecetur in CDE fi gnis, 8 in odefrribãtur circu li homocentri, ac in eodē pla по $A D, \& \subset D \nabla, \&$ in circûfe $=$ rentia interioris circuli affu= mat̃utcũg \underline{E} fignư, $\& i n i p f o$ ${ }_{\mathrm{f}} \mathrm{ce}$ cetro, interuallouero f dir culus defcribatur $\mathrm{GHD}_{\mathrm{D}}$, qui
 fecet a в rectã lineã in н figno, \&agat́ dimetiés d FG. Oftēdendū eft, φ geminis motibus circulorüg н д \& с в в côcurrẽtibus in uicẽ н mobile p̣ eandẽ rectam lineã a в hincinde reciprocãdo re pat. Quod erit,fintelligat̃ н moueri in diuerfam partẽ, $\&$ duplo magis ipfo F. Quoniã idẽ angulus, q fub $C D$ F in cêtro circuli C $F E$
 tiã circulorũ c̣̣̆liũ G н duplã ipfí c , pofito q aliquâdo in côiun ctiôe reftarúl linearũ a $\operatorname{CD} \mathbb{Z}_{\mathrm{DF}}$ g mobile f fuerit in g cõgruente
 ipfum H р GH circumferentiã in finiftras duplo maiores ipfi cF.

i.e., the most natural lettering possible.

Copernicus's lettering is alphabetical (following the order of the proof),

[Barker \& Heidarzadeh (2016)] Peter Barker \& Tofigh
Heidarzadeh, Copernicus, the Tusi Couple and East-West Exchange in the Fifteenth Century, in: Miguel Á. Granada, Patrick J. Boner \& Dario Tessicini (eds.), Unifying Heaven and Earth: Essays in the History of Early Modern Cosmology, Publicacions i Edicions de la Universitat de Barcelona, 2016, 19-57.

Unifying Heaven and Earth

Essays in the History of Early
Modern Cosmology

Miguel Á. Granada
Patrick J. Boner
Dario Tessicini (eds.)

Copernicus (1543)

Magini (1589)

Hypotyposes (1568)

Maestlin (1596)
[Barker \& Heidarzadeh (2016)] Peter Barker \& Tofigh Heidarzadeh, Copernicus, the Tusi Couple and East-West Exchange in the Fifteenth Century, in: Miguel Á. Granada, Patrick J. Boner \& Dario Tessicini (eds.), Unifying Heaven and Earth: Essays in the History of Early Modern Cosmology, Publicacions i Edicions de la Universitat de Barcelona, 2016, 19-57.

Unifying Heaven and Earth

Essays in the History of Early
Modern Cosmology

Why the same position of epicycle (top left) and direction of rotation (counterclockwise;"perhaps influenced by the convention of reading Arabic script from right to left")?

Nonsense, since this is the standard Ptolemaic convention.

"Some have called this"

Copernicus's autograph manuscript:

\leftarrow Tusi couple explained.

\leftarrow "Some have called this

Ife: At oraquahbus hoe modo demompratur Sa-recta quadryfaria/m τ de \mathscr{G} min
 ot ide :et in oivemfiratha imherionis cornult appmatuk utanng ficigns et $\overline{\text { po }} f^{\prime}$ 'rentro miternallo pero f do or ce
 curculormm Ēhd et \bar{f} bile peandé restam $l_{\text {miáa }}$ à 6 binrime resprocado upport R nod erit fistellgatur \& 5 moneri ion dmerram pante et duplo magis $\overline{p o} \ddagger f \cdot$ noma dé angulas : q pub $\bar{d} f$
 fytens compherdut pramop pint rermborn apaa

 5 fuerit in \bar{g}, तिgrupente conn a:et $f^{\prime} m \bar{\varepsilon}$. Nume antem in deypras partes of f'r motù ef rentruon f^{\prime} or pom $5 \neq 55$ nirum freantia ion fimifras dupto
 ahoq airederet partem effe manore fro toto: quiod pueth

Cruetar

por fartle puto int $L_{y \text { ge: rereflst ante á prosi loro fermondrom }}$
 spi, ad eo intieruallo quo dumptress d'f 8 ricodut fublempo dh. Et hor modo poduntan 5 ad d'rentrun quod onit on $\overline{0}$
 ad refos angulos fftetrit: ar deinde in b athern L initem queriet

F $\overline{p i} a b$

 a quo rampus fimilh rathome revertetor. Vorant minghiq
 ut panto inforins oftenderms. Esps bur obuter airaduertenat
 cahervis eqnditionibus son rettam impea fod romiram fire cathis equditoonious non rectam limea fipd romiramsat mathemataon: Fed de bis alias
 Exhis yetherr mbitrato

Copernicus's autograph manuscript:

\leftarrow Tusi couple explained.

\leftarrow results in simple harmonic motion,

$y=\cos (t)$
\leftarrow "Some have
called this

Narratio Prima

Nicholas
Copernicus on the Revolutions

EDITED
FERZY DOBRZYCKI

"it resembles the motion of objects hanging in the air"

"like objects swinging along the same path between two limits, they $\quad y=\cos (t)$ become faster in the middle and slowest at the extremes"

\square

＂the position on the diameter ．．．is determined from the doctrine of

 －
chords＂
ie．trigonometry －

0

＂they treat ．．．its magnitude in terms of$-$

chords＂ the doctrine of路

STUDIA COPERNICAN
F

Galeano intermediary

Robert Morrison Awarded Guggenheim Fellowship to Study Islamic Influence on

 the Renaissance

Robert Morrison, Bowdoin's George Lincoln Skolfield Jr. Professor of Religion

One of the key figures in Morrison's research is a Jewish scholar called Moses Galeano, who also wrote under the Arabic and Turkish name Mūsā Jālīnūs. "He was an extraordinary person, crucial because he truly straddled both worlds," said Morrison. "He identified as a Jew but you wouldn't always know it. He was extremely well informed and was familiar with the Ottoman court as well as elites in Venice. He brought some really high-level Islamic astronomy to Venice and Padua, but he also translated a Latin astronomy text into Arabic for a high-ranking Ottoman judge and wrote a text in Ottoman Turkish that reported on Latin medical texts."

What we lose when we lose Muslim immigrants

Islamic ingenuity built the modern scientific order

Perspective by Kathleen Crowther and Peter Barker
November 30, 2018 at 6:00 a.m. EST
"Galeano knew all the astronomy borrowed by Copernicus, who used the methods and ideas of Tusi, Urdi, Shatir and Qushji."

As far as I can tell from actual scholarly articles:

- Galeano once mentioned Ibn al-Shatir passingly in a single sentence, while himself advocating an approach completely at odds with that entire tradition.

A Scholarly Intermediary between the Ottoman Empire and Renaissance Europe

By Robert Morrison*

Isis, 2014, 105:32-57
© 2014 by The History of Science Society.

- Galeano was opposed to epicycles (on which all the astronomy allegedly "borrowed by Copernicus" is based) on philosophical grounds. He wrote briefly on this in a vein of qualitative cosmology, in what appears to be his only work on astronomy.

Robert Morrison
An Astronomical Treatise by Mūsā Jālīnūs alias Moses Galeano

$$
\text { Aleph } 11.2 \text { (2011) pp.385-413 }
$$

From Baghdad to Toledo and to Tunis \& Istanbul

Galeano's astrolabe is "non-functional" (51); "the operation [of it] boggles the mind, and we can be certain that it was never carried out" (74). It "put aesthetic considerations ... before common sense" (74). "At least two of the pointers, including the one for the only bright star selected, are incorrectly positioned" (56). "The only bright star ... is featured with the wrong longitude \ldots, not 1° or 2° off, but 30° " (74). "The maker ... most certainly was not \ldots wellversed in star-lore" (74) and used not the best available star list but "some other very corrupt earlier source" (75).

Oresme

From Tūn to Toruń:

The Twists and Turns of the Ṭūsī-Couple

F. Jamil Ragep

Oresme is evident-
ly aware of what we may call Nașīr al-Dīn's physicalized Tūusī-couple as presented in the Tadhkira. But Oresme makes no claim to have invented this model on his own; and given his apparent lack of understanding of the necessity of having the epicycle move at twice the speed of the deferent, it would be implausible in the extreme to assume that he reinvented this model.

OF
NICOLE ORESME.
LATIN TEXT WITH ENGLISH TRANSLATION, COMMENTARY AND VARJANTS

A thesis summitted to the Graduate School of the University of Wisconsin in partial fulfillment of the requirements for the degree of Doctor of Philosophy.
[Conclusion 1.] It is possible for some planet to be moved, according to something in its nature, perpetually in a rectilinear motion, a composite of several circular motions,

= Tusi couple?

No. Oresme is merely making the trivial qualitative point that a second circular motion can in principle somehow or other cancel the sideways component of a primary circular motion.

From Tūn to Toruń:
The Twists and Turns of the Ṭūsi-Couple

F. Jamil Ragep

Oresme is evident-
ly aware of what we may call Naṣīr al-Dīn's physicalized Țūsī-couple as presented in the Tadhkira. But Oresme makes no claim to have invented this model on his own; and given his apparent lack of understanding of the necessity of having the epicycle move at twice the speed of the deferent, it would be implausible in the extreme to assume that he reinvented this model.

i.e., Oresme is not talking about the Tusi couple at all.

Indeed, Oresme erroneously

 believes that:pdited by Rivka Feldhay and F. Jamil Ragep

B E F O R E

COPERNICUS

The Cultures any Contexts of Scientific Learning in the Fifteenth Century

F. Jamil Ragep

Oresme is evident-
ly aware of what we may call Nașīr al-Dīn's physicalized Ṭūsī-couple as presented in the Tadhkira. But Oresme makes no claim to have invented this model on his own; and given his apparent lack of understanding of the necessity of having the epicycle move at twice the speed of the deferent, it would be implausible in the extreme to assume that he reinvented this model.

Oresme clearly does exactly that:

[Conclusions.] Concerming this question, I posit three
fine conclusions.
[Conclusion 1.] It is possible for some planet to be moved, according to something in its nature, perpetually in a rectilinear motion, a composite of several circular motions,

Claims to novelty

From Tūn to Toruń:
The Twists and Turns of the Ṭūsi-Couple

F. Jamil Ragep

it would be quite unusual for someone who invented as significant a device as the Ṭūsī-couple not to claim it as his own.

How many mathematical treatises have you read where, in the middle of the mathematical exposition, the author chimes in and says "by the way, I came up with this myself, you know"?

Role of Arabic sources in early modern astronomy

B E F O R E

COPERNICUS

The Cultures any Contexts of Scientific Learning in the Fifteenth Century

F. Jamil Ragep

And perhaps most importantly, why would someone seek to start from scratch when it was certainly known in the fifteenth and sixteenth centuries that Islamic astronomers still had much to teach their European counterparts? ${ }^{105}$

Let's look at the evidence cited for this "certainty":

105 This was even the case in the early seventeenth century. Feingold, "Decline and Fall."

Feingold, Mordechai. "Decline and Fall: Arabic Science in Seventeenth-Century England." In Tradition, Transmission, Transformation: Proceedings of Two
Conferences on Premodern Science Held at the University of Oklahoma, ed. F. Jamil Ragep and Sally Ragep, 441-69. Leiden: Brill, 1996.

Feingold, Mordechai. "Decline and Fall: Arabic Science in Seventeenth-Century
England." In Tradition, Transmission, Transformation: Proceedings of Two

Conferences on Premodern Science Held at the University of Oklahoma, ed. F. Jamil
Ragep and Sally Ragep, 441-69. Leiden: Brill, 1996.

Tradition, Transmission, Transformation
Proceedings of
Two Conferences on Pre-modern Science held at the University of Oklahoma Edited by
F. Jamil Ragep \& Sally P.Ragep With Steven Livesey

E. J. B R I LL
"Arabic [astronomy] was usually adjudged either as derivative of the Greeks or, at best, the fruit of sheer drudgery." (445)
"how greate the losse of time was to study much the Eastern languages," since "there was no treasure of things to be come at" (449)

Francis Bacon: "The sciences which we possess come for the most part from the Greeks. ... Neither the Arabians nor the schoolmen need be mentioned; who in the intermediate time rather crushed the sciences with a multitude of treatises, than increased their weight" (443-444)

Joseph Glanvill: "These Successors of the Greeks did not advance their Learning beyond the imperfect Stature in which it was delievered to them." (454)

William Wotton: "[The Arabs] translated the Grecian Learning into their own Language [but] had very little of their own, which was not taken from those Fountains. ... There is little to be found amongst them, which any Body might not have understood as well as they, if he had carefully studied the Writings of their Grecian Masters. ... There are vast Quantities of their Astronomical Observations [but not] any Thing in them, which those Arabian Astronomers did not, or might have not learnt from Ptolemee's Almagest, if we set aside their Observations which their Grecian Masters taught them to make." (455)

All of this is quoted from the one article Ragep himself singled out as support for his claim that it would have made little sense for people like Copernicus to think for themselves since they had so much to learn from the much wiser Arabic sources.

Mercury trines
$\alpha=90^{\circ}$
Tusi radius correction $=$ 29
$-\frac{2}{60} \cos (2 \alpha)$

where α is the Earth's

 angle with Mercury's apsis.apsis
$\alpha=0^{\circ}$
when the earth is in the views of the apsis mentioned above, the planet appears to move by traversing a far smaller circumference, and on the other hand, when the earth is at quadratures [to the apsis], by traversing a far larger circumference than the proportion of the circles just given permits.

THE DERIVATION AND FIRST DRAFT OF COPERNICUS'S PLANETARY THEORY
A TRANSLATION OF THE COMMENTARIOLUS WITH COMMENTARY
NOEL M. SWERDLOW
Assistant Professor of History, The University of Chicago
PROCEEDINGS OF THE AMERICAN PHILOSOPHICAL SOCIETY, VOL. 117, NO. 6, DECEMBER 1973
The principal effect of Ptolemy's model is to produce the greatest elongations at $\pm 120^{\circ}$ from apogee. This is also true of Copernicus's model, as he demonstrates in De rev. V, 28, but he says nothing about it here.

Thus it could hardly be his own invention for, if it were, he would certainly have described its fundamental purpose rather than write the absurd statement

$$
\alpha=90^{\circ}
$$

$$
0 \leftarrow
$$

$$
\alpha=120^{\circ} \bigcirc
$$

Important

 cases in terms of the reasoning that led to the model.$$
\alpha=-120^{\circ}
$$

Why didn't Copernicus mention the $\alpha=120^{\circ}$ case?

- His model is already completely defined in the mathematically cleanest way $\left(\alpha=0^{\circ}, 90^{\circ}\right)$.
- The Commentariolus is minimalistic. It doesn't try to teach astronomy or explain the heuristic process behind how the models were found.
- Ptolemy too defines his model in terms of the $\alpha=0^{\circ}, 90^{\circ}$ cases.
- Behaviour at $\alpha=120^{\circ}$ is a corollary in Ptolemy, and hence is so also in Cop. insofar as the models correspond. Nikfahm-Khubravan \& Ragep attack only this. Pointless, since the previous three points are enough on their own.

Nikfahm-Khubravan \& Ragep concede concerning my argument even for the forth point that:

Mathematically speaking, there is some truth to this

Behaviour at $\alpha=120^{\circ}$ is a corollary in Ptolemy, and hence is so also in Cop. insofar as the models correspond.

Nikfahm-Khubravan \& Ragep object:

the models are not strictly speaking "equivalent."

True but irrelevant. The models are effectively equivalent for the purposes of the $\alpha=120^{\circ}$ case. Whether they are completely equivalent in every respect is not relevant for this argument.

Another aim of this paper is to deal with Blåsjö's claims regarding what he calls the "equivalence" of the Mercury models in the Almagest and the Commentariolus

Blåsjö's arguments for Copernicus' independence from Islamic influence, based on the elusive concept of " naturalness ", would have very different models be classified as equivalent
it is simply wrong to claim that the Commentariolus model is equivalent to those of Ptolemy, Ibn al-Šāṭir, and De rev., if one means by "equivalent" that they can produce equivalent results.

Blåsjö uses his notion of "equivalence " to assert that "There is no need for Copernicus to mention this since his intended readership would of course be very familiar with Ptolemaic theory and realize at once that this corollary carries over directly insofar as the two theories [that of Ptolemy and Copernicus] are equivalent ${ }^{85}$ ".

Nota bene:"insofar as"!

In other words, not exactly equivalent, but effectively equivalent for most purposes.

the fact that the Mercury model in the Commentariolus was not only impractical but also exceedingly difficult to test undermines Blåsjö's claim that finding the maximum elongations at $0, \pm 90$, and 180° " eliminates the need for Copernicus to address the issue" of maximal elongation at $\pm 120^{\circ}$, since somehow this latter is a corollary of the former.

- Maybe not easy to test for complete equivalence. (Irrelevant.)
- Very easy to test for equivalence in terms of maximal elongation. (What is actually needed.)

Thus to believe Blåsjö's main contention, one needs to assume that Copernicus when writing the Commentariolus: a) would not mention the most prominent aspect of Mercury's model because, this was a "corollary" to Ptolemy's "equivalent" model; and also assume, b) that Copernicus would put forth a model that did net produce,equivalent results. Needless to say, we find this untenable. nearly
of several plausible reasons, all stated explicitly by Blåsjö in his article, the forth and least important of which is that

