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§ 0. Intro

This is a set of source readings to accompany my History and Philosophy of Geometry podcast episodes �.

§ 1. Why the Greeks?

G. E. R. LLOYD, Magic, Reason and Experience: Studies in the Origin and Development of Greek Science, Cambridge Univer-
sity Press, 1979.

“Public debates between contending speakers in front of a lay audience” was a prominent part of ancient Greek culture (93).
Science and philosophy were born on this stage. Many otherwise peculiar characteristics of Greek thought are explained by this
format.

The stage debate requires the speakers to proclaim bold and provocative theses, and to strive to avoid reconciliation with other
viewpoints at all costs. This is why early Greek thought is rife with crackpot claims such as that motion is impossible (74) or “that
man is all air, or fire, or water, or earth” (92). Indeed, the format demands a multiplicity of such viewpoints in competition with
one another, whence “the remarkable proliferation of theories dealing with the same central issues” that “may well be considered
one of the great strengths . . . of Presocratic natural philosophy” (97).

The stage debate also explains why these theses were invariably defended by abstract deductive reasoning. “Given an interested
but inexpert audience, technical detail, and even careful marshalling of data, might well be quite inappropriate, and would, in
any event, be likely to be less telling than the well-chosen plausible—or would-be demonstrative—argument.” (98) Hence we
understand why “with the Eleatics logos—reasoned argument—comes to be recognised explicitly as the method of philosophical
inquiry.” (78) This “notion of the supremacy of pure reason may . . . be said to have promoted some of the triumphs of Greek
science.” (121)

However, these triumphs of reason “were sometimes bought at the price of . . . a certain impoverishment of the empirical content
of the inquiry” (121). In early Greek science, “observations are cited to illustrate and support particular doctrines, almost, we
might say, as one of the dialectical devices available to the advocates of the thesis in question.” (221) Also, “observations and
tests . . . could be deployed . . . destructively . . . [to disprove an opponent’s thesis], as they were by Aristotle especially, with great
effect.” (224) These uses of observation fit well within the stage debate format. However, “theories were not put at risk by being
checked against further observations carried out open-endedly and without prejudice as regards the outcome.” (222) We can
understand why since “The speaker’s role was to advocate his own cause, to present his own thesis in as favourable a light as
possible. It was not his responsibility to scrutinise . . . the weaknesses of his own case with the same keenness with which he
probed those of his opponent.” (98)

Of course, everyone was well aware of the deceptive potential of sly rhetoric for “making the worse argument appear the better”
(99)—so much so that “early on it became a commonplace to insist on your own lack of skill in speaking” (100). But the Greeks
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did not see this as a reason to abandon the stage disputation format—instead they focussed on explicating “the correct rules of
procedure for conducting a dialectical inquiry” (101).

Why did these things arise in Greece and not elsewhere? “Aristotle associated the development of speculative thought with the
leisure produced by wealth,” (236) and indeed “the level of technology and that of economic development [in ancient Greece]
were far in advance of those of many modern non-industrialised societies” (266). However, “Egypt and Babylonia . . . were, eco-
nomically, incomparably more powerful than any of the Greek city-states” (236), so the explanation for the “additional dis-
tinctively Greek factor” of “generalised scepticism” and “critical inquiry directed at fundamental issues” (264) must be sought
elsewhere.

The answer may lie in “a particular social and political situation in ancient Greece, especially the experience of radical political
debate and confrontation in small-scale, face-to-face societies. The institutions of the city-state . . . put a premium on skill in
speaking and produced a public who appreciated and the exercise of that skill. Claims to particular wisdom and knowledge in
other fields besides the political were similarly liable to scrutiny, and in the competition between many and varied new claimants
to such knowledge those who deployed evidence and argument were at an advantage compared with those who did not.” (266)

G. E. R. LLOYD, Adversaries and Authorities: Investigations into Ancient Greek and Chinese Science, Cambridge University
Press, 1996.

“Any acquaintance with early Greek natural philosophy immediately brings to light a very large number of instances of philoso-
phers criticising other thinkers.” (21) Being a philosopher means being “subjected to blistering attack” (22). “From the list of
occasions when philosophers are attacked by name . . ., one could pretty well reconstruct the main lines of the development of
Hellenistic philosophy itself.” (22-23) “Nor is this just a matter of ‘philosophy’, howsoever understood.” (23) There is “hard-
hitting polemic” (23) in mathematics, medicine, and art as well. There is a “lack of great authority figures”; even Homer “is
attacked more often than revered” (24).

The Greek style of philosophy is connected to its social context. “Greek pupils could and did pick and choose between teachers.
. . . Direct criticism of teachers is possible, and even quite common. . . . Argument and debate . . . are one of the means of attracting
and holding students, and secondly they serve to mark the . . . boundaries of groups.” (35) “The Greek schools were there not just,
and not even primarily, to hand on a body of learned texts, but to attract pupils and to win arguments with their rivals. They
may even be said to have needed their rivals, the better to define their own positions by contrast with theirs.” (38) “Dialectical
debate, on which the reputations of philosophers and scientists alike so often depended, stimulated, when it did not dictate,
confrontation. . . . The recurrent confrontations between rival masters of truth left little room for the development of a consensus,
let alone an orthodoxy, little sense of the need or desirability of a common intellectual programme.” (137)

“It was the rivalry between competing claimants to intellectual leadership and prestige in Greece, that stimulated the analysis
of proving and of proof.” (57) “Many have assume that the internal dynamic of the development of mathematics itself would,
somehow inevitably, eventually lead to a demand for strict axiomatic-deductive demonstration, and that there is accordingly no
need to pustulate any external stimulus such as I have conjectured . . . Yet the difficulty for that view is . . . [that] other, non-Greek,
ancient mathematical traditions — Babylonian, Egyptian, Hindu, Chinese — .. . all got along perfectly well without any notion
corresponding to axioms and . . . the particular notion of strict demonstration that went with it.” (58)

The underlying cause is perhaps captured by an admittedly “simplistic” dichotomy between “adversarial Greeks and irenic,
authority-bound, Chinese” (44).

The different philosophical styles of ancient Greece and China reflect differences in their political systems. “Extensive political
and legal debates, in the assemblies, councils and law-courts, were . . . a prominent feature of the life of Greek citizens.” (74)
“Greek philosophical and medical schools used, as the chief means for the expression of their own ideas and theories, both
lectures . . . and open, often public debates, sometimes modelled directly on the adversarial exchanges so familiar in Greek law-
courts and political assemblies.” (39)

“So far from positively delighting in litigation, as many Greeks seem to have done, so far from developing a taste for confronta-
tional argument in that context and becoming quite expert in its evaluations, the Chinese avoided any brush with the law as far
as they could. Disputes that could not be resolved by arbitration were felt to be a breakdown of due order and as such reflect
unfavourably on both parties, whoever was in the right.” (220)

“The . . . typical target audience envisaged in Greek rhetoric is some group of fellow citizens” (79), just as “In Greek law-courts
the decisions rested with the ‘dicasts’ . . . [who] were chosen by lot . . . [and] combined the roles of both judge and jury.” (79) “In
China, the [intended] audience for much philosophical and scientific work was very different: the ruler or emperor himself.”
(39) “The Chinese were never in any doubt that the wise and benevolent rule of a monarch is the ideal.” (43)
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“We often find Greek philosophers adopting a stance of fierce independence vis-a-vis rulers. . . . With this independence came
. . . a disadvantage. Compared with their Chinese counterparts, Greek philosophers and scientists had appreciably less chance of
having their ideas put into practice. . . . Autocrats . . . — as . . . in China — .. . could and did move swiftly from theoretical approval
to practical implementation.” (43) “The superiority of theory to practice is a theme repeatedly taken up by scientists as well as
philosophers in Greece: but that was sometimes to make a virtue out of necessity.” (44)

“Unlike in classical Greece, . . . the bid to consolidate a comprehensive unified world-view was largely successful in China.” (116)
“The prime duty of members of a Chinese Jia was the preservation and transmission of a received body of texts. In that context,
pupils did not criticise teachers, and any given Jia did not see it as a primary task to take on and defeat other Jia in argument.”
(44-45) While the Greeks “adopted a stance of aggressive egotism in debate, the tactics of Chinese advisers was rather to build
on what could be taken as common ground, [and] certainly on what could be represented as sanctioned by tradition.” (221-222)
“The emphasis is not on points at which [earlier philosophers] disagreed, . . . but rather on what each of them had positively to
contribute, how each succeeded, at least in part, in grasping some part of the Dao.” (25)

ÁRPÁD SZABÓ, The Beginnings of Greek Mathematics, Springer, 1978.

“Mathematics itself grew out of the more ancient subject of dialectic” (245). “Quite obviously it was dialectic which came first.
The mere fact that all those terms which relate to the foundations of mathematics are of dialectical origin should have led us to
this conclusion. Dialectic did not borrow any of its vocabulary from mathematics; instead, perfectly ordinary expressions from
dialectic were transformed into technical mathematical terms. Hence early Greek mathematics, at least when it is viewed as an
elaborately constructed system of knowledge, can properly be called a branch of dialectic.” (253-254)

The terms referred to here are those for axiom, postulate, hypothesis, etc., all of which, in dialectic, essentially stood for some
variant of “concessions which the participants in a discussion have agreed to make” (238). Even in the best sources the uses
of such terms are not very systematic. For example, a clear distinction between definition and axiom is often lacking. On this
basis “we can . . . conjecture that the earliest foundations were composed only of definitions. After all, we know that the word
hypotheseis (as a mathematical term) had two meanings; it could denote either a fundamental principle or just a definition. This
in itself seems to indicate that fundamental principles were at one time identified with definitions. Furthermore, it is obvious
that the very first hypotheseis on which the partners in a dialectical debate have to agree take the form of definitions.” (255)

“We know that the term aitema [=postulate] came from dialectic where it was used to denote a ‘demand’ about which the second
partner in a dialogue had reservations. Let us see whether there is any connection between this early meaning of the word and
Euclid’s postulates. At first glance, Postulates 1-3 appear to be such simple, self-evident and easily fulfilled ‘demands’ that one
is tempted to disregard the literal meaning of their name.” (276) But they involve movement (of compasses etc.), which is a
problematic notion especially in the view of Zeno and the Eleatics. “If we bear this in mind, it is easy to understand why Euclid’s
first three postulates had to be laid down. . . . They really are demands (aitemata) and not agreements (homologema); for they
postulate motion, and anyone who adhered consistently to Eleatic teaching would not have been able to accept statements of
this kind as a basis for further discussion.” (279)

“Our text of Euclid” has a separate heading called common notions, but this was not a well-entrenched term and these principles
“obviously bore the name axioma in pre-Euclidean times” (281), and “the noun axioma, when used as a dialectical term, was
originally synonymous with aitema and just meant a ‘demand’ or ‘request’” (286). Indeed, Euclid’s common notions “all assert
properties of a relation (equality) which must have been regarded (by the Eleatics at least) as ‘self-contradictory’. It is by no
means evident that two distinct things (i.e. two things which are not the same) can ever be ‘equal to one another’; furthermore,
it makes no sense to speak of two things unless they can be distinguished from one another in some way.” (290)

The common notions are also dubious in that they “are assertions which are justified by practical experience and, in some cases,
directly by sense-perception. Axiom 7, for example, states that ‘things which coincide with one another are equal to one another’.
It can literally be seen that plane figures which coincide are actually equal; hence this axiom is verified by sensory experience.”
(290) Therefore the common notions “could not have been accepted by the Eleatics, who required that all knowledge be obtained
by purely intellectual means and without appealing to the senses. These principles were originally called demands (axiomata)
because the other party in a dialectical debate had reservations about accepting them as a basis for further inquiry or, in other
words, because their acceptance could only be demanded.” (301)

“After Plato’s time, however, the essentials of Eleatic dialectic were no longer very well understood; hence the ancient term
axioma acquired a new meaning. Since it had always been used to refer to a group of principles which, from the viewpoint of
common sense, were evidently valid, it came now to denote those statements whose truth was ‘accepted as a matter of course’.”
(301)
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Early geometry may well have been based on visual reasoning. For example, the original meaning of the word for “prove”
(deiknymi) was “show” or “point out” in a visual sense (although “we also find deiknymi used with the meaning ‘to make known
by words’ in texts as early as the Odyssey” (188)). “Mathematics was at one time a practical science whose subject matter was
empirical and whose principles were established by empirical methods”; indeed “the sudden turn away from empiricism [in ma-
ture Greek mathematics] seems somewhat surprising” (216): one must “explain why a predominantly empirical mathematical
tradition suddenly and for no apparent reason became anti-empirical and anti-visual” (217).

This radical break was perhaps due to “the decisive influence of the Eleatic school of philosophy” (217). The notion of proof
by contradiction provides the link between mathematics and the Eleatics. “It is apparent that indirect arguments played a very
important part in Eleatic philosophy. Without them it would not have been possible to establish such central doctrines as that
there is no motion, no change, no becoming, no perishing, no space and no time. Of course, these doctrines contradict the
evidence of our senses and are incompatible with empiricism, nonetheless the Eleatics, bolstered by their belief that reason was
the only guide to truth, accepted them.” (218)

Mathematicians were drawn into this school of philosophy since “the existence of incommensurability could not be conclusively
proved by practical or empirical methods. Hence a complex of problems associated with incommensurability made it necessary
to adopt Eleatic techniques of proof in geometry.” (316-317) Thus the earlier sense of proof, with its visual connotations, was
replaced by axiomatic foundations in the sense of dialectic, and anti-empiricism came with the bargain.

§ 2. Societal role of geometry in early civilisations

ELEANOR ROBSON, Mathematics in Ancient Iraq: A Social History, Princeton University Press, 2008.

“From about 6000 BCE, long before writing, Neolithic villagers used simple geometric counters in clay and stone to record ex-
change transactions, funded by agricultural surpluses. As societies and economies grew in size and complexity, ever more strain
was placed on trust and memory. By the late fourth millennium the intricacies of institutional management necessitated both
an increasing numerical sophistication and the invention of written signs for the commodities, agents, and actions involved
in controlling them.” (27) “Mesopotamian city states had implemented an extensible and powerful literate technology for the
quantitative control and management of their assets and labour force. In doing so, they had created in parallel a new social
class—in Uruk called the umbisag ‘accountant/scribe’—who was neither economically productive nor politically powerful, but
whose role was to manage the primary producers on the elite’s behalf.” (40)

“It was the . . . state bureaucracy in which the scribes were embedded that . . . drove the need for . . . the sexagesimal place value
system .. . by imposing increasingly high calculational standards on its functionaries through the demand for complex annual
balanced accounts.” (83) This went hand in hand with “centrally imposed reforms of weights and measures throughout the third
millennium” (84). “None of these newly invented units of measure was recorded with compound metrological numerals, but
always written as numbers recorded according to the discrete notation system followed by a separate sign for the metrological
unit,” (76) unlike the earliest sources, where, “while there was a single word for ‘ten’,” “there was no single numeral but different
signs for ‘ten-discrete-objects’, ‘ten-units-of-grain’, and ‘ten-units-of-land’” (33).

“In the early Old Babylonian period [c. 1850 BCE], elementary scribal training underwent a revolution . . . in which emphasis
was more on the ability to manipulate imaginary lines and areas in almost algebraic ways than on the ability to count livestock
or calculate work rates.” (86) “Topics range from apparently abstract ‘naive-geometrical algebra’, via plane geometry, to practi-
cal pretexts for setting a problem—whether agricultural labour, land inheritance, or metrological conversions. Even the most
abstract problems may be dressed up with ‘practical’ scenarios.” (89)

This was “a style of mathematics that encapsulated the principles of . . . justice” on which the society was based; “in solving
abstruse puzzles about measured space, the true scribe demonstrated his or her technical capability . . . for upholding justice
and maintaining social and political stability on behalf of king and god” (266).

As one scribe put it: “When I go to divide a plot, I can divide it; when I go to apportion a field, I can apportion the pieces, so that
when wronged men have a quarrel I soothe their hearts . . . Brother will be at peace with brother.” (122)

“The Sumerian word for justice was nig-si-sa, literally ‘straightness, equality, squareness’, Akkadian misarum ‘means of making
straight’. The royal regalia of justice were the measuring rod and rope . . . In [this] light . . . Old Babylonian mathematics, with
its twin preoccupation of land and labour management on the one hand and cut-and-paste geometrical algebra on the other,
becomes truly comprehensible.” (123-124)

This tradition effectively came to an end with “the collapse of the Old Babylonian kingdom in c. 1600 BCE” (151), though “traces
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of Old Babylonian mathematical learning lingered on long after the political ideology that it supported had disappeared” (181).
“Evidence suggests that mathematics . . . was still a vital component of Babylonian intellectual life” (151) for a while, but ulti-
mately a massive decline followed. “In the first half of the first millennium we find a low level of mathematical sophistication in
school, consumer, and professional contexts.” (212)

“Mathematics and mathematical astronomy were central components of the last flowering of cuneiform culture.” (261) “From
the mid-seventh century [BCE] onwards, . . . compilers of eclipse records and astronomical diaries had begun to think in terms
of divine quantification. . . . Apparently random events of great ominous significance were observed, quantified, and recorded
in the hope that numerical patterns could be detected amongst them. The ultimate aim was to understand the will of the gods,
to ensure that they were propitiated and would act benignly to the king and humanity. Thus in later Babylonia mathematics
became a priestly concern.” (268)

These priests “comprised a tiny number of individuals from a restricted social circle, intermarrying, working closely together to
train each successive generation, and highly valuing privacy and secrecy” (261-262). “Their sole aim was to uphold the belief
systems and religious practices of ancient times.” “In this context [they] developed increasingly mathematically sophisticated
means to ensure the calendrical accuracy of their rituals.” (262)

HERODOTUS, The Histories, c. -440, translation by A. D. Godley.

“This king [Sesostris] also (they said) divided the country among all the Egyptians by giving each an equal parcel of land, and
made this his source of revenue, assessing the payment of a yearly tax. And any man who was robbed by the river of part of his
land could come to Sesostris and declare what had happened; then the king would send men to look into it and calculate the
part by which the land was diminished, so that thereafter it should pay in proportion to the tax originally imposed. From this, in
my opinion, the Greeks learned the art of measuring land.” (2.109)

STRABO, Geographica, c. -10, quoted from The Geography of Strabo, translated by H.C. Hamilton & W. Falconer, London,
1903.

“An exact and minute division of the country was required by the frequent confusion of boundaries occasioned at the time of
the rise of the Nile, which takes away, adds, and alters the various shapes of the bounds, and obliterates other marks by which
the property of one person is distinguished from that of another. It was consequently necessary to measure the land repeatedly.
Hence it is said geometry originated here, as the art of keeping accounts and arithmetic originated with the Phoenicians, in
consequence of their commerce.” (17.1.3)

PROCLUS, A Commentary on the First Book of Euclid’s Elements, c. 450, translated by Glenn R. Morrow, Princeton University
Press, 1992.

“Geometry was first discovered by the Egyptians and originated in the remeasuring of their lands. This was necessary for them
because the Nile overflows and obliterates the boundary lines between their properties. It is not surprising that the discovery of
this and the other sciences had its origin in necessity, since everything in the world of generation proceeds from imperfection to
perfection. Thus they would naturally pass from sense-perception to calculation and from calculation to reason. Just as among
the Phoenicians the necessities of trade gave the impetus to the accurate study of number, so also among the Egyptians the
invention of geometry came about from the cause mentioned.” (52)

LEONARD MLODINOW, Euclid’s window: The Story of Geometry from Parallel Lines to Hyperspace, Touchstone, 2002.

“Picture a windswept, desolate desert, the date, 2580 B.C. The architect had laid out a papyrus with the plans for your structure.
His job was easy—square base, triangular faces—and, oh yeah, it has to be 480 feet high and made of solid stone blocks weighing
over 2 tons each. You were charged with overseeing completion of structure. Sorry, no laser sight, no fancy surveyor’s instruments
at your disposal, just some wood and rope. As many homeowners know, marking the foundation of a building or the perimeter of
even a simple patio using only a carpenter’s square and measuring tape is a difficult task. In building this pyramid, just a degree
off from true, and thousands of tons of rocks, thousands of person-years later, hundreds of feet in the air, the triangular faces
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of your pyramid miss, forming not an apex but a sloppy four-pointed spike. The Pharaohs, worshipped as gods, with armies
who cut the phalluses off enemy dead just to help them keep count, were not the kind of all-powerful deities you would want to
present with a crooked pyramid. Applied Egyptian geometry became a well-developed subject.” (§2)

GRAHAM FLEGG, Numbers Through the Ages, Sheridan House, 1989.

“There is evidence of tallying (carving notches on bone or wood) going back more than thirty thousand years” (37)—the oldest
signs of mathematical activity in the historical record.

Tallying remained a widespread record of transactions well into modern times, as witnessed for instance in Shakespeare (48):
“There shall be no money, all shall eat and drink on my score.” (Henry VI) “He parted well and paid his score.” (Macbeth)

“Tally sticks were admitted as legal documents even as late as the eighteenth and nineteenth centuries.” (43) For instance,
“Napoleon’s book of civil law . . . of 1804” states: “The tally sticks which match their stocks have the force of contracts between
persons who are accustomed to declare in this manner the deliveries they have made or received.” (44)

“The word for ‘contract’ in Chinese is written by means of two characters at the top, one for a notched stick and one for a knife,
and another at the bottom which means ‘large’. Thus a contract in Chinese is symbolised as ‘a large tally stick’.” (44)

�
As for verbal representation of numbers, “Over most of aboriginal Australia one finds essentially only two number words, ‘one’
and ‘two’: many of the tribes are reported definitively as not counting beyond 2, and as indicating higher multiplicities by the
word ‘many’, while others go a little further by compounding these words—for example, expressing 3 as ‘two-one’, 4 as ‘two-two’
. . . A similar method of counting, the so-called 2-system, is found in New Guinea, in South America, and in South Africa.” (7,
quoting Seidenberg)

“At a very early stage of counting, the ‘number’ of something that was counted was felt to be one of its attributes.” (57) There-
fore, “In Gothic as well as High and Middle German the number words for 2 and 3 do appear as adjectives; they have separate
masculine, feminine and neuter forms, and they are inflected like adjectives. The same is true for Latin and Greek.” (58)

However, “In all known Indo-European languages, numbers beyond 4 are not treated as adjectives.” (59) “It is quite possible
that in the original Indo-European language ‘one’, ‘two’, ‘three’, and ‘four’ were earlier number words, which were more closely
connected with the counted objects and treated like adjectives, whereas ‘five’, ‘six’, etc. were later number words, perhaps taken
over from a foreign language, which were no longer considered as adjectives and hence remained unchanged in all cases.” (60)

“Another argument in favour of [this interpretation] is given by the form of the number words for 8 in Latin and Greek. In Latin
the word is octo, in Greek oktô; the ending -ô in Greek is a dual ending. In the Gothic and Sanskrit words for 8, ahtaú and astau,
the ending -au is also a dual ending. So it seems that 8 was originally conceived as a dual, i.e. as two fours . . . In many primitive
languages, the number word for 8 is formed as ‘twice 4’. So it is quite possible that in the mother language of the Indo-European
family the independent number words originally ended at 4 and that 8 was expressed as twice 4.” (60)

“It is also possible that at one time counting stopped at 8. This would occur naturally when two handsbreadths had been used up
in measurement. After the doubling of ‘four’ to give ‘eight’, there would be a need for a ‘new’ number [or hand] before counting
could continue. It is a striking fact that there is a similarity in most Indo-European languages between the word for 9 and the
word for ‘new’.” (60)

EDWARD SAPIR, Notes on the Takelma Indians of Southwestern Oregon, American Anthropologist, New Series, 9(2), 1907,
251-275.

Number words of “the Takelma numeral system” have these literal meanings: “Four is evidently nothing but ‘two two’; . . . six,
seven, eight, and nine are respectively equivalent to ‘one finger in,’ ‘two fingers in,’ ‘three fingers in,’ and ‘four fingers in’ . . .; ten
is ‘two hands’ . . . twenty is quite transparently ‘one person’ . . ., i.e., ‘two hands and two feet’.” (266)
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THONY CHRISTIE, Renaissance Science, IX, https://thonyc.wordpress.com/2021/05/05/renaissance-science-ix/.

“The widespread use of counting boards over many centuries is still reflected in modern word usage. The serving surface in a
shop is called a counter because it was originally the counting board on which the shop owner did their calculations. The English
finance ministry is called the Exchequer after a special kind of counting board on which they did their calculations in the past.
Nobody pays much attention to the strange term bankrupt, which also has its origins in the use of counting boards. The original
medieval banks in Northern Italy were simply tables, Italian banca, on the marketplace, on which a printed cloth counting board
was spread out. If the bankers were caught cheating their customers, then the authorities came and symbolically destroyed their
table, in Italian, banca rotta, broken table.”

§ 3. First proofs: Thales and the beginnings of geometry

§ 4. Singing Euclid: the oral character of Greek geometry

REVIEL NETZ, The Shaping of Deduction in Greek Mathematics, Cambridge University Press, 2003.

“THEAANDTHEBTAKENTOGETHERAREEQUALTOTHECANDTHED This is how the Greeks would write A+B=C+D, had they
written in English. And it becomes clear that only by going beyond the written form can the reader realise the structural core of
the expressions. Script must be transformed into pre-written language, and then be interpreted through the natural capacity for
seeing form in language. Greek mathematical formulae are post-oral, but pre-written. They no longer rely on the aural; they do
not yet rely on the layout.” (163)

“The lettered diagram is a distinctive mark of Greek mathematics. . . . No other culture developed it independently.” (58) “The
overwhelming rule in Greek mathematics is that propositions are individuated by their diagrams” (38), contrary to the economy
of using the same diagram for several propositions, and contrary even to plain sense, it would seem, in the use of completely
functionless diagrams for number-theoretic propositions (41).

But the diagrams were schematic only, with for example conic sections being crudely represented by circular arcs (34). The
diagrams were also static since “of the media available to the Greeks . . . none had ease of writing and rewriting” (14). Standard
media were papyri and wax tablets, and, for larger audiences, such as Aristotle’s lectures, “the only practical option was wood
. . . painted white” (16). “None of these [ways of representing figures] is essentially different from a diagram as it appears in a
book. . . . The limitations of the media available suggest . . . the preparation of the diagram prior to the communicative act—a
consequence of the inability to erase.” (16) “This, in fact, is the simple explanation for the use of perfect imperatives in the
references to the setting out—‘let the point A have been taken’. It reflects nothing more than the fact that, by the time one comes
to discuss the diagram, it has already been drawn.” (25)

KEN SAITO, Diagrams and traces of oral teaching in Euclid’s Elements: labels and references, ZDM Mathematics Education,
50(5), 2018, 921–936.

“The teaching of mathematics in ancient times was prevalently oral.” (§2.3) “The written demonstration is rather an excep-
tional form of transmitting mathematical ideas to a person living far away, and written text was probably not the main task of a
mathematician.” (§7) Many aspects of Greek texts are explained by this circumstance, for example why propositions are never
referred to by number (§3.1) or why points are labelled in alphabetical order as they are named in the proof, without any regard
for continuity of notation across sequences of very closely related propositions (§3.2).

“A proposition of Euclid’s Elements begins with so-called ‘protasis’, or general enunciation, where the proposition is stated in a
general way, without a diagram. . . . For example, the protasis of proposition III.13 goes: ‘A circle does not touch a circle at more
than one point, whether it touches it internally or externally.’ This is fine. One understands what it purports. However, a protasis
can become so long and complicated, that it is difficult to understand it. The proposition III.37 . . . offers a good example. ‘If a
point be taken outside a circle and from the point two straight lines fall on the circle, and if one of them cut the circle, and the
other fall on it, and if further the rectangle contained by the whole of the straight line which cuts the circle and the straight line
intercepted on it outside between the point and the convex circumference be equal to the square on the straight line which falls
on the circle, the straight line which falls on it will touch the circle.’ Probably few people are endowed with such intelligence as
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to understand without difficulty what this proposition means on reading it for the first time. So when we read Euclid’s Elements,
we often skip the protasis and begin with the ekthesis, or setting out, which follows the protasis and explains the premises of the
protasis by assigning names to the points. ‘For let a point ∆ be taken outside the circle ABΓ; from ∆ let the two straight lines
∆ΓA, ∆B fall on the circle AΓB ; let ∆ΓA cut the circle and ∆B fall on it; and let the rectangle A∆, ∆Γ be equal to the square on
∆B .’ Then Euclid’s restates the conclusion with the names of points. This part is called diorismos (specification). ‘I say that ∆B
touches the circle ABΓ.’” (§3.4)

ELEMENTS BOOK 3

νομένης μεταξὺ τοῦ τε σημείου καὶ τῆς κυρτῆς περιφερείας line) cutting (the circle), and the (part of it) cut off out-
ἴσον τῷ ἀπὸ τῆς προσπιπτούσης, ἡ προσπίπτουσα ἐφάψεται side (the circle), between the point and the convex cir-
τοῦ κύκλου. cumference, is equal to the (square) on the (straight-line)

meeting (the circle), then the (straight-line) meeting (the
circle) will touch the circle.

Ε

Ζ

Α

∆

Β

Γ

E

F

AB

D

C

Κύκλου γὰρ τοῦ ΑΒΓ εἰλήφθω τι σημεῖον ἐκτὸς τὸ Δ, For let some point D have been taken outside circle
καὶ ἀπὸ τοῦ Δ πρὸς τὸν ΑΒΓ κύκλον προσπιπτέτωσαν δύο ABC, and let two straight-lines, DCA and DB, radiate
εὐθεῖαι αἱ ΔΓΑ, ΔΒ, καὶ ἡ μὲν ΔΓΑ τεμνέτω τὸν κύκλον, ἡ from D towards circle ABC, and let DCA cut the circle,
δὲ ΔΒ προσπιπτέτω, ἔστω δὲ τὸ ὑπὸ τῶν ΑΔ, ΔΓ ἴσον τῷ and let DB meet (the circle). And let the (rectangle con-
ἀπὸ τῆς ΔΒ. λέγω, ὅτι ἡ ΔΒ ἐφάπτεται τοῦ ΑΒΓ κύκλου. tained) by AD and DC be equal to the (square) on DB.
῎Ηχθω γὰρ τοῦ ΑΒΓ ἐφαπτομένη ἡ ΔΕ, καὶ εἰλήφθω τὸ I say that DB touches circle ABC.

κέντρον τοῦ ΑΒΓ κύκλου, καὶ ἔστω τὸ Ζ, καὶ ἐπεζεύχθωσαν For let DE have been drawn touching ABC [Prop.
αἱ ΖΕ, ΖΒ, ΖΔ. ἡ ἄρα ὑπὸ ΖΕΔ ὀρθή ἐστιν. καὶ ἐπεὶ ἡ ΔΕ 3.17], and let the center of the circle ABC have been
ἐφάπτεται τοῦ ΑΒΓ κύκλου, τέμνει δὲ ἡ ΔΓΑ, τὸ ἄρα ὑπὸ found, and let it be (at) F . And let FE, FB, and FD
τῶν ΑΔ, ΔΓ ἴσον ἐστὶ τῷ ἀπὸ τῆς ΔΕ. ἦν δὲ καὶ τὸ ὑπὸ have been joined. (Angle) FED is thus a right-angle
τῶν ΑΔ, ΔΓ ἴσον τῷ ἀπὸ τῆς ΔΒ· τὸ ἄρα ἀπὸ τῆς ΔΕ [Prop. 3.18]. And since DE touches circle ABC, and
ἴσον ἐστὶ τῷ ἀπὸ τῆς ΔΒ· ἴση ἄρα ἡ ΔΕ τῇ ΔΒ. ἐστὶ δὲ DCA cuts (it), the (rectangle contained) by AD and DC
καὶ ἡ ΖΕ τῇ ΖΒ ἴση· δύο δὴ αἱ ΔΕ, ΕΖ δύο ταῖς ΔΒ, ΒΖ is thus equal to the (square) on DE [Prop. 3.36]. And the
ἴσαι εἰσίν· καὶ βάσις αὐτῶν κοινὴ ἡ ΖΔ· γωνία ἄρα ἡ ὑπὸ (rectangle contained) by AD and DC was also equal to
ΔΕΖ γωνίᾳ τῇ ὑπὸ ΔΒΖ ἐστιν ἴση. ὀρθὴ δὲ ἡ ὑπὸ ΔΕΖ· the (square) on DB. Thus, the (square) on DE is equal
ὀρθὴ ἄρα καὶ ἡ ὑπὸ ΔΒΖ. καί ἐστιν ἡ ΖΒ ἐκβαλλομένη to the (square) on DB. Thus, DE (is) equal to DB. And
διάμετρος· ἡ δὲ τῇ διαμέτρῳ τοῦ κύκλου πρὸς ὀρθὰς ἀπ᾿ FE is also equal to FB. So the two (straight-lines) DE,
ἄκρας ἀγομένη ἐφάπτεται τοῦ κύκλου· ἡ ΔΒ ἄρα ἐφάπτεται EF are equal to the two (straight-lines) DB, BF (re-
τοῦ ΑΒΓ κύκλου. ὁμοίως δὴ δειχθήσεται, κἂν τὸ κέντρον spectively). And their base, FD, is common. Thus, angle
ἐπὶ τῆς ΑΓ τυγχάνῃ. DEF is equal to angle DBF [Prop. 1.8]. And DEF (is)
᾿Εὰν ἄρα κύκλου ληφθῇ τι σημεῖον ἐκτός, ἀπὸ δὲ τοῦ a right-angle. Thus, DBF (is) also a right-angle. And

σημείου πρὸς τὸν κύκλον προσπίπτωσι δύο εὐθεῖαι, καὶ ἡ FB produced is a diameter, And a (straight-line) drawn
μὲν αὐτῶν τέμνῃ τὸν κύκλον, ἡ δὲ προσπίπτῃ, ᾖ δὲ τὸ ὑπὸ at right-angles to a diameter of a circle, at its extremity,
ὅλης τῆς τεμνούσης καὶ τῆς ἐκτὸς ἀπολαμβανομένης μεταξὺ touches the circle [Prop. 3.16 corr.]. Thus, DB touches
τοῦ τε σημείου καὶ τῆς κυρτῆς περιφερείας ἴσον τῷ ἀπὸ circle ABC. Similarly, (the same thing) can be shown,
τῆς προσπιπτούσης, ἡ προσπίπτουσα ἐφάψεται τοῦ κύκλου· even if the center happens to be on AC.
ὅπερ ἔδει δεῖξαι. Thus, if some point is taken outside a circle, and two

straight-lines radiate from the point towards the circle,
and one of them cuts the circle, and the (other) meets
(it), and the (rectangle contained) by the whole (straight-
line) cutting (the circle), and the (part of it) cut off out-
side (the circle), between the point and the convex cir-
cumference, is equal to the (square) on the (straight-line)
meeting (the circle), then the (straight-line) meeting (the
circle) will touch the circle. (Which is) the very thing it

107

“Now, if the ekthesis, setting out, with diagram and names of points, is much easier to understand, why does the text of the
Elements always preserve the protatis, which is often skipped by modern readers? Moreover, in many books of the Elements,
the protasis is almost literally repeated at the end of each proposition as sumperasma (conclusion), adding only one word “ara”
(therefore) to the protasis. Taking into account the difficulty and high cost of copying and preserving long text in antiquity, the
generosity of the author (and/or ancient editors) of the Elements for protasis and sumperasma is quite impressive. Why did
it not occur to them to reduce the length of propositions by suppressing the protasis? The answer should be that the protasis
(repeated in sumperasma) deserved the space it occupied. But what was its value or function for ancient mathematicians and
teachers?” (§3.4)

Since, in oral teaching, “the diagram of a proposition was probably erased when the next proposition had to be treated, . . . there
must have been some way of memorizing and referring to the propositions. I believe that this was exactly the role of the protatis.
Indeed, although a protasis such as that of III.37 is long and incomprehensible to someone who reads it for the first time, it is
not so hard to memorize after one has learned the proposition and one has understood what it means. . . . Another important
function of the protasis is that a protasis is useful when you want to apply the proposition you know in the demonstration of a
later proposition. The protasis is a quotable format. . . . If you want to apply a proposition whose protasis you have in memory
in a demonstration you are working on, you recite the protasis, replacing the indication of geometrical objects by the expression
with labels in the diagram, and you have the argument you need.” (§4.4)

§ 5. Read Euclid backwards: history and purpose of Pythagorean Theorem

§ 6. Consequentia mirabilis: the dream of reduction to logic

G. W. LEIBNIZ, La vraie méthode, 1677. Translation quoted from Wiener, Leibniz selections, 15.

“If we could find characters or signs appropriate for expressing all our thoughts as definitely and as exactly as arithmetic ex-
presses numbers or geometric analysis expresses lines, we could in all subjects in so far as they are amenable to reasoning
accomplish what is done in Arithmetic and Geometry. For all inquiries which depend on reasoning would be performed by the
transposition of characters and by a kind of calculus, which would immediately facilitate the discovery of beautiful results. For
we should not have to break our heads as much as is necessary today, and yet we should be sure of accomplishing everything the
given facts allow. Moreover, we should be able to convince the world what we should have found or concluded, since it would
be easy to verify the calculation either by doing it over or by trying tests similar to that of casting out nines in arithmetic. And if
someone would doubt my results, I should say to him: ‘Let us calculate, Sir’ and thus by taking to pen and ink, we should soon
settle the question.”

§ 7. What makes a good axiom?

PROCLUS, A Commentary on the First Book of Euclid’s Elements, c. 450, translated by Glenn R. Morrow, Princeton University
Press, 1992.
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“Proclus’ commentary on book I of Euclid’s Elements is almost certainly a written version of lectures which he presented to
students and associates in Athens in the mid-fifth century. . . . Readers of the commentary should always bear in mind that,
although it is the work of Proclus, it is also a record of an educational and intellectual tradition.” (ix)

Mathematics stems from the soul, not sense experience. “Should we admit that [the objects of mathematics] are derived from
sense objects, either by abstraction, as is commonly said, or by collection from particulars to one common definition?” (10) No,
because “The unchangeable, stable, and incontrovertible character of the propositions [of mathematics] shows that it is superior
to the kinds of things that move about in matter.” (3) “And how can we get the exactness of our precise and irrefutable concepts
from things that are not precise? . . . We must therefore posit the soul as the generatrix of mathematical forms and ideas.” (11)

Nevertheless mathematics has many uses. For although we just argued that it is “immaterial and theoretical; when it touches on
the material world it delivers out of itself a variety of sciences—such as geodesy, mechanics, and optics—by which it benefits the
life of mortals. . . . and many things incredible to men it has made credible to all. Recall what Hieron of Syracuse is said to have
remarked about Archimedes, who had built a three masted vessel . . . When all the Syracusans together were unable to launch
it and Archimedes made it possible for Hieron alone to move it down to the shore [by a system of pulleys], he exclaimed, in his
amazement: ‘From this day forth we must believe everything that Archimedes says.’ . . . Many of our predecessors have recorded
such things in praise of mathematics.” (50-51)

“There are nevertheless contentious persons who endeavor to detract from the worth of this science, . . . declaring that the empir-
ical sciences concerned with sense objects are more useful than the general theorems of mathematics. Mensuration, they say, is
more useful than geometry, popular arithmetic than the theory of numbers, and navigation than general astronomy. For we do
not become rich by knowing what wealth is but by using it, nor happy by knowing what happiness is but by living happily. Hence
we shall agree, they say, that the empirical sciences, not the theories of the mathematicians, contribute most to human life and
conduct. Those who are ignorant of principles but practiced in dealing with particular problems are far and away superior in
meeting human needs to those who have spent their time in the schools pursuing theory alone.” (22)

Reply to this objection. “We do not think it proper . . . to measure its utility by looking to human needs and making necessity our
chief concern. . . . We must therefore posit mathematical knowledge and the vision that results from it as being worthy of choice
for their own sakes, and not because they satisfy human needs. And if we must relate their usefulness to something outside them,
it is to intellectual insight that they must be said to be contributory. For to that they lead the way and prepare us by purifying
the eye of the soul and removing the hindrances that the senses present to our knowing the whole of things. . . . Consequently
instead of crying down mathematics for the reason that it contributes nothing to human needs . . . we should, on the contrary,
esteem it highly because it is above material needs and has its good in itself alone.” (23-24)

PLATO, Meno, translated by W. K. C. Guthrie, Penguin, 1956.

Socrates wants to illustrate the nature of mathematical knowledge by leading an uneducated slave boy to discover how to double
a given square of area four square feet. In the course of the dialog below he draws this figure in the sand, starting with one of the
four small squares:

“SOCRATES: Tell me, boy, is not this our square of four feet? You understand? BOY: Yes. SOCRATES: Now we can add another
equal to it like this? BOY: Yes. SOCRATES: And a third here, equal to each of the others? BOY: Yes. SOCRATES: And then we can
fill in this one in the corner? BOY: Yes. SOCRATES: Then here we have four equal squares? BOY: Yes. SOCRATES: And how many
times the size of the first square is the whole? BOY: Four times. SOCRATES: And we want one double the size. You remember?
BOY: Yes. SOCRATES: Now does this line going from corner to corner cut each of these squares in half? BOY: Yes. SOCRATES:
And these are four equal lines enclosing this area? BOY: They are. SOCRATES: Now think. How big is this area? BOY: I don’t
understand. SOCRATES: Here are four squares. Has not each line cut off the inner half of each of them? BOY: Yes. SOCRATES:
And how many such halves are there in this figure? BOY: Four. SOCRATES: And how many in this one? BOY: Two. SOCRATES:
And what is the relation of four to two? BOY: Double. SOCRATES: How big is this figure then? BOY: Eight feet. SOCRATES: On
what base? BOY: This one. SOCRATES: The line which goes from corner to corner of the square of four feet? BOY: Yes. SOCRATES:
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The technical name for it is ‘diagonal’; so if we use that name, it is your personal opinion that the square on the diagonal of the
original square is double its area. BOY: That is so, Socrates. SOCRATES: What do you think, Meno? Has he answered with any
opinions that were not his own? MENO: No, they were all his. SOCRATES: Yet he did not know, as we agreed a few minutes
ago. MENO: True. SOCRATES: But these opinions were somewhere in him, were they not? MENO: Yes. SOCRATES: So a man
who does not know has in himself true opinions on a subject without having knowledge. . . . This knowledge will not come from
teaching but from questioning. He will recover it for himself.” (84d-85d)

PLATO, Republic, c. −380, quoted from Complete Works, ed. John M. Cooper, Hackett, 1997.

“We must require those in your fine city not to neglect geometry in any way, for even its byproducts are not insignificant. . . .
When it comes to better understanding any subject, there is a world of difference between someone who has grasped geometry
and someone who hasn’t.”

But: “No one with even a little experience of geometry will dispute that this science is entirely the opposite of what is said about
it in the accounts of its practitioners. . . . They give ridiculous accounts of it, . . . for they speak like practical men, and all their
accounts refer to doing things. They talk of ‘squaring,’ ‘applying,’ ‘adding,’ and the like, whereas the entire subject is pursued for
the sake of knowledge . . . [and] for the sake of knowing what always is, not what comes into being and passes away.” (VII, 527)

PLATO, Timaeus, translated by Donald J. Zeyl, Hackett, 2000.

Human anatomy is an appendix to the soul. “The entire body” was created “as its vehicle” (69c), and its properties were designed
to serve the soul, e.g., “They wound the intestines round in coils to prevent the nourishment from passing through so quickly
that the body would of necessity require fresh nourishment just as quickly, there by rendering it insatiable. Such gluttony would
make our whole race incapable of philosophy and the arts, and incapable of heeding the most divine part within us.” (73a). Even
eyesight was created not for worldly purposes but primarily to give us the mind the idea of number and time:

Origins of human understanding. “Our ability to see the periods of day-and-night, of months and of years, of equinoxes and
solstices, has led to the invention of number and has given us the idea of time and opened the path to inquiry into the nature of
the universe. These pursuits have given us philosophy, a gift from the gods to the mortal race whose value neither has been nor
ever will be surpassed. I’m quite prepared to declare this to be the supreme good our eyesight offers us.” (47a-b).

Generation of animals. “[Birds] descended from .. . simpleminded men, men who studied the heavenly bodies but in their
naiveté believed that the most reliable proofs concerning them could be based upon visual observation. Land animals . . . came
from men who had no tincture of philosophy and who made no study of the heavens whatsoever . . . As a consequence . . . they
carried their forelimbs and their heads dragging toward the ground.” (91d-92a).

ARISTOTLE, Posterior Analytics, translated by Jonathan Barnes, Oxford University Press, 1994.

The essence Aristotle’s view of the axiomatic-deductive method is summed up in the following sentence: “Demonstrative un-
derstanding . . . must proceed from items which are true and primitive and immediate and more familiar than and prior to and
explanatory of the conclusions.” (71b)

Three notable consequences of this thesis are:

The axiomatic-deductive method is much more than mere logic. “There can be a deduction even if these conditions are not met,
but there cannot be a demonstration—for it will not bring about understanding.” (71b)

There is a fundamental distinction between “demonstrations which are said to demonstrate and those which lead to the impos-
sible” (85a), i.e., proofs by contradiction, which must be seen as intrinsically inferior (87a).

Axioms stem from perception. “I call prior and more familiar in relation to us items which are nearer perception” (72a), so
immediate perception must be the ultimate foundations of “demonstrative understanding.” “We must get to know the primitives
[i.e., axioms] by induction; for this is the way in which perception instills universals.” (100b) However, “for the principles [i.e.,
axioms] a geometer as geometer should not supply arguments” (77b). Note the two coextensive words for “axiom”—indeed, “I
call the same things principles and primitives” (72a), since logical starting points of a deductive system and immediately given
truths should be the same thing.
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§ 8. That which has no part: Euclid’s definitions

LUCIO RUSSO, The Definitions of Fundamental Geometric Entities Contained in Book I of Euclid’s Elements, Archive for
History of Exact Science, 52 (1998), 195–219.

Definition 4 of Euclid’s Elements reads: “a straight line is [a line] which lies uniformly in respect to [all] its points.” “Definitions
like these are today considered useless and their inclusion in the Elements is usually seen as a serious flaw in the Elements.” But
“the presence of the above definitions in our manuscripts of the Elements is . . . far from warranting their authenticity, in view
of the scant reliability of the textual tradition.” (196) Manuscript evidence suggests that “the original text of Book I of Euclid’s
Elements did contain some of the definitions,” but that “Euclid did not hesitate in using geometrical terms he had not defined
in advance” (such as “circumference”)—a practice “avoided in the Imperial age” when “more definitions were again included in
textbooks.” (198) In the works of Archimedes and Apollonius (who “belong to the same scientific tradition” as Euclid) “there is
nothing analogous to the pseudo-definitions of fundamental geometrical entities contained in the Elements. The introduction
of terms implicitly defined through postulates is instead frequent.” (209–210)

Heron of Alexandria (c. 50) wrote a work devoted to, as he says, “describing and sketching for you as briefly as possible . . . the
technical terms premised in the elements of geometry” (213). Heron’s description of a straight line begins as follows: “a straight
line is [a line] which, uniformly in respect to [all] its points, lies upright and stretched to the utmost towards the ends, such that,
given two points, it is the shortest of the lines having them as ends.” “Archimedes . . . had in fact assumed that among all lines
with the same ends the straight line has the minimum length. It is worth noting that Archimedes’ statement was not a ‘definition’,
but [a postulate]. In order to draw a ‘definition’ from Archimedes’ postulate, Heron, however, could not restrict his statement to
only one couple of points; he had to require that Archimedes’ property should be verified uniformly in respect to all its points . . .
Heron’s sentence is therefore completely clear.” (215)

“We know that the obscure scholar who compiled the list of definitions in the form in which they now appear in Book I of the
Elements was not a mathematician of any value. We have supposed that he had decided to use as definitions of elementary
geometrical entities some excerpts from Heron’s long illustrations. In our case he might have truncated Heron’s first sentence as
soon as he could get a syntactically correct sentence, even if empty of mathematical meaning.” (215) The goal in doing so may
have been “to get a set of short ‘definitions’ suitable to be learnt by heart in the schools . . . If such a list was usually premised to
the Elements, it could hardly avoid being eventually confused with Euclid’s text.” (203)

SEXTUS EMPIRICUS, Against Physicists. Against Ethicists, Loeb Classical Library 311, Harvard University Press, 1936.

“The straight line shown to us on the board has length and breadth, whereas the straight line conceived by them is ‘length
without breadth’. The line shown on the board will not be a line.” (139)

ARISTOTLE, Metaphysics.

“Perceptible lines [are not] such lines as the geometer speaks of ... for no perceptible thing is straight or round in the way in
which he defines ‘straight’ and ‘round’. ... as Protagoras used to say in his refutation of the geometers.” (998a)

SIMPLICIUS, On Aristotle Physics.

“How [is] the Elements of Euclid not destroyed, if it is not possible to extend a straight line outside the universe?” (511.30–2.9)

§ 9. Created equal: Euclid’s Postulates 1-4

H. D. LEE (ED.), Zeno of Elea: A Text, with Translation and Notes, Cambridge University Press, 1936.
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Zeno (c. -450) argued that motion is impossible. His “dichotomy” argument says:

“An object in motion must move through a certain distance; but since every distance is infinitely divisible the moving object
must first traverse half the distance through which it is moving, and then the whole distance; but before it traverses the whole
of the half distance, it must traverse half of the half, and again the half of this half. If then these halves are infinite in number,
because it is always possible to halve any given length, and if it is impossible to traverse an infinite number of positions in a finite
time . . . [then] therefore it is impossible to traverse any magnitude in a finite time.” (45; Simplicius 1013.4)

There is also the “Achilles” form of the argument:

“The argument is called the Achilles because of the introduction into it of Achilles, who, the argument says, cannot possibly
overtake the tortoise he is pursuing. For the overtaker must, before he overtakes the pursued, first come to the point from
which the pursued started. But during the time taken by the pursuer to reach this point, the pursued always advances a certain
distance; even if this distance is less than that covered by the pursuer, because the pursued is the slower of the two, yet none
the less it does advance, for it is not at rest. And again during the time which the pursuer takes to clever this distance which the
pursued has advanced, the pursued again covers a certain distance . . . And so, during every period of time in which the pursuer is
covering the distance which the pursued . . . has already advanced, the pursued advances a yet further distance; for even though
this distance decreases at each step, yet, since the pursued is also definitely in motion, it does advance some positive distance.
And so . . . we arrive at the conclusion that not only will Hector never be overcome by Achilles, but not even the tortoise.” (51;
Simplicius 1014.9)

§ 10. Why construct?

PAOLO SARPI, Pensieri folosofici e scientifici, no. 1, 1578.

“We know for certain both the existence and the cause of those things which we understand fully how to make . . . [just as] in
mathematics someone who composes [i.e. demonstrates synthetically] knows because he makes.”

GIAMBATTISTA VICO, On the Study Methods of our Time, translated from the 1709 original by Elio Gianturco. The Library of
Liberal Arts, Bobbs-Merrill Company, 1965.

“We are able to demonstrate geometrical propositions because we create them; were it possible for us to supply demonstrations
of propositions of physics, we would be capable of creating them ex nihilo as well.” (IV.23)

PIERRE GASSENDI, Exercitationes, 1624, quoted from The Selected Works of Pierre Gassendi, ed. and transl. Craig B. Brush,
Johnson Reprint Co., New York, 1972.

“Things not yet created and having no existence, but being merely possible, have no reality and no truth.” (253) “The moment
you pass beyond things that are apparent, or fall under the province of the senses and experience, in order to inquire about
deeper matters, both mathematics and all other branches of knowledge become completely shrouded in darkness.” “[Hence
mathematical objects must be] considered in actual things”; indeed, “as soon as numbers and figures are considered abstractly
. . . then they are nothing at all.” (107)

JOHN AUBREY, Brief Lives, late 17th century.

“[Thomas Hobbes] was 40 years old before he looked on geometry; which happened accidentally. Being in a gentleman’s library,
Euclid’s Elements lay open, and ‘twas the 47 El. libri I [Pythagorean Theorem]. He read the proposition. By God, sayd he (he
would now and then sweare an emphaticall Oath by way of emphasis), this is impossible! So he reads the Demonstration of it,
which referred him back to such a Proposition; which proposition he read. That referred him back to another, which he also
read. Et sic deinceps, that at last he was demonstratively convinced of that trueth. This made him in love with geometry.”

12



THOMAS HOBBES, Leviathan, 1651. Quoted from The English Works of Thomas Hobbes of Malmesbury, Volume III.

“Geometry . . . is the only science that it hath pleased God hitherto to bestow on mankind” (23-24).

“There can be nothing so absurd, but may be found in the books of philosophers. And the reason is manifest. For there is not
one of them that begins his ratiocination from the definitions, or explications of the names they are to use; which is a method
that hath been used only in geometry; whose conclusions have thereby been made indisputable.” (33)

“For all men by nature reason alike, and well, when they have good principles. For who is so stupid, as both to mistake in
geometry, and also to persist in it, when another detects his error to him?” (35)

“By Philosophy is understood the knowledge acquired by reasoning, from the manner of the generation of any thing, to the
properties: or from the properties, to some possible way of generation of the same; to the end to be able to produce, as far as
matter, and human force permit, such effects, as human life requireth. So the geometrician, from the construction of figures,
findeth out many properties thereof; and from the properties, new ways of their construction, by reasoning; to the end to be able
to measure land, and water; and for infinite other uses.” (664)

THOMAS HOBBES, De Corpore, 1655. Quoted from The English Works of Thomas Hobbes of Malmesbury, Volume I.

“Philosophy is such knowledge of effects or appearances as we acquire by true ratiocination from the knowledge we have first of
their causes or generation.” (3)

This definition is explicitly modelled on mathematics: “How the knowledge of any effect may be gotten from the knowledge of
the generation thereof, may easily be understood by the example of a circle: for if there be set before us a plain figure, having, as
near as may be, the figure of a circle, we cannot possibly perceive by sense whether it be a true circle or no . . . [But if] it be known
that the figure was made by the circumduction of a body whereof one end remained unmoved” then the properties of a circle
become evident. (6)

Another way of putting it is that “The subject of Philosophy, or the matter it treats of, is every body of which we can conceive any
generation.” (10) Just as the domain of geometry is the set of constructible curves.

As the circle example shows, motion is a basic form of generation. Indeed motion is the foundation of geometry and physics
alike. “First we are to observe what effect a body moved produceth, when we consider nothing in it besides its motion; . . .
from which kind of contemplation sprung that part of philosophy which is called geometry.” (71) Next “we are to pass to the
consideration of what effects one body moved worketh upon another; . . . that is, when one body invades another body which is
either at rest or in motion, what way, and with what swiftness, the invaded body shall move; and, again, what motion this second
body will generate in a third, and so forwards. From which contemplation shall be drawn that part of philosophy which treats of
motion . . . [and ultimately] comprehend that part of philosophy which is called physics. (71-72)

“And, therefore, they that study natural philosophy, study in vain, except they begin at geometry; and such writers or disputers
thereof, as are ignorant of geometry, do but make their readers and hearers lose their time.” (73)

“After physics we must come to moral philosophy; in which we are to consider the motions of the mind, namely, appetite, aver-
sion, love, benevolence, hope, fear, anger, emulation, envy, &c.” (72) “For the causes of the motions of the mind are known
.. . And, therefore, . . . by the synthetical method, and from the very first principles of philosophy, [one] may by proceeding in
the same way [as in geometry and physics], come to the causes and necessity of constituting commonwealths, and to get the
knowledge of what is natural right, and what are civil duties; and, in every kind of government, what are the rights of the com-
monwealth, and all other knowledge appertaining to civil philosophy.” (73-74)

Carefully enunciated definitions are another prominent aspect of mathematics that is to be carried over into general philosophy.
“Whatsoever the common use of words be, yet philosophers, who were to teach their knowledge to others, had always the liberty
. . . of taking to themselves such names as they please for the signifying of their meaning, if they would have it understood.
Nor had mathematicians need to ask leave of any but themselves to name the figures they invented, parabolas, hyperboles,
cissoeides, quadratrices, &c. or to call one magnitude A, another B.” (16) “But definitions of things, which may be understood to
have some cause, must consist of such names as express the cause or manner of their generation, as when we define a circle to
be a figure made by the circumduction of a straight line in a plane, &c.” (81-82)

Logical, syllogistic reasoning is another distinctive attribute of mathematics. In fact, “They that study the demonstrations of
mathematicians, will sooner learn true logic, than they that spend time part in reading the rules of syllogizing which logicians
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Figure 1: Popularised version of Russell’s Paradox.

have made; no otherwise than little children learn to go, not by precepts, but by exercising their feet.” (54-55)

THOMAS HOBBES, Six Lessons to the Savilian Professors of the Mathematics, 1656. Quoted from The English Works of Thomas
Hobbes of Malmesbury, Volume VII.

“Of arts, some are demonstrable, others indemonstrable; and demonstrable are those the construction of the subject whereof is
in the power of the artist himself, who, in his demonstration, does no more but deduce the consequences of his own operation.
The reason whereof is this, that the science of every subject is derived from a precognition of the causes, generation, and con-
struction of the same; and consequently where the causes are known, there is place for demonstration, but not where the causes
are to seek for. Geometry therefore is demonstrable, for the lines and figures from which we reason are drawn and described by
ourselves; and civil philosophy is demonstrable, because we make the commonwealth ourselves.” (183-184)

WILLIAM KNEALE & MARTHA KNEALE, The Development of Logic, Oxford University Press, 1962, page 114.

[Eubulides in the fourth century BC] made . . . important contributions to the development of logic, [including] the invention of
a number of interesting paradoxes, [such as:] . . .

The Liar. A man says that he is lying. Is what he says true or false? [If it’s true, then it must be false. If it’s false, then it must be
true.] . . .

The Horned Man. What you have not lost you still have. But you have not lost horns. So you still have horns.

L. E. J. BROUWER, Over de Grondslagen der Wiskunde, Ph.D. thesis, University of Amsterdam, 1907. Quoted from the trans-
lation in L. E. J. Brouwer, Collected Works, I, North-Holland, 1975.

Wheresoever in logic the word all or every is used, this word, in order to make sense, tacitly involves the restriction: insofar as
belonging to a mathematical structure which is supposed to be constructed beforehand. (76)

By a propositional function . . . the logicians . . . mean a statement about x . . . ; they reckon that by that statement a class is
defined, consisting of all things . . . which by substitution make the statement true. [Thus they speak of] all things for which the
statement ϕx is true. . . . As the fundamental domain of operations, within which the relations meant by the words or symbols
must exist, they choose not some mathematical system, but the chimerical ‘everything’. . . . [They thus] give a linguistic system
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of statements and propositional functions priority over mathematics. (88) They postulate that these sentences define classes
and that it is allowed to reason about these classes according to the laws of classical logic. (89)

It is not surprising that they . . . came up against contradictions. . . . Russell discusses most amply the following contradiction:
‘I consider the class of all classes which do not possess the property . . . to occur amongst their own elements. Does this class
possess the property in question? If it does, then it occurs amongst its own elements, so it is one of the classes which do not
possess the property, so it does not have the property. And vice-versa: If it does not, then it is on equal terms with its own
elements, so it does have the property.’ [Cf. Figure 1]

Russell suggests various methods to escape from the contradiction. . . . ‘[One] suggestion’, he says, ‘would be to demur to the
notion of all objects, but in any case the notion of every object must be retained, for there are truths, viz. the logical principles,
which hold for every object.’

But this is mistaken: the logical principles hold exclusively for words with a mathematical content. And exactly because Russell’s
logic is no more than a linguistic system, deprived of a presupposed mathematical system to which it would be related, there is
no reason why no contradictions would appear. (89)

The language of Euclidean geometry . . . is reliable only because the mathematical systems and relations, which are symbolized
by the words of that language as conventional signs, have been constructed beforehand independently of that language. (98)

P. W. BRIDGMAN, The Logic of Modern Physics, New York: Macmillan, 1927. Paperback reprint 1960.

“We mean by any concept nothing more than a set of operations; the concept is synonymous with the corresponding set of
operations.” (5) “The proper definition of a concept is not in terms of its properties but in terms of actual operations.” (6)

Motivation for this: Relativity theory and quantum physics show that “when experiment is pushed into new domains, we must
be prepared for new facts, of an entirely different character from those of our former experience” (2). Therefore “the physicist
. . . recognizes no a priori principles which determine or limit the possibilities of new experience” (3); rather we “must use in
describing and correlating nature concepts of such a character that our present experience does not exact hostages of the future”
(4). “For if experience is always described in terms of experience, . . . we need never be embarrassed” (6–7) to find that we were
talking about imagined concepts with no connection to reality.

“[A] consequence of the operational character of our concepts . . . is that it is quite possible, even disquietingly easy, to invent
expressions or to ask questions that are meaningless. It constitutes a great advance in our critical attitude toward nature to
realize that a great many of the questions that we uncritically ask are without meaning. If a specific question has meaning, it
must be possible to find operations by which an answer may be given to it.” (28)

P. W. BRIDGMAN, The nature of some of our physical concepts, New York: Philosophical Library, 1952.

“We do not know the meaning of a concept unless we can specify the operations which were used . . . in applying the concept in
any concrete situation” (7)

“Physicists do profitably employ concepts the meaning of which is not to be found in the instrumental operations of the labora-
tory, and which cannot be reduced to such operations without residue. Nearly all the concepts of theoretical and mathematical
physics are of this character. . . . In fact, there is hardly any physical concept which does not enter to a certain extent into some
theoretical edifice and which does not therefore possess to a certain degree a non-instrumental component.” (8)

“I think, however, that physicists are agreed in imposing one restriction on the freedom of such operations, namely that such
operations much be capable of eventually, although perhaps indirectly, making connection with instrumental reality. Only in
this way can the physicist keep his feet on the ground or achieve a satisfactory degree of precision. . . . Politics, philosophy and
religion are full of . . . purely verbal concepts; it is merely that such concepts are outside the field of the physicist.” (10)

P. W. BRIDGMAN, Reflections of a Physicist, second ed., New York: Philosophical Library, 1955.

“In mathematics much the same situation arises that arises in physics; in foundation studies, in which one wants to secure
the maximum awareness of what one is doing and the maximum security that he is not involving himself in contradiction, one
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would do well to use only concepts whose meaning is found in . . . unambiguously performable operations. For in this way, . . .
the description of a situation in mathematics reduces to the description of an actual experience, . . . and actual experience in not
self-contradictory.” (17)

“One of the chief advantages of making definitions operational is that it increases precision. I find that I myself use terms without
either precisely formulating the conditions which demand their use. . . . When my neighbour uses the term, I observe only too
frequently that I cannot deduce from his use of it the occurrence of certain antecedent or subsequent occurrences which I believe
are implied in his use of it. In such cases reduction of definitions to operational terms increases precision, so that operational
definitions are called for when increased precision is called for.” (30)

Operationalism implies questioning the Platonic philosophy of mathematics, e.g. that numbers “exist.” (100)

“The very nature of meaning itself makes it impossible to get away from the human reference point.” (112)

“If I am trying to describe a situation, the criterion that I have successfully communicated it, is that my fellow be able to recon-
struct the situation. . . . The meaningfulness of the communication is therefore to be found in the actions which accompany it.”
(121)

§ 11. Let it have been drawn: the role of diagrams in geometry

PROCLUS, A Commentary on the First Book of Euclid’s Elements, c. 450, translated by Glenn R. Morrow, Princeton University
Press, 1992.

“‘Problems’ [are] those propositions whose aim it is to produce, bring into view, or construct what in a sense does not exist, and
‘theorems’ those whose purpose is to see . . . and demonstrate . . . an attribute.” (157)

“Unless [Euclid] had previously shown the existence of triangles and their mode of construction, how could he discourse about
their essential properties and the equality of their angles and sides? And how could he have assumed sides equal to sides and
straight lines equal to other straight lines unless he had worked these out in the preceding problems and devised a method by
which equal lines can be discovered? Suppose someone, before these have been constructed, should say: ‘If two triangles have
this attribute, they will necessarily also have that.’ Would it not be easy for anyone to meet this assertion with, ‘Do we know
whether a triangle can be constructed at all?’ . . . It is to forestall such objections that the author of the Elements has given us the
construction of triangles.” (183)

“But it is in imagination that the constructions, sectionings, superpositions, comparisons, additions, and subtractions take place,
whereas the contents of our understanding all stand fixed, without any generation or change.” (64)

CHRISTIÁN C. CARMAN, Accounting for overspecification and indifference to visual accuracy in manuscript diagrams: A
tentative explanation based on transmission, Historia Mathematica, 45, 2018, 217–236.

“The first time you encounter a medieval manuscript of a Greek mathematical or astronomical work, like those of Archimedes,
Euclid, or Aristarchus, the most impressive feature is the odd configuration many diagrams show. There is a tendency to repre-
sent more regularity among the geometric objects than what the argument demands and usually they are not accurate graphical
depictions of the mathematical object discussed in the text.” (217)

Here for example is a typical manuscript depiction of the figure for the Pythagorean Theorem (Elements I.47):

Even though the theorem holds for any right-angle triangle, the manuscript has drawn the special case where the two legs are
equal, thereby giving the misleading impression that the theorem is less general than it really is.
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“Considering that, except for very few testimonies extant in papyrus (from which not much can be inferred), the most ancient
witnesses of Greek diagrams are medieval, we cannot conclusively decide whether these characteristics go back to the Greek
authors or they are the result of medieval copyists.” (222)

One hypothesis is that, “starting from the supposed original diagram (that is, the diagram well done), a series of copies will
generally transform it into a diagram similar to that of the manuscripts.” (222) It is indeed plausible that repeated copying
converges to specificity, assuming copyists largely ignorant of mathematical content. For example, in the case of the Pythagorean
Theorem, a scribe might get a version where the legs look similar and mistakenly assume that exact equality was intended. He
then copies it this way, and specificity is introduced. No one will restore more generality in the diagram, because that would
require mathematical understanding.

“To test this hypothesis I asked many groups of university students to play the role of copyists. . . . I gave a folder to one of them,
containing a drawing of the diagram as I presume the Greek author drew it. I asked the student to copy the diagram and to place
her copy in the folder, over the starting diagram she had copied before hiding it, and to pass the folder to the next student, who
would copy the drawing made by the first student, and so on.” (222–223)

Below is an example of the successive copies of the original figure (0), which do indeed approach the surviving manuscript figure
(M). Note for example that the short segment is supposed to be perpendicular to the long one.224 C.C. Carman / Historia Mathematica 45 (2018) 217–236

Figure 8. Reproduction of a witness series of the drawings copying a diagram of the V book of Ptolemy’s Almagest. Starting 
diagram (0): Figure 5.15 of Toomer [19 88, 26 3]; final diagram (M): Vatican 180, f. 129 r. The drawings have been rotated and 
resized to fit in the assigned space.

one that has been selected as witness and shown in the figure, which is plotted with a solid gray line. The 
average of all the supporting series is plotted in black, to favor a comprehensive view of the positive results.

2. The results

In the diagram of the Almagest mentioned above I measure angle AZB at 6 0◦, the angle of the starting 
diagram, taken from Toomer [19 88, 26 3, Figure 5.15]. The diagram of the manuscript was taken from 
Vatican 180, f. 129 r.

Let me start by analyzing the witness series (Figure 8). Drawing 0 is the starting diagram, which the first 
student copied. Her copy is labeled 1; the one that copies her drawing, 2, and so on. In the starting diagram 

§ 12. Maker’s knowledge: early modern philosophical interpretations of geometry

§ 13. Cultural reception of geometry in early modern Europe

RENÉ DESCARTES, A Discourse on the Method, 1637, translated by Ian Maclean, Oxford University Press, 2008.

“I was most keen on mathematics, because of its certainty and the incontrovertibility of its proofs; but I did not yet see its true
use. Believing as I did that its only application was to the mechanical arts, I was astonished that nothing more exalted had been
built on such sure and solid foundations.” (9 = AT 7)

“The long chains of reasonings, every one simple and easy, which geometers habitually employ to reach their most difficult
proofs had given me cause to suppose that all those things which fall within the domain of human understanding follow on from
each other in the same way, and that as long as one stops oneself taking anything to be true that is not true and sticks to the right
order so as to deduce one thing from another, there can be nothing so remote that one cannot eventually reach it, nor so hidden
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that one cannot discover it. And I had little difficulty in determining those with which it was necessary to begin, for I already
knew that I had to begin with the simplest and the easiest to understand; and considering that of all those who had up to now
sought truth in the sphere of human knowledge, only mathematicians have been able to discover any proofs, that is, any certain
and incontrovertible arguments, I did not doubt that I should begin as they had done.” (17-18 = AT 19)

Descartes’s general method:

“The first [principle of my method] was never to accept anything as true that I did not incontrovertibly know to be so; that is
to say, carefully to avoid both prejudice and premature conclusions; and to include nothing in my judgements other than that
which presented itself to my mind so clearly and distinctly, that I would have no occasion to doubt it.” (17 = AT 18)

“The second was to divide all the difficulties under examination into as many parts as possible, and as many as was required to
solve them in the best way.” (17 = AT 18)

“The third was to conduct my thoughts in a given order, beginning with the simplest and most easily understood objects, and
gradually ascending, as it were step by step, to the knowledge of the most complex; and positing an order even on those which
do not have a natural order or precedence.” (17 = AT 18)

“The last was to undertake such complete enumerations and such general surveys that I would be sure to have left nothing out.”
(17 = AT 19)

RENÉ DESCARTES, Principles of Philosophy, 1644, translated by R. P. Miller, Springer, 1982.

Descartes’s philosophical method is modelled on the method of Euclid’s Elements, as is clear from Descartes’s preface:

“One must begin by searching for . . . first causes, that is, for Principles [which] must be so clear and so evident that the human
mind cannot doubt of their truth when it attentively considers them .. . And then, one must attempt to deduce from these
Principles the knowledge of the things which depend upon them, in such a way that there is nothing in the whole sequence
of deductions which one makes from them which is not very manifest.” (xvii-xviii)

But Descartes is not content with merely adopting the Euclidean method—he also justifies it. He does this by showing that
it survives even the most critical examination possible, namely that announced in the first sentence of the text: “whoever is
searching for truth must, once in his life, doubt all things” (I.1).

The Euclidean method is the only philosophical method to survive this critical abyss, by the following chain of reasoning.

First we prove our own existence. “We can indeed easily suppose that there is no God, no heaven, no material bodies; and yet
even that we ourselves have no hands, or feet, in short, no body; yet we do not on that account suppose that we, who are thinking
such things, are nothing: for it is contradictory for us to believe that that which thinks, at the very time when it is thinking, does
not exist. And, accordingly, this knowledge, I think, therefore I am, is the first and most certain to be acquired by and present
itself to anyone who is philosophizing in correct order.” (I.7)

“The knowledge of remaining things depend on a knowledge of God,” because the next things the mind feels certain of are
basic mathematical facts, but it cannot trust these judgments unless it knows that its creator is not deceitful. Thus “the mind . . .
discovers [in itself] certain common notions, and forms various proofs from these; and as long as it is concentrating on these
proofs it is entirely convinced that they are true. Thus, for example, the mind has in itself the ideas of numbers and figures, and
also has among its common notions, that if equals are added to equals, the results will be equal, and other similar ones; from
which it is easily proved that the three angles of a triangle are equal to two right angles, etc.” But the mind “does not yet know
whether it was perhaps created of such a nature that it errs even in those things which appear most evident to it.” Therefore “the
mind sees that it rightly doubts such things, and cannot have any certain knowledge until it has come to know the author of its
origin.” (I.13)

The existence of God is established to Descartes’s satisfaction by several dubious arguments, most notably the following. “Just
as, for example, the mind is entirely convinced that a triangle has three angles which are equal to two right angles, because it
perceives that the fact that its three angles equal two right angles is necessarily contained in the idea of a triangle; so, solely
because it perceives that necessary and eternal existence is contained in the idea of a supremely perfect being, the mind must
clearly conclude that a supremely perfect being exists.” (I.14) And all the more since it is “very well know from [our] natural en-
lightenment” “that that which is more perfect is not produced by an efficient and total cause which is less perfect; and moreover
that there cannot be in us the idea or image of anything, of which there does not exist somewhere (either in us or outside us),
some Original, which truly contains all its perfections. And because we in no way find in ourselves those supreme perfections of
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which we have the idea; from that fact alone we rightly conclude that they exist, or certainly once existed, in something different
from us; that is, in God.” (I.18)

“It follows from this that all the things which we clearly perceive are true, and that the doubts previously listed are removed”
(I.30), since “God is not the cause of errors,” owing to his perfection, seeing as “the will to deceive certainly never proceeds from
anything other than malice, or fear, or weakness; and, consequently, cannot occur in God.” (I.29) “Thus, Mathematical truths
must no longer be mistrusted by us, since they are most manifest.” (I.30)

PLATO, Timaeus, translated by Donald J. Zeyl, Hackett, 2000.

Polyhedral theory of the elements. “Let us now assign to fire, earth, water, and air the [regular polyhedra]. To earth let us give
the cube, because of the four kinds of bodies earth is the most immobile and the most pliable . . . And of the solid figures that are
left, we shall next assign the least mobile of them to water, to fire the most mobile, and to air the one in between” (55d-56a). The
dodecahedron “still remained, and this one the god used for the whole universe” (55c).

Applications of the polyhedral theory (“a moderate and sensible diversion,” 59d). Water=icosahedron has 20 equilateral triangles
as its sides, while fire=tetrahedron has 4 and air=octahedron 8, so “when water is broken up into parts by fire or even by air, it
could happen that the parts recombine to form one corpuscle of fire and two of air” (56d), i.e., steam is two parts air and one part
fire. A second example may illustrate how the relative sizes of the polyhedra matter (61a). Fire is of course the smallest, followed
by air. Thus, for example, water can normally be dissolved by air (evaporation) by air octahedra slipping in between the water
icosahedra. But since the fire tetrahedra are smaller they dissolve water much more efficiently. And if the water is sufficiently
packed (ice) then air cannot dissolve it at all since only fire can get through the cracks.

JOHANNES KEPLER, Mysterium Cosmographicum: The Secret of the Universe [1596], ABaris Books, 1981.

“Greetings, friendly reader. The nature of the universe, God’s plan for creating it, God’s source for the numbers, . . . the reason
why there are six orbits, the spaces which fall between al the spheres . . . —here Pythagoras reveals all this to you by five figures.”
(49) Namely, there are five regular polyhedra, and the spheres of the planets are nested in such a way that the regular polyhedra
fit precisely between them:
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The ordering of the polyhedra in this arrangement is justified by a myriad arguments, of which the following is a representative
sample:

“[The regular polyhedra] are classified into three primaries, the cube, tetrahedron and dodecahedron, and two secondaries, the
octahedron and the icosahedron. For the correctness of this distinction, note the properties of each class. . . . 2. Every one of
the primaries has its particular type of face: the cube has the square, the pyramid the triangle, the dodecahedron the pentagon;
the secondaries borrow the triangular face from the pyramid. . . . 6. It is characteristic of the primaries to stand upright, of the
secondaries to balance on a vertex. For if you roll the latter onto their base, or stand the former on a vertex, in either case the
onlooker will avert his eyes at the awkwardness of the spectacle. . . . Therefore, since there was an obvious distinction between
the solids, nothing could be more appropriate than that our Earth, the pinnacle and pattern of the whole universe, and therefore
the most important of the moving stars, should by its orbit differentiate between the two classes stated, and should be allotted
the position which we have attributed to it above.” (105)

Once this role of the earth as a divider is recognised, the five remaining planets become associated with one polyhedron each.
This leads to “an astrological game” (119) with such conclusions as: “Woman is always fickle and capricious; and the shape of
Venus [i.e. the icosahedron] is the most capricious and variable of all [i.e. has the most faces].” (117)

What is the purpose of astronomy? “As we do not ask what hope or gain makes a little bird warble, since we know that it takes
delight in singing because it is for that very singing that a bird was made, so there is no need to ask why the human mind
undertakes such toil in seeking out these secrets of the heavens. . . . The reason why there is such a great variety of things, and
treasuries so well concealed in the fabric of the heavens, is so that fresh nourishment should never be lacking for the human
mind, and it . . . should have in this universe an inexhaustible workshop in which to busy itself.” (55)

EDWARD ROSEN (ED.), Kepler’s Conversation with Galileo’s Sidereal Messenger, Johnson Reprint Corp., 1965.

The recent telescopic discovery of the moons of Jupiter lead to the conclusion that Jupiter is inhabited. Why else would it have
moons? “For whose sake, the question arises, if there are no people on Jupiter to behold this wonderfully varied display with
their own eyes?” (40) “We deduce with the highest degree of probability that Jupiter is inhabited.” (44)

But the earth is still privileged (45-46): (1) It is in the middle (three bodies below, three above). (2) Its orbit touches the icosa-
hedron and the dodecahedron, which is the most distinguished position. (3) It sees all the planets. On Jupiter they cannot see
Mercury because it is too close to the sun. “Will anyone then deny that, to make up for the planets concealed from the Jovians
but visible to us earth-dwellers, four other planets are allocated to Jupiter, to match the four inferior planets . . . which revolve
around the sun within Jupiter’s orbit. Let the Jovian creatures, therefore, have something with which to console themselves.”

MAX CASPAR, Kepler, Dover, 1993.

“Aesthetic-artistic consideration of the universe” (382). “I consider it my duty and task . . . to advocate . . . what I . . . have recognized
as true and whose beauty fills me with unbelievable rapture on contemplation.” (298). “I may say with truth that whenever I
consider in my thoughts the beautiful order, how one thing issues out of and is derived from another, then it is as though I had
read a divine text, written onto the world itself . . . saying: Man, stretch thy reason hither, so that thou mayest comprehend these
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things” (152).

Mathematics a means to this end. “Kepler consciously renounced [Archimedean] rigor and wanted to take over from Archimedes
only so much as ‘is sufficient for the pleasure of the lovers of geometry.’” (234). “Don’t sentence me completely to the treadmill
of mathematical calculations and leave me time for philosophical speculations, which are my sole delight. Each one has his own
particular pleasure, one the tables and nativities, I the flower of astronomy, the artistic structure of the motions.” (308).

Man’s cognitive abilities designed for this purpose. “The world partakes of quantity and the mind of man grasps nothing better
than quantities for the recognition of which he was obviously created.” (96). “Nature loves these relationships in everything that
is capable of thus being related. They are also loved by the intellect of man who is an image of the Creator.” (94).

The universe designed for this purpose. “The earth’s axis in inclined to the ecliptic in consideration of the people distributed
over the whole surface of the earth, so that the change of the heavenly phenomena should extend to all places on the earth
and consequently all people have a share in it. . . . Sun and moon have the same apparent sizes, so that the eclipses, one of the
spectacles arranged by the Creator for instructing observing creatures in the orbital relations of the sun and the moon, can occur.
The earth moves around the sun to make it possible for man to get to know the world and its dimensions.” (296).

Reception of the above. These ideas were quite well received e.g. in the case of the Mysterium Cosmographicum: “Professor
Georg Limnäus in Jena . . . is ecstatic that at last someone had again revived the time-honoured Platonic art of philosophising.
. . . [Tycho Brahe] takes unusual pleasure in the book: . . . the zeal, the fine understanding and acumen ought to be praised [even
though] certain details give him pause.” (69-70). It was different with the more modern physics of the Astronomia Nova: “Kepler
ran up against rejection and lack of understanding on all sides. Maestlin, Fabricius, Longomontanus and others shook their
heads.” (135).

CHARLOTTE METHUEN, Kepler’s Tübingen: Stimulus to a Theological Mathematics, Scolar Press, 1998.

The human mind is created to do mathematics. According to Melanchthon, the atomistic doctrines of creation by chance “wage
war against human nature, which was clearly founded to understand divine things” (76); astronomical observations are as nat-
ural to a human being as “swimming to a fish or singing to a nightingale” (85).

The purpose of scientific study is therefore twofold. (1) “inflaming their souls with love and enthusiasm for the truth and rousing
them to understanding of the noblest things” (Melanchthon, 73). (2) Astronomers are “priests of the book of nature” (Kepler,
206n3). The existence of God follows from the universe’s “beauty, order, and all things which have been founded for settled pur-
poses” (Heerbrand, 137). “God desired that knowledge of the wonderful courses and powers should lead us towards knowledge
of the divine” (Melanchthon, 76).

RENÉ DESCARTES, Rules for the direction of the mind, Liberal Arts Press, 1961.

Mathematics is the model for all knowledge. “In seeking the correct path to truth we should be concerned with nothing about
which we cannot have a certainty equal to that of the demonstrations of arithmetic and geometry.” (II, 367) “And although I speak
a good deal here of figures and numbers . . . nevertheless anyone who pays close attention to my meaning will easily observe that
I am not thinking at all of common mathematics, but I am setting forth a certain new discipline . . . broad enough to bring out
the truths of any subject whatsoever.” (IV, 375) The power of mathematics stems from “certain basic roots of truth implanted in
the human mind by nature, which we extinguish in ourselves daily by reading and hearing many varied errors” (IV, 377).

Proofs should be intuited as wholes. Deductions “may sometimes be accomplished through such a long chain of inferences that
when we have arrived at the conclusions we do not easily remember the whole procedure which led us to them .. . Because of
this, I have learned to consider each of these steps by a certain continuous process of the imagination . . . Thus I go from first to
last so quickly that by entrusting almost no parts of the process to the memory, I seem to grasp the whole series at once.” (VII,
388-389) “In this way our knowledge is made much more certain and the capacity of our minds is increased as much as possible.”
(XI, 408)

To achieve this end “we must make use of every assistance of the intellect, the imagination, the senses, and the memory” (XII,
411). “By the aid of each faculty . . . human efforts can serve to repair the deficiencies of the mind.” (XII, 417). For example, “if
the intellect proposes to examine something which can be related to the body it should produce in the imagination the most
distinct idea of it possible; and in order to do this more readily, the object which this idea represents should be exhibited to the
external senses.” (XII, 417-418). “We are to do nothing from this point on without the aid of the imagination.” (XIV, 444)
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Algebra and analytic geometry is intended to be precisely such an aid to the intuition. For having recorded the steps of a proof in
algebraic terms, “we can run through all of them in a very rapid movement of thought and grasp as many as possible at the same
time” (XVI, 456). Intuiting the whole in this way is important to us “who are seeking evident and distinct knowledge of things;
but not the arithmeticians, who are satisfied if the have discovered the number sought even though they have not noticed how
it depends upon the given facts, although this latter is the only point in which science truly lies” (XVI, 459).

Another benefit of algebra in this regard. By algebra “we translate what we understand to be affirmed about magnitudes in
general into that particular magnitude that we can most easily and distinctly picture in our imagination” (XIV, 442); specifically,
“a magnitude should never be regarded in the imagination otherwise than as a line or a surface, even though it may be called a
‘cube’ or a ‘biquadratic’” (XVI, 457).

A quip on why we should denote the answers we seek by a letter such as x. “It frequently happens that individuals are so eager to
investigate problems that they apply their capricious intelligence to finding a solution before they have determined by what signs
they will recognize the object of their search, if they should stumble upon it by accident; these persons are no less foolish that
would be a boy, sent somewhere by his master, who was so eager to obey that he started to run without waiting for instructions,
and without knowing where he was ordered to go.” (XIII, 435)

JOHN AUBREY, Brief Lives, late 17th century.

“[Descartes] was so eminently learned that all learned men made visits to him, and many of them would desire him to show
them his store of instruments. He would draw out a little drawer under his table and show them a pair of compasses with one of
the legs broken; and then for his ruler, he used a sheet of paper folded double.”

PAOLO MANCOSU, Philosophy of Mathematics and Mathematical Practice in the Seventeenth Century, Oxford University
Press, 1996.

“The classical texts of Euclid, Archimedes, Apollonius, Pappus, . . . constituted an extremely stable body of results whose abso-
lute certainty had seldom been put into doubt. In the scholastic Aristotelian tradition a long list of commentators argued for
this certainty by remarking that mathematics conforms to the specifications for a perfect science set down by Aristotle in his
Posterior Analytics. However, during the middle of the sixteenth century several objections were raised against such justifica-
tions of the certainty of mathematics. The debate that ensued from such criticisms is known as the Quaestio de Certitudine
Mathematicarum. The main issues raised by this debate were (a) Does mathematics fit the definition of Aristotelian science or
does it fall short of it? This problem led in turn to a careful analysis of mathematical demonstrations. And (b) If the certainty of
mathematics cannot be argued by appealing to its logical structure on what other grounds can we justify it?” (10)

Pereyra, 1562: “My opinion is that the mathematical disciplines are not proper sciences. . . . To have science is to acquire knowl-
edge of a thing through the cause on account of which the thing is. . . . However, demonstration (I speak of the most perfect kind
of demonstration) must depend upon those things which are ‘per se’ and proper to that which is demonstrated; indeed, those
things which are accidental and in common are excluded from perfect demonstrations. But the mathematician neither consid-
ers the essence of quantity, nor treats of its affections as they flow from such essence, nor declares them by the proper causes on
account of which they are in quantity, nor makes his demonstrations from proper and ‘per se’ but from common and accidental
predicates. Thus mathematical doctrine is not properly science.” (13)

Pereyra, 1562: “The geometer proves [Elements I.32] that the triangle has three angles equal to two right ones on account of the
fact that the external angle which results from extending the side of that triangle is equal to two angles of the same triangle which
are opposed to it. Who does not see that this middle is not the cause of the property which is demonstrated? . . . [The external
angle] is related in an altogether accidental way to [the angle sum of the triangle]. Indeed, whether the side is produced and the
external angle is formed or not, or rather even if we imagine that the production of the one side and the bringing about of the
external angle is impossible, nonetheless that property will belong to the triangle; but, what else is the definition of an accident
than what may belong or not belong to the thing without its corruption?” (15)

“Piccolomini [1547] had given several arguments aimed at showing that mathematical propositions could not be proven by
causal proofs. One of the arguments appealed to the authority of Proclus, who had remarked that in geometry there are propo-
sitions of equal value and dignity that can be proved from each other. [E.g., Elements] 1.35 and 1.36, which are the converse
of each other. In Piccolomini’s opinion this argues for the noncausality of such theorems. Were they causal, Piccolomini said,
the same proposition would be the cause of itself. But this is a contradiction since nothing can be its own cause. The problem
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that Piccolomini is addressing here is the following. In mathematics one can often prove that A implies B and that B implies
A—that A and B are equivalent. However, if we read ’implication’ as being more than just logical consequence, and we demand
the antecedent acts as the ’cause’ of the conclusion then we run into trouble in trying to make sense of those theorems in which
antecedents and consequences can be reversed, since in the intuitive reading of the relation of causality if A ’causes’ B then
B cannot ’cause’ A. For, were the latter allowed, one could infer that A ’causes’ A. But this goes against the intuitive reading of
causality since, as Piccolomini remarks, nothing can be its own cause.” (25)

VIKTOR BLÅSJÖ, Transcendental curves in the Leibnizian calculus, Elsevier, 2017.

Leibniz: “[Geometry] does demonstrate from causes. For it demonstrates figures from motion; from the motion of a point a line
arises, from the motion of a line a surface, from the motion of a surface a body. . . . Thus the constructions of figures are motions,
and the properties of figures, being demonstrated from their constructions, therefore come from motion, and hence, a priori,
from a cause.” (45)

ARTHUR SCHOPENHAUER, Die Welt als Wille und Vorstellung, 1819. Quoted from The World as Will and Idea, translated by
R.B. Haldane & J. Kemp, 1909.

“If now with our conviction that perception is the primary source of all evidence, and that only direct or indirect connection
with it is absolute truth; and further, that the shortest way to this is always the surest, as every interposition of concepts means
exposure to many deceptions; if, I say, we now turn with this conviction to mathematics, as it was established as a science by
Euclid, and has remained as a whole to our own day, we cannot help regarding the method it adopts, as strange and indeed
perverted. We ask that every logical proof shall be traced back to an origin in perception; but mathematics, on the contrary,
is at great pains deliberately to throw away the evidence of perception which is peculiar to it, and always at hand, that it may
substitute for it a logical demonstration. This must seem to us like the action of a man who cuts off his legs in order to go on
crutches, or like that of the prince in the Triumph der Empfindsamkeit who flees from the beautiful reality of nature, to delight
in a stage scene that imitates it. . . .

Instead of . . . giving a thorough insight into the nature of the triangle, [Euclid] sets up certain disconnected arbitrarily chosen
propositions concerning the triangle, and gives a logical ground of knowledge of them, through a laborious logical demonstra-
tion, based upon the principle of contradiction. Instead of an exhaustive knowledge of these space-relations we therefore receive
merely certain results of them, imparted to us at pleasure, and in fact we are very much in the position of a man to whom the
different effects of an ingenious machine are shown, but from whom its inner connection and construction are withheld. We
are compelled by the principle of contradiction to admit that what Euclid demonstrates is true, but we do not comprehend why
it is so. We have therefore almost the same uncomfortable feeling that we experience after a juggling trick, and, in fact, most of
Euclid’s demonstrations are remarkably like such feats. The truth almost always enters by the back door, for it manifests itself
per accidens through some contingent circumstance. Often a reductio ad absurdum shuts all the doors one after another, until
only one is left through which we are therefore compelled to enter. Often, as in the proposition of Pythagoras, lines are drawn,
we don’t know why, and it afterwards appears that they were traps which close unexpectedly and take prisoner the assent of the
astonished learner. . . . The proposition of Pythagoras teaches us a qualitas occulta of the right-angled triangle. . . .

This specially empirical and unscientific knowledge is like that of the doctor who knows both the disease and the cure for it, but
does not know the connection between them. But all this is the necessary consequence if we capriciously reject the special kind
of proof and evidence of one species of knowledge, and forcibly introduce in its stead a kind which is quite foreign to its nature.
However, in other respects the manner in which this has been accomplished by Euclid deserves all the praise which has been
bestowed on him through so many centuries, and which has been carried so far that his method of treating mathematics has
been set up as the pattern of all scientific exposition. Men tried indeed to model all the sciences after it, but later they gave up
the attempt without quite knowing why. Yet in our eyes this method of Euclid in mathematics can appear only as a very brilliant
piece of perversity.” (Volume I, Book I, §15)

ALEXIS DE CLAIRAUT, Élémens de géométrie, 1741, preface, quoted from Richards, Joan L. (2006), Historical Mathematics in
the French Eighteenth Century, Isis, 97(4), 2006, 700–713..

“[Euclid’s] geometry had to convince stubborn sophists who prided themselves on refusing [to believe] the most evident truths;
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it was necessary then that geometry have the help of forms of reasoning to shut the idiots up. But times have changed. All
reasoning which applied to that which good sense knows in advance is a pure loss and serves only to obscure truth and disgust
the reader.”

VITRUVIUS, De Architectura, 1st century BC, VII.11, quoted from Vitruvius, The Ten Books on Architecture, translated by
Morris Hicky Morgan, Harvard University Press, 1914, 198.

Geometrical principles of perspective can be used to deceive the eye. “By this deception a faithful representation of the appear-
ance of buildings might be given in painted scenery, . . . so that, though all is drawn on a vertical flat facade, some parts may seem
to be withdrawing into the background, and others to be standing out in front.”

PLATO, Republic, c. −380, quoted from Complete Works, ed. John M. Cooper, Hackett, 1997.

“Trompe l’œil painting” has “powers that are little short of magical,” “because they exploit this weakness in our nature,” bypassing
“the rational part of the soul.” (X.602d) The solution to this problem, as Plato saw it, was a solid mathematical education. Since
“sense perception seems to produce no sound result” with these “trompe l’œil paintings” (VII.523b), “it makes all the difference
whether someone is a geometer or not” (VII.526d). “There’s no knowledge of . . . sensible things, whether by gaping upward or
squinting downward.” (VII.529b) For example, “let’s study astronomy by means of problems, as we do geometry, and leave the
things in the sky alone.” (VII.530b)

PLATO, Protagoras, c. −380, quoted from Complete Works, ed. John M. Cooper, Hackett, 1997.

“The power of appearance often makes us wander all over the place in confusion, often changing our minds about the same
thing and regretting our actions and choices with respect to things large and small.” “The art of measurement,” by contrast,
“would make the appearances lose their power” and “give us peace of mind firmly rooted in the truth.” (356d)

LEON BATTISTA ALBERTI, De pictura, 1435. Quoted from the Penguin Classics edition, translated by Martin Kemp, 1991.

“Let us . . . start from the opinion of philosophers who say that surfaces are measured by certain rays, ministers of vision as it were,
which they therefore call visual rays, since by their agency the images of things are impressed on the senses. . . . Let us imagine
the rays, like extended very fine threads gathered tightly in a bunch at one end, going back together inside the eye where lies
the sense of sight.” (§5) “The eye measures [the size of objects] with the extrinsic rays rather like a pair of dividers.” (§6) “The
extrinsic rays, which hold on like teeth to the whole of the outline [of a body], form an enclosure around the entire surface like a
cage. This is why they say that vision takes place by means of a pyramid of rays.” (§7)

“A painting will be the intersection of a visual pyramid . . ., represented by art with lines and colours on a given surface.” (§12)
“To do this well, I believe nothing more convenient can be found than the veil, . . . whose usage I was the first to discover. It is like
this: a veil loosely woven of fine thread . . . divided up by thicker threads into as many parallel square sections as you like, and
stretched on a frame. I set this up between the eye and the object to be represented, so that the visual pyramid passes through
the loose weave of the veil. . . . [In this way] the boundaries of the surfaces can easily be established accurately on the painting
panel; for just as you see the forehead in one parallel, the nose in the next, . . . and everything else in its particular place, so you
can situate precisely all the features on the panel or wall which you have similarly divides into appropriate parallels.” (§31)
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“Let me tell you what I do when I am painting. . . . I decide how large I wish the human figures in the painting to be. I divide the
height of this man into three parts. . . . With this measure I divide the bottom line . . . into as many parts as it will hold. Then I
establish a point . . . wherever I wish; and as it occupied the place where the centric ray strikes, I shall call this the centric point.
The suitable position for this centric point is no higher from the base line than the height of the man . . . for in this way both the
viewers and the objects in the painting will seem to be on the same plane. Having placed the centric point, I draw lines from it
to each of the divisions on the base line.” (§19)

“As regards the successive [parallels of a tiled floor] I observe the following method. I have a drawing surface [on the canvas
margin] on which I describe a single straight line, and this I divide in parts like those into which the base line of the rectangle
is divided. Then I place a point above this line, directly over one end of it, at the same height as the centric point . . . and from
this point I draw lines to each of the divisions of the line. Then I determine the distance I want between the eye of the spectator
and the painting, and, having established the position of the intersection at this distance, I effect the intersection with . . . a
perpendicular. . . . This perpendicular will give me, at the places it cuts the other lines, the measure of what the distance should
be in each case between the transverse equidistant lines of the pavement.” (§20)

“A proof of whether they are correctly drawn will be if a single straight line forms the diagonal of connected quadrangles in the
pavement. . . . When I have carefully done these things, I draw a line across, . . . which . . . passes through the centric point. This
line is for me a limit or boundary, which no quantity exceeds that is not higher than the eye of the spectator . . . This is why
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men depicted standing in the parallel [to the horizon] furthest away are a great deal smaller than those in the nearer ones—a
phenomenon which is clearly demonstrated by nature herself, for in churches we see the heads of men walking about, moving
at more or less the same height, while the feet of those further away may correspond to the knee-level of those in front.” (§20)

“On the pavement that is divided up into parallels, you have to construct the sides of walls and other similar surfaces. . . . I will
explain briefly how I proceed in this construction. I begin first from the foundations. I draw the breadth and length of the walls
on the pavement. . . . I determine what I wish their length and breadth to be by the parallels traced on the pavement, for I take
up as many parallels as I want them to be braccia. . . . So, from the scale of the parallels I easily draw the width and length of
walls that rise from the ground. Then I go from there without any difficulty to do the heights of the surfaces. . . . [For example,] if
you want this [height] from the ground to the top to be [three] times the height of a man . . ., you must continue it upwards [two]
times again the distance from the centric line to the foot of the [wall].” (§33)

SAMUEL Y. EDGERTON, Renaissance Rediscovery of Linear Perspective, Icon, 1976.

“Perspective rules were accepted by . . . early artists because it gave their depicted scenes a sense of harmony with natural law,
thereby underscoring man’s moral responsibility within God’s geometrically ordered universe.” A passage in Dante “upholds the
wisdom of looking someone ‘straight in the eye’, with all its overtones of detecting another’s truthfulness and communicating
one’s own sincerity”—perhaps this is why Renaissance artists preferred the central viewpoint where walls and floor tiles tend
towards the centric point in the middle of the horizon. “During the fourteenth century there had been a temporary favoring of
charming oblique views. Thereafter it was as if painters wanted to recapture the solemn spirit of the old traditional Christian
messages” and “came more and more to believe that things planned or seen from a central viewpoint had greater monumentality
and moral authority.”
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CLIFFORD D. CONNER, A People’s History of Science: Miners, Midwives, and Low Mechanicks, Nation Books, 2005.

“The invention of perspective by the Renaissance artists, . . . by demonstrating that mathematics could be usefully applied to
physical space itself, [constituted] a momentous step . . . toward the general representation of physical phenomena in mathe-
matical terms.” (270)

DAVID WOOTTON, The Invention of Science: A New History of the Scientific Revolution, Allen Lane, Penguin Random House,
2015.

“The mathematization of the sublunary world begins not with Galileo but with Alberti.” (§5.8)

H. FLORIS COHEN, The Scientific Revolution: A Historiographical Inquiry, University of Chicago Press, 1994.

“Galileo may fruitfully be seen as the culmination point of a tradition in Archimedean thought which, by itself, had run into a
dead end. What enabled Galileo to overcome its limitations . . . seems easily explicable upon considering Galileo’s background in
the arts and crafts.” (349)

OTTO GEORG VON SIMSON, The Gothic Cathedral, Princeton University Press, 1988.

“At least one literary document survives that explains the use of geometry in Gothic architecture: the minutes of the architectural
conferences held during 1391 and the following years in Milan. . . . The question debated at Milan is not whether the cathedral is
to be built according to a geometrical formula, but merely whether the figure to be used is to be the square . . . or the equilateral
triangle. . . . The minutes of one particularly stormy session relate an angry dispute between the French expert, Jean Mignot,
and the Italians. Overruled by them on a technical issue, Mignot remarks bitterly that his opponents have set aside the rules of
geometry by alleging science to be one thing and art another. Art, however, he concludes, is nothing without science, ars sine
scientia nihil est. . . . This argument was considered unassailable even by Mignot’s opponents. They hasten to affirm that they are
in complete agreement as regards this theoretical point and have nothing but contempt for an architect who presumes to ignore
the dictates of geometry.”

ROGER ASCHAM, The Schoolmaster, 1570.

“Some wits, moderate enough by nature, be many times marred by over much study and use of some sciences, namely, music,
arithmetic, and geometry. These sciences, as they sharpen men’s wits over much, so they charge men’s manners over sore, if they
be not moderately mingled, and wisely applied to some good use of life. Mark all mathematical heads, which be wholly and only
bent to those sciences, how solitary they be themselves, how unapt to serve in the world.”

WILLIAM KEMPE, translator’s dedication in Ramus, The Art of Arithmeticke, 1592.

“Take away arithmetic, ye take away the merchant’s eye, whereby he seeth his direction in buying and selling; ye take the gold-
smith’s discretion, whereby he mixeth his metals in due quantities; ye take away the captain’s dexteritie, whereby he embattaileth
his army in convenient order; finally ye take from all sorts of men, the faculty of executing their functions aright. Arithmetic then
teacheth unto us matters in divinity, judgeth civil causes uprightly, cureth diseases, searcheth out the nature of things created,
singeth sweetly, buyeth, selleth, maketh accompts, weigheth metals and worketh them, skirmisheth with the enemy, goeth on
warfare, and setteth her hand almost to every good work, so profitable is she to mankind.”
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TOBIAS DANTZIG, Number: The Language of Science, Masterpiece Science edition, Pi Press, 2005.

“There is a story of a German merchant of the fifteenth century, which I have not succeeded in authenticating, but it is so
characteristic of the situation then existing that I cannot resist the temptation of telling it. It appears that the merchant had a
son whom he desired to give an advanced commercial education. He appealed to a prominent professor of a university for advice
as to where he should send his son. The reply was that if the mathematical curriculum of the young man was to be confined to
adding and subtracting, he perhaps could obtain the instruction in a German university; but the art of multiplying and dividing,
he continued, had been greatly developed in Italy, which in his opinion was the only country where such advanced instruction
could be obtained.” (26)

CHRISTOPH J. SCRIBA, The Autobiography of John Wallis, F.R.S., Notes and Records of the Royal Society of London, 25(1), 1970,
17–46.

When Wallis went to Oxford in 1632 there was no one at the university who could teach him mathematics. “For Mathemat-
icks, (at that time, with us) were scarce looked upon as Accademical studies, but rather Mechanical; as the business of Traders,
Merchants, Seamen, Carpenters, Surveyors of Lands, or the like.” (27)

CHRISTOPHER CLAVIUS, In disciplinas mathematicas prolegomena, 1574. Translation quoted from J. M. Lattis, Between
Copernicus and Galileo, University of Chicago Press, 1994, 35–36.

“The theorems of Euclid and the rest of the mathematicians, still today many years past, retain . . . their true purity, their real
certitude, and their strong and firm demonstrations. . . . And thus so much do the mathematical disciplines desire, esteem, and
foster truth that they reject not only whatever is false, but even anything merely probable . . . So there can be no doubt but that
the first place among the other sciences should be conceded to mathematics.” Mathematics is “not only useful, but in fact
necessary” in many fields, but “of all these benefits [of mathematical studies], perhaps the greatest is the entertainment and
pleasure that fills the soul as a result of the cultivation and exercise of those arts.”

THOMAS HOBBES, De Cive, 1642. Quoted from The English Works of Thomas Hobbes of Malmesbury, Volume II.

“And truly the geometricians have very admirably performed their part. For whatsoever assistance doth accrue to the life of
man, whether from the observation of the heavens, or from the description of the earth, from the notation of times, or from
the remotest experiments of navigation; finally, whatsoever things they are in which this present age doth differ from the rude
simpleness of antiquity, we must acknowledge to be a debt which we owe merely to geometry. If the moral philosophers had as
happily discharged their duty, I know not what could have been added by humane Industry to the completion of that happiness,
which is consistent with humane life.” (iv)

AMIR ALEXANDER, Infinitesimal: How a Dangerous Mathematical Theory Shaped the Modern World, Scientific American /
Farrar, Straus and Giroux, 2014.

—Jesuit opposition to infinitesimals.

The Jesuits were the intellectual leaders of the Catholic world in the 17th century. They ran hundreds of colleges across Europe,
notable as much for their “sheer educational quality” (46) as for their doctrinal role “in the fight to defeat Protestantism” (41).

The Jesuit colleges placed great emphasis on Euclidean mathematics. “It was a logical sequence of studies, but for [the Jesuits]
it also represented a deeper ideological commitment. Geometry, being rigorous and hierarchical, was, to the Jesuit, the ideal
science. The mathematical sciences that followed—astronomy, geography, perspective, music—were all derived from the truths
of geometry . . . Consequently, Clavius’s mathematical curriculum .. . demonstrated how absolute eternal truths shape the world
and govern it” (72), thereby serving as a model for their religious doctrine and worldview. “Euclidean geometry thus came to
be associated with a particular form of social and political organization, which . . . the Jesuits strived for: rigid, unchanging,
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hierarchical, and encompassing all aspects of life.” (218)

For this reason, “the Jesuits reacted with . . . fury to the rise of infinitesimal methods. For the mathematics of the infinitely small
was everything that Euclidean geometry was not. Where geometry began with clear universal principles, the new methods began
with a vague and unreliable intuition that objects were made of a multitude of minuscule parts. Most devastatingly, whereas the
truths of geometry were incontestable, the results of the method of indivisibles were anything but” (175), thereby undermining
“the Jesuit quest for a single, authortized, and universally accepted truth” (176).

Thus infinitesimal mathematics was dangerous to the Jesuits not for intrinsic mathematical reasons but because it was associ-
ated with diversity of thought unchecked by authority. “‘Unless mind are contained within certain limits’, warned Father Leone
Santi, prefect of studies at the Collegio Romano . . ., ‘their excursions into exotic and new doctrines will be infinite’, leading to
‘great confusion and perturbation to the Church’.” (122)

Consequently, “In a fierce decades-long campaign, the Jesuits worked relentlessly to discredit the doctrine of the infinitely small
and deprive its adherents of standing and voice in the mathematical community. Their efforts were not in vain: as 1647 was
drawing to a close, the brilliant tradition of Italian mathematics was coming to an end as well.” (117)

According to Alexander the Jesuit campaign against infinitesimals was extremely successful and influential. As he puts it, “cham-
pions of the infinitely small (Galileo, Cavalieri, and Torricelli) pioneered new techniques that would transform the very founda-
tions of mathematical inquiry and practice. But when the Jesuits triumphed over the advocates of the infinitely small, this
brilliant tradition died a quick death,” (178), leaving “no one left in Italy to carry the torch of the infinitely small” (165). “In Italy,
the stage was set for centuries of backwardness and stagnation.” (180) “No city or prince wished to risk the wrath of the Jesuits,
and as a result, no university chairs or positions of honor at princely courts were in the offing for supporters of the infinitely
small.” (165)

It should be noted, however, that Cavalieri’s generation did in fact have a number of direct followers in prominent university
positions. Cavalieri’s student “Pietro Mengoli (1626-84) succeeded Cavalieri to the mathematics chair at Bologna,” (164) a posi-
tion he held for the remaining 39 years of his life. Angeli was another student of Cavalieri’s, and a prima facie counterexample
to Alexander’s thesis. “In 1662, he was appointed to the chair of mathematics at the University of Padua, a position once held by
Galileo. The Jesuits, so powerful elsewhere in Italy, could only fume as the upstart . . . was raised to one of the most prestigious
mathematical posts in all Europe.” (170-171) “Angeli . . . took on the Jesuits like no one had dared since the days of Galileo him-
self. He called them names [and] ridiculed [them],” (170) and “published no fewer than nine books promoting and using the
method of indivisibles” (174), and held his chair for the rest of his life.

—Mathematics and politics in Britain.

Wallis’s work on infinite series was based on daring, unrigorous extrapolations and generalisations, which he considered “‘a very
good Method of Investigation . . . which doth very often lead us to the early discovery of a General Rule’. Most important, ‘it need
not . . . any further Demonstration’.” (270)

Hobbes, by contrast, appealed to the authority and rigour of Euclidean geometry as a model for reasoning as well as political
organisation.

“Wallis and Hobbes both believed that mathematical order was the foundation of the social and political order, but beyond this
common assumption, they could agree on practically nothing else. Hobbes advocated a strict and rigorous deductive mathe-
matical method, which was his model for an absolutist, rigid, and hierarchical state. Wallis advocated a modest, tolerant, and
consensus-driven mathematics, which was designed to encourage the same qualities in the body politic as a whole.” (256)

Wallis’s vision of mathematics was very agreeable to the experimental scientists of the Royal Society. “Experimentalism is a
humbling pursuit, very different from the brilliance and dash of systematic philosophers such as Descartes and Hobbes. It is,
wrote Sprat, ‘a laborious philosophy . . . that teaches men humility and acquaints them with their own errors’. And that is precisely
what the founders of the Royal Society liked about it. Experimentalism, as Sprat noted, ‘removes all haughtiness of mind and
swelling imaginations’, teaching men to work hard, to acknowledge their own failures, and to recognize the contributions of
others.” (253)

“Mathematics, [the Royal Society founders] believed, was the ally and the tool of the dogmatic philosopher. It was the model
for the elaborate systems of the rationalists, and the pride of the mathematicians was the foundation of the pride of Descartes
and Hobbes. And just as the dogmatism of those rationalists would lead to intolerance, confrontation, and even civil war, so it
was with mathematics. Mathematical results, after all, left no room for competing opinions, discussions, or compromise of the
kind cherished by the Royal Society. Mathematical results were produced in private, not in a public demonstration, by a tiny
priesthood of professionals who spoke their own language; used their own methods, and accepted no input from laymen. Once
introduced, mathematical results imposed themselves with tyrannical, power, demanding perfect assent and no opposition.
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This, of course, was precisely what Hobbes so admired about mathematics, but it was also what Boyle and his fellows feared:
mathematics, by its very nature, they believed, leads to claims of absolute truth, dogmatism, threats of tyranny.” (256)

JED Z. BUCHWALD & I. BERNARD COHEN (EDS.), Isaac Newton’s Natural Philosophy, MIT Press, 2004.

The Royal Society in London was long fraught with tension between mathematicians and naturalists. “There has been much
canvassing and intrigue made use of, as if the fate of the Kingdome depended on it” (77). “On the eve of Newton’s election as
president, matters had deteriorated to such an extent that various fellows could be restrained only with difficulty from a public
exchange of blows (or, in one case, the drawing of swords)” (93).

So what was this conflict on which “the fate of the Kingdome” depended? The “philomats” identifying with Newton attacked the
naturalists thus: “That Great Man [Newton] was sensible, that something more than knowing the Name, the Shape and obvious
Qualities of an Insect, a Pebble, a Plant, or a Shell, was requisite to form a Philosopher, even of the lowest rank, much more to
qualifie one to sit at the Head of so great and learned a Body.” (77)

The naturalists, for their part, identified with Bacon, who had complained about “the daintiness and pride of mathematicians,
who will needs have this science almost domineer over Physic. For it has come to pass, I know not how, that Mathematics and
Logic, which ought to be but the handmaids of Physic, nevertheless presume on the strength of the certainty which they possess
to exercise dominion over it.” (80)

Similar points were raised many times, as here in 1700 by a minor figure: “Mathematical Arguments, of which the World is
become most immoderately fond, looking upon every thing as trivial, that bears no relation to the Compasse, and establishing
the most distant parts of Humane Knowledge; all Speculations, whether Physical, Logical, Ethical, Political, or any other upon
the particular results of number and Magnitude. . . . In any other commonwealth but that of Learning such attempts towards
an absolute monarchy would quickly meet with opposition. It may be a kind of treason, perhaps, to intimate thus much; but
who can any longer forbear, when he sees the most noble, and most usefull portions of Philosophy lie fallow and deserted for
opportunities of learning how to prove the Whole bigger than the Part, etc.” (90)

HELENA PYCIOR, Symbols, Impossible Numbers, and Geometric Entanglements, Cambridge University Press, 1997.

In the 17th century, some took “the symbolical style [of algebra] as a model for terse, scientific expression.” Indeed, the Royal
Society “exacted from all their members a close, naked, natural way of speaking . . . bringing all things as near the Mathematicall
plainness as they can.” (Sprat, 46) Others disagreed. “Symbols are poor unhandsome, though necessary, scaffolds of demon-
stration; and ought no more to appear in public, than the most deformed necessary business which you do in your chambers.”
(Hobbes, 145) Pages of algebra often look “as if a hen had been scraping there.” (Hobbes, 147)

Negative numbers. “That which most perplexes narrow minds in this way of thinking, is, that in common life, most quantities
lose their names when they cease to be affirmative, and acquire new ones so soon as they begin to be negative: thus we call
negative goods, debts; negative gain, loss; negative heat, cold; negative descent, ascent, &c.: and in this sense indeed, it may not
be so easy to conceive, how a quantity can be less than nothing, that is, how a quantity under any particular denomination, can
be said to be less than nothing, so long as it retains that denomination.” (Saunderson, 287)

Technology in teaching. “That the true way of Art is not by Instruments, but by demonstration: and that it is a preposterous
course of vulgar Teachers, to beginne with Instruments, and not with the Sciences, and so in stead of Artists, to make their
Schollers onely doers of tricks, and as it were jugglers.” (Oughtred, 68)

§ 14. Rationalism versus empiricism

RENÉ DESCARTES, Principles of Philosophy, 1644, translated by R. P. Miller, Springer, 1982.

In the same way we can be sure that material objects exist, since otherwise “it would be impossible to devise any reason for
not thinking Him a deceiver” (II.1). But the argument forces upon us the restriction “that the nature of body does not consist
in weight, hardness, color, or other similar properties; but in extension alone” (II.4), since a body can easily be conceived to be
deprived of its secondary properties (cf. also II.11), but not its extension.
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Physics, therefore, must be based on a theory of extended matter and nothing else. Two key characteristics of Cartesian physics
follow quite naturally from this starting point, and are indeed introduced almost immediately: relativity of space (II.13-14) and
contact mechanics (II.36-52).

The first is a quite unavoidable corollary of Descartes’s starting point, since his perspective does not admit the possibility of
space as a concept separate from body. Thus he is compelled to argue that “the names ‘place’ or ‘space’ do not signify a thing
different from the body which is said to be in the place; but only designate its size, shape and situation among other bodies”
(II.13). “So when we say that a thing is in a certain place, we understand only that it is in a certain situation in relation to other
things” (II.14).

A second rather straightforward consequence of Descartes’s starting point is that contact mechanics is the fundamental phe-
nomena in terms of which all other physics must be construed. And indeed Descartes offers a detailed account of contact
mechanics almost at once, in II.36-52.

ISAAC NEWTON, The Author’s Preface to Philosophiae Naturalis Principia Mathematica (1687); trans. Andrew Motte (1729).

“The description of right lines and circles, upon which Geometry is founded, belongs to Mechanics. Geometry does not teach
us to draw these lines, but requires them to be drawn. For it requires that the learner should first be taught to describe these
accurately, before he enters upon Geometry; then it shews how by these operations problems may be solved. To describe right
lines and circles are problems, but not geometrical problems. The solution of these problems is required from Mechanics; and
by geometry the use of them, when so solved, is shewn. And it is the glory of Geometry that from those few principles, fetched
from without, it is able to produce so many things. Therefore Geometry is founded in mechanical practice.”

RENÉ DESCARTES, Principia philosophiae, 1644. Quoted from Principles of Philosophy, Synthese Historical Library, Reidel,
1982.

“The names ‘place’ or ‘space’ do not signify a thing different from the body which is said to be in the place; but only designate its
size, shape and situation among other bodies.” (II.13) “So when we say that a thing is in a certain place, we understand only that
it is in a certain situation in relation to other things.” (II.14)

GOTTFRIED WILHELM LEIBNIZ, 1689, quoted from R. Ariew and D. Garber (eds.), Philosophical Essays, Hackett, 1989.

“Motion . . . is nothing but a change in the positions of bodies with respect to one another, and so, motion is not something
absolute, but consists in a relation.” (91)

ISAAC NEWTON, Philosophiae Naturalis Principia Mathematica, 1687, Book 1, Scholium to Definitions; trans. Andrew Motte..

I do not define time, space, place and motion, as being well known to all. Only I must observe, that the vulgar conceive those
quantities under no other notions but from the relation they bear to sensible objects. And thence arise certain prejudices, for the
removing of which, it will be convenient to distinguish them into absolute and relative, true and apparent, mathematical and
common.

I. Absolute, true, and mathematical time, of itself, and from its own nature flows equably without regard to anything external. . . .
Relative, apparent, and common time, is some sensible and external measure of duration. . . .

II. Absolute space, in its own nature, without regard to anything external, remains always similar and immovable. Relative space
is some movable dimension or measure of the absolute spaces; which our senses determine by its position [relative] to bodies;
and which is vulgarly taken for immovable space. . . . Because the parts of space cannot be seen, or distinguished from one
another by our senses, therefore in their stead we use sensible measures of them. For from the positions and distances of things
from any body considered as immovable, we define all places; and then with respect to such places, we estimate all motions. . . .
And so, instead of absolute places and motions, we use relative ones; and that without any inconvenience in common affairs;
but in philosophical disquisitions, we ought to abstract from our senses, and consider things themselves, distinct from what are
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only sensible measures of them. For it may be that there is no body really at rest, to which the places and motions of others may
be referred.

IV. Absolute motion is the translation of a body from one absolute place into another; and relative motion, the translation from
one relative place into another. Thus in a ship under sail, the relative place of a body is that part of the ship which the body
possesses; or that part of its cavity which the body fills, and which therefore moves together with the ship: and relative rest is the
continuance of the body in the same part of the ship, or of its cavity. But real, absolute rest, is the continuance of the body in the
same part of that immovable space, in which the ship itself, its cavity, and all that it contains, is moved. Wherefore, if the earth
is really at rest, the body, which relatively rests in the ship, will really and absolutely move with the same velocity which the ship
has on the earth. But if the earth also moves, the true and absolute motion of the body will arise, partly from the true motion
of the earth, in immovable space; partly from the relative motion of the ship on the earth; and if the body moves also relatively
in the ship; its true motion will arise, partly from the true motion of the earth, in immovable space, and partly from the relative
motions as well of the ship on the earth, as of the body in the ship; and from these relative motions will arise the relative motion
of the body on the earth.

ERNST MACH, The Science of Mechanics: A Critical and Historical Account of its Development, Open Court Publishing, 1919,
first edition 1883.

Absolute space and absolute motion . . . are pure things of thought, pure mental constructs, that cannot be produced in expe-
rience. . . . [They are] therefore neither a practical nor a scientific value; and no one is justified in saying that he knows aught
about it. It is an idle metaphysical conception. . . .

All our principles of mechanics are . . . experimental knowledge concerning the relative positions and motions of bodies. . . . No
one is warranted in extending these principles beyond the boundaries of experience. In fact, such an extension is meaningless,
as no one possesses the requisite knowledge to make use of it. (II.VI)

MATTHIAS SCHEMMEL, Historical Epistemology of Space: from Primate Cognition to Spacetime Physics, Springer, 2016.

“Inertia . . . served Newton as a proof of the independent existence of space. In the following reception of the concept of absolute
space, it was exactly this feature which led to its broad acceptance. It allowed the concept of absolute space to serve as a foun-
dation for a theory of mechanics, which was highly successful in integrating the growing body of knowledge on terrestrial and
celestial motions. This emphasis on the mechanical argument is strikingly evident in Leonhard Euler’s Reflections on Space and
Time [1748]. Euler makes no attempt to provide a metaphysical argument for the reality of space. Rather, he takes the empirical
success of Newtonian mechanics as a proof that reality must pertain to space and time, since they serve as a basis for the con-
cepts of absolute rest and uniform motion in a straight line, which are needed for the foundation of that science. He concludes
that any metaphysical derivation that denies this reality can thereby be inferred to be flawed, without further analysis[:] ‘I do not
want to enter the discussion of the objections that are made against the reality of space and place; since having demonstrated
that this reality can no longer be drawn into doubt, it follows necessarily that all these objections must be poorly founded; even
if we were not in a position to respond to them.’” (76–77)

ROBERT DISALLE, Understanding Space-Time: The Philosophical Development of Physics from Newton to Einstein, Cam-
bridge University Press, 2006.

Empirical knowledge of spatial relations is always relative: by measurements we can determine whether a body is moving with
respect to another, but not whether it is “really” moving in some absolute sense. Descartes and Leibniz insisted on this. Newton,
on the contrary, stipulated an absolute space as a universal frame of reference for his physics, so that the velocity and position
of a body have a fixed meaning in and of itself, not only in relation to other bodies.

“What right did Newton have to explain the observable relative motions by an appeal to these unobservable entities? What role
can such metaphysical hypotheses play in empirical science? . . . [In fact,] Newton’s theory of space and time was never a mere
metaphysical hypothesis. Instead, it was his attempt to define the concepts presupposed by the new mechanical science.” (13)
“[Newton] parted from his contemporaries . . . in his belief that these novel explications [of space and time] came from science
itself—that their authority rested, not on their conformity to epistemological and metaphysical principles . . ., but on the role that
they play in science. What must be the nature of space and time, in order for the world to be as it appears to be, and to follow the
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natural laws that it appears to follow? This is Newton’s question.” (42)

“Newton’s theory was forced into confrontation with the most prominent general philosophical accounts of space and time,
namely those of Descartes and Leibniz. But its rejoinder to them was only that those philosophical views could not be reconciled
with their own views of physics.” (55) Indeed, there is an “apparent contradiction within Leibniz’s picture: . . . How can the idea
of force as a genuine metaphysical quantity be reconciled with the relativity of motion? Leibniz himself occasionally juxtaposed
these notions, apparently unaware of the conflict that others saw quite clearly. . . . For example, he wrote, ‘. . . each [body in a
group of interacting bodies] does truly have a certain degree of motion, or, if you wish, of force, in spite of the equivalence of
these hypotheses about their motion’. . . . As Euler put it, ‘Therefore I am least afraid of those philosophers who reduce everything
to relations, since they themselves attribute so much to motion that they regard moving force as something substantial’.” (61)

Similarly, the law of inertia—that a body under no external influence continues to move in the same direction with the same
speed—seems almost impossible to formulate coherently in a relativistic framework. As Euler put it: “For if space and place
were nothing but the relation among co-existing bodies, what would be the same direction? . . . Identity of direction, which is
an essential circumstance in the general principles of motion, is . . . not to be explicated by the relation . . . of co-existing bodies.”
(37)

“For the [relativists], then, there were only three legitimate ways to resist Newton’s . . . argument. One would be to acknowledge
it, but to insist on its limitations: . . . [it falls short of proving that absolute space is unavoidable, leaving the possibility open that]
a weaker structure than absolute space [might suffice]. . . . A second way is to argue that, since the laws of motion do presuppose
something like the Newtonian conception of space, time, and motion, they ought to be replaced by laws that don’t presuppose
any such thing. . . . The third way is . . . to maintain that no matter what spatio-temporal concepts might be required by physics,
the authority to pronounce upon the true nature of space, time, and motion ultimately belongs to metaphysics.” (52)

Options 1 and 2 were far from viable in the 17th century, though eventually, in the late 19th century, they proved the way forward.
“But we can point to a lasting philosophical accomplishment of Newton’s work. He showed that the philosophical understanding
of space and time has to start, not from general philosophical principles, but from a critical analysis of what we presuppose in
our observation and reasoning about the physics of motion. The eventual overthrow of Newton’s theory was made possible by
the further pursuit, in a different theoretical and empirical context, of the same kind of analysis.” (53)

CHRIS RORRES, Completing Book II of Archimedes’s On Floating Bodies, Mathematical Intelligencer, 26(3), 2004, 32–42.

Archimedes’s work of floating bodies “ranks with Newton’s Principia Mathematica as a work in which basic physical laws are both
formulated and accompanied by superb applications,” namely a detailed investigation of the floatation behaviour of paraboloids
that was “the standard starting point for scientists and naval architects examining the stability of ships” still thousands of years
later, and that can also be used to explain phenomena such as “the sudden tumbling of a melting iceberg or the toppling of a
tall structure due to liquefaction of the ground beneath it.” (32–33). Archimedes did not discuss these practical applications, but
he did derive exact, detailed, quantitative, highly non-trivial, empirically verifiable results regarding the floatation behaviour of
paraboloids submerged in water and stability conditions of such paraboloids in terms of their shape, tilt, and density.

Iceberg toppling as φ passes crucial threshold due to melting:
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LUCIO RUSSO, The Forgotten Revolution: How Science Was Born in 300 BC and Why it Had to Be Reborn, Springer, 2004.

The “Scientific Revolution” took place not in the 17th century but in Hellenistic times. Its root was the marriage of philosophy
and technology:

“Despite all the achievements of their culture, the Greeks of the classical age were still behind the Egyptians and Mesopotamians
from the technological point of view.” (28) “The technological development of all three cultures – classical Greece, Egypt and
Mesopotamia – having proceeded by a gradual accumulation and transmission of empirical knowledge, it is natural that the extra
millennia would give the two older civilizations a technological advantage.” (29) “The Greeks who moved to the new kingdoms
that arose from Alexander’s conquests had to administer and control these more advanced economies and technologies with
which they were not familiar; their one crucial advantage and guide consisted in the sophisticated methods of rational analysis
developed by the Greek cultural tradition during the preceding centuries. It is in this situation that science is born.” (29)

The practical and technological aspect of Hellenistic thought and science is often not fully appreciated because: “Lack of interest
in applied science is of course documented among many classical-era Greek thinkers (who lived before the full blossoming of
the scientific method) and among imperial-era Roman intellectuals (to whom the scientific method remained alien). . . . If one
believes in a homogeneous attitude of the ‘Ancients’ regarding science, one can be tempted to reconstruct it by dismissing as
unrepresentative all the true scientists . . . This misunderstanding is further compounded by the fact that most of what we know
about Hellenistic scientists comes to us through the sieve of imperial-era writers.” (198)

—Physical astronomy.

Archimedes is the quintessential Hellenistic scientist: a first-rate mathematician who is also deeply immersed in practical en-
gineering. That this combination gave rise to brilliant science is proved perhaps most clearly by Archimedes’s hydrostatics of
paraboloids (74).

You might object that the hydrostatics of paraboloids is a very narrow topic, and try to write it off on those grounds. But you
would be wrong. In the same work, “Archimedes showed that simple postulates on gravity (essentially that gravity is a spherically
symmetric pull toward the center of the earth, as Aristotle thought), together with simple postulates about fluids, necessarily
imply the spherical shape of the oceans (in rest conditions). . . . There is no doubt that Archimedes’ demonstration was also used
to explain the form of the earth as a whole . . . Indeed, the idea that the earth was originally fluid is reported in several sources,
and in particular by Diodorus Siculus, who explicitly relates the earth’s shape to gravity. . . . This is a good example of how exact
science can connect apparently distant subjects through logical ties: Archimedes’ theorem not only cast light on the earth’s
geological past, but also had important astronomical and cosmological consequences[, for] Once gravity is used to explain the
roundness of the earth, the next step is inevitable, namely explaining in the same way the obvious spherical shape of the sun
and of the moon.” (303)

Thus we are led naturally to the idea of each heavenly body having its own gravitational attraction. “Plutarch says explicitly: ‘Just
as the sun attracts to itself the parts of which it consists, so does the earth.’” (304) From here it is a short step to the idea that
the sun has a pull not only on its own parts but also on other bodies such as the earth. Indeed the Greeks were well aware that
tides can be explained this way: ancient sources “characterize without doubt the lunisolar theory” (308) of tides—that is to say,
the correct explanation of tides—postulating the causal role of the sun and moon, and describing the effects in extensive and
accurate detail.

Now, if every heavenly body pulls on every other, this leads to the idea of a dynamic theory of planetary motions, seeing planetary
motions as composed of rectilinear inertia and gravitational pull. Indeed we read in Vitruvius: “the sun’s powerful force attracts
to itself the planets by means of rays projected in the shape of triangles; as if braking their forward movement or holding them
back, the sun does not allow them to go forth but [forces them] to return to it” (297). Pliny likewise has it that planets are
“prevented by a triangular solar ray from following a straight path” (298). The reference to triangles suggests an underlying
mathematical treatment, and indeed there are further traces of this (298-302). Furthermore, “the technical tool of vector addition
for displacements is present in Heron and in the pseudo-Aristotelian Mechanics, and indeed it is used in this latter work to
explain how a uniform circular motion can be regarded as a continuous superposition of a displacement ‘according to nature’,
along the tangent, with one ‘contrary to nature’, directed toward the center.” (301-302)
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Moreover, “Simplicius . . . tells us that Hipparchus wrote a work on gravity titled On bodies thrust down because of gravity. This
is the same terminology used several times by Plutarch” (291) in describing the question posed by “the folks who introduced the
thrust toward the center” as to whether “boulders thrust through [a tunnel into] the depths of the earth, upon reaching the center,
should stay still with nothing touching or supporting them; [or whether] if thrust down with impetus they should overshoot the
center and turn back again and keep bobbing back and forth” (287). An indication that this was a serious mathematical question
is Simplicius’s statement that “Hipparchus contradicts Aristotle regarding weight, as he says that the further something is, the
heavier it is.” (292) “The only way to make [this statement] comprehensible is to suppose that Hipparchus meant the weight of
bodies inside the earth, recognizing that it decreases as the body nears the center.” (293)

Another link between celestial and everyday mechanics is this. Plutarch: “To help the moon, that it may not fall, there is its
motion itself and the whizzing nature of its rotation, just as objects placed in a sling are prevented from falling by the circular
motion. . . . For this reason the moon does not follow its weight, which is cancelled by the counterweight of the rotation.” (286)
This metaphor has a suggestive consequence, for we may observe that “Anyone who has tried to spin around a weight at the
end of a string has noticed that it is impossible to do this while keeping perfectly still; likewise a hammer thrower never remains
immobile, but swings his own body in a small circle as he spins the hammer in a larger one.” (314) Perhaps this is what Seleucus
has in mind when, according to Aetius: “Seleucus the mathematician (also one of those who think the earth moves) says that
the moon’s revolution counteracts the whirlpool motion of the earth.” (315) For perhaps “what is meant is the earth’s revolution
along a very small circle (that is, around the earth-moon barycenter), a wobbling very much like that of a largish object caught
near the center of a whirlpool. So the moon’s revolution counteracts, or is counterposed to, the earth’s wobbling: as the moon
describes a large orbit, the earth describes a small one, both remaining always opposed in relation to the center of the orbit, just
as the hammer thrower moves in a small circle, keeping diametrically opposite the projectile in its circular trajectory.” (315)

This dynamical perspective gives a further argument for heliocentrism. Seneca: “You are mistaken in thinking that any star
[=planet] stops on its track or turns backward. Heavenly bodies cannot be detained or turned back; they forever move forth; as
they once were sent on their way, so they continue; . . . if ever [these bodies] stop, they will fall upon one another.” (294) Just
as a rock in a sling would fall to the ground if not held in orbit by its rotational speed, so the planetary system, if robbed of
speed, would collapse into a point under mutual gravitational attraction. “Heliocentrism is able to solve the dynamical problem
mentioned by Seneca: the sling argument can be applied to planetary motion exactly as to lunar motion, by making the sun,
rather than the earth, be the center.” (295) For on this account the planets are never actually stationary but only appear to be so
when the earth is overtaking them in its orbit. This goes hand in hand with “Seneca’s statement that planetary stations are just
an illusion and the ship analogy [illustrating relativity of motion, which Seneca discusses]” (295).

It is well-known that Hellenistic astronomers advocated heliocentrism (80-82, 294-295, 297). Less clear is how far they worked
out a complete quantitative theory of the planets using a heliocentric model. If anyone did it would most likely have been
Hipparchus, and indeed there are indications that he did (285-286, 293-294). Also “several technical elements of Ptolemaic
astronomy can only be explained as derivatives of an earlier heliocentric model” (317).

It is in any case known for a fact that important mathematical works from this era, and Hipparchus in particular, are completely
lost almost without a trace. One clear example is this correct solution to an advanced combinatorial problem, incidentally
transmitted in complete isolation: “in Plutarch’s dialogues we find this remark: ‘Chrysippus said that the number of intertwinings
obtainable from ten simple statements is over one million. Hipparchus contradicted him, showing that affirmatively there are
103,049 intertwinings.’” (281)

—Unity of mathematics and applied science.

Philo of Byzantium says on artillery design that “in this techne many calculations are needed, and someone who makes a small
departure in the individual parts causes a large error in the result.” (280) At the same time, however, “everything cannot be
accomplished through pure thought and the methods of mechanics, but much is found also by experiment” (111). “Thus Hel-
lenistic scientists had already enunciated explicitly the relationship between mathematics and experiments that is usually con-
sidered typical of the Galilean method. Soon after this passage Philo gives the formula for the diameter of the opening that the
spring (tension rope) goes through, and hence the diameter of the spring itself, as a function of the weight of the projectile that
one wishes to throw a given distance; the diameter is proportional to the cube root of the weight, the proportionality constants
being given by Philo.” (111)

We also see in this example how this practical engineering problem connects directly to the most abstract mathematics of the
day: “The famous problem of the doubling of the cube (extraction of cube roots) thus reveals its practical interest in the task
of ‘calibrating’ catapults. An ingenious instrument, the mesolabe, was designed by Eratosthenes to perform the extraction. . . .
Eratosthenes mentions the usefulness of his instrument in designing catapults.” (111)

More generally, “The modern distinction between physical and mathematical sciences was alien to Hellenistic science, which
was unitary. . . . Just as works on statics and optics bear a clear relation to concrete activities such as the use of balances and
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optical instruments . . ., the exact same relation . . . obtains between Euclidean geometry and drawing with ruler and compass.”
(189) Indeed, the other classical construction problems of geometry likewise “had some practical interest in antiquity”: “the tri-
section of the angle . . . to draw divisions corresponding to the hours in sundials” and “the quadrature of the circle . . . to compute
trigonometric functions, essential in topography and astronomy” (201).

“Consider the following two propositions: Construct an equilateral triangle on a given segment. With a given force move a
given weight by means of gears. The first is taken from the Elements, the second from Heron’s Mechanics. From the point of
view of Hellenistic science these two statements (or ‘problems’) are strictly analogous: both are followed by an exposition of the
necessary construction and then the demonstration that, based on propositions already known, the construction does satisfy
the statement’s conditions.” (185-186) Thus for example when “Archimedes . . . solved the problem of lifting a given weight with a
given force” (71) this must have meant giving a concrete construction recipe, and indeed Heron describes a machine to this end
in detail (99).

In Europe, “Renaissance intellectuals were not in a position to understand Hellenistic scientific theories, but, like bright children
whose lively curiosity is set astir by a first visit to the library, they found in the manuscripts many captivating topics, especially
those that came with illustrations. . . . The most famous intellectual attracted by all these ‘novelties’ was Leonardo da Vinci.”
(335) “Leonardo’s ‘futuristic’ technical drawings . . . was not a science-fiction voyage into the future so much as a plunge into a
distant past. Leonardo’s drawings often show objects that could not have been built in his time because the relevant technology
did not exist. This is not due to a special genius for divining the future, but to the mundane fact that behind those drawings . . .
there were older drawings from a time when technology was far more advanced.” (336)

§ 15. Rationalism 2.0: Kant’s philosophy of geometry

IMMANUEL KANT, Inaugural Dissertation, 1770.

“Space is not something objective and real . . .; instead, it is subjective and ideal, and originates from the mind’s nature . . . as a
scheme, as it were, for coordinating everything sensed externally.” (Ak 2: 403)

IMMANUEL KANT, The Critique of Pure Reason, second edition, 1787, translated by J. M. D. Meiklejohn.

“A question which requires close investigation [is:] whether there exists a knowledge altogether independent of experience, and
even of all sensuous impressions? Knowledge of this kind is called a priori, in contradistinction to empirical knowledge, which
has its sources a posteriori, that is, in experience.” (Introduction, §1)

“Certain of our cognitions rise completely above the sphere of all possible experience, and by means of conceptions, to which
there exists in the whole extent of experience no corresponding object, seem to extend the range of our judgements beyond its
bounds. . . . In this transcendental or supersensible sphere . . . experience affords us neither instruction nor guidance.” (Introduc-
tion, §3)

“Mathematical science affords us a brilliant example, how far, independently of all experience, we may carry our a priori knowl-
edge. . . . [It] thus leads us to form flattering expectations with regard to others, though these may be of quite a different nature.
(Introduction, §3)

“Deceived by such a proof of the power of reason, we can perceive no limits to the extension of our knowledge. The light dove
cleaving in free flight the thin air, whose resistance it feels, might imagine that her movements would be far more free and
rapid in airless space. Just in the same way did Plato, abandoning the world of sense because of the narrow limits it sets to the
understanding, venture upon the wings of ideas beyond it, into the void space of pure intellect. He did not reflect that he made no
real progress by all his efforts; for he met with no resistance which might serve him for a support, as it were, whereon to rest, and
on which he might apply his powers, in order to let the intellect acquire momentum for its progress. It is, indeed, the common
fate of human reason in speculation, to finish the imposing edifice of thought as rapidly as possible, and then for the first time
to begin to examine whether the foundation is a solid one or no. Arrived at this point, all sorts of excuses are sought after, in
order to console us for its want of stability, or rather, indeed, to enable us to dispense altogether with so late and dangerous
an investigation. But what frees us during the process of building from all apprehension or suspicion, and flatters us into the
belief of its solidity, is this. A great part, perhaps the greatest part, of the business of our reason consists in the analysation of the
conceptions which we already possess of objects. By this means we gain a multitude of cognitions, which although really nothing
more than elucidations or explanations of that which (though in a confused manner) was already thought in our conceptions,
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are, at least in respect of their form, prized as new introspections; whilst, so far as regards their matter or content, we have really
made no addition to our conceptions, but only disinvolved them. But as this process does furnish a real priori knowledge, which
has a sure progress and useful results, reason, deceived by this, slips in, without being itself aware of it, assertions of a quite
different kind; in which, to given conceptions it adds others, a priori indeed, but entirely foreign to them, without our knowing
how it arrives at these, and, indeed, without such a question ever suggesting itself. I shall therefore at once proceed to examine
the difference between these two modes of knowledge. (Introduction, §3)

“Of the difference between analytical and synthetical judgments. . . . Analytical judgments . . . add in the predicate nothing to
the conception of the subject, but only analyse it into its constituent conceptions, which were thought already in the subject,
although in a confused manner; [synthetical judgments] add to our conceptions of the subject a predicate which was not con-
tained in it, and which no analysis could ever have discovered therein. For example, when I say, ‘all bodies are extended’, this
is an analytical judgment. For I need not go beyond the conception of body in order to find extension connected with it, but
merely analyse the conception, that is, become conscious of the manifold properties which I think in that conception, in order
to discover this predicate in it: it is therefore an analytical judgment. On the other hand, when I say, ‘all bodies are heavy’, the
predicate is something totally different from that which I think in the mere conception of a body. By the addition of such a
predicate, therefore, it becomes a synthetical judgment.” (Introduction, §4)

“Mathematical judgments are always synthetical. . . . ‘A straight line between two points is the shortest’, is a synthetical proposi-
tion. For my conception of straight, contains no notion of quantity, but is merely qualitative. The conception of the shortest is
therefore wholly an addition, and by no analysis can it be extracted from our conception of a straight line.” (Introduction, §5)

“Geometry is a science which determines the properties of space synthetically, and yet a priori.” (Transcendental Aesthetic, §3)

“It has hitherto been assumed that our cognition must conform to the objects; but all attempts to ascertain anything about these
objects a priori, by means of conceptions, and thus to extend the range of our knowledge, have been rendered abortive by this
assumption. Let us then make the experiment whether we may not be more successful in metaphysics, if we assume that the
objects must conform to our cognition. This appears, at all events, to accord better with the possibility of our gaining the end we
have in view, that is to say, of arriving at the cognition of objects a priori, of determining something with respect to these objects,
before they are given to us. . . . If the intuition must conform to the nature of the objects, I do not see how we can know anything
of them a priori. If, on the other hand, the object conforms to the nature of our faculty of intuition, I can then easily conceive
the possibility of such an a priori knowledge.” (preface to 2nd ed.)

“It is therefore from the human point of view only that we can speak of space, extended objects, etc. If we depart from the
subjective condition, under which alone we can obtain external intuition, or, in other words, by means of which we are affected
by objects, the representation of space has no meaning whatsoever. This predicate is only applicable to things in so far as they
appear to us, that is, are objects of sensibility.” (Transcendental Aesthetic, §4)

ROBERT DISALLE, Understanding Space-Time: The Philosophical Development of Physics from Newton to Einstein, Cam-
bridge University Press, 2006.

“[Newton’s approach] cannot be viewed as a complete philosophical account of space and time, . . . because it treats space and
time solely from the perspective of classical mechanics—that is as concepts implicitly presupposed by the classical mechanical
understanding of causality and force. A philosophically thorough treatment of the problem would embrace, not only the implicit
metaphysics of physics, but the general epistemological problem of space and time and the ways in which physics, and human
knowledge generally, have some access to them.” (55) In Kant’s own words, his goal was to “provide, not engineers, as Euler had
in mind, but geometers themselves with a convincing ground . . . for claiming the actuality of their absolute space.” (62)

“[Newton had showed that] the concept of absolute motion . . . was implicitly assumed in . . . physics, and was in a sense a ‘con-
dition of possibility’ of . . . reasoning about the motions of the solar system and their physical causes. . . . [But this is a limited
form of argument since it shows only that] the concept is necessary, relative to a certain well-established practice of scientific
reasoning about a certain kind of phenomenon. Kant, instead, argues that the Newtonian concept, and the laws of motion, [are
necessary in much more general sense:] They are the only basis on which the concept of causality can be applied to the universe
at large. They are the only basis, indeed, on which the phenomena of the heavens can be grasped as something more than mere
appearances—as the appearance of genuine physical objects that stand in objective geometrical and causal relations.” (71)
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§ 16. Repugnant to the nature of a straight line: Non-Euclidean geometry

MORRIS KLINE, Mathematics: The Loss of Certainty, Oxford University Press, 1980.

Hamilton, 1837: “No candid and intelligent person can doubt the truth of the chief properties of Parallel Lines, as set forth by
Euclid in his Elements, two thousand years ago . . . The doctrine involves no obscurity nor confusion of thought, and leaves in
the mind no reasonable ground for doubt.” (95)

Cayley, 1883: “My own view is that Euclid’s [parallel postulate] does not need demonstration, but is part of our notion of space,
of the physical space of our experience—which one becomes acquainted with by experience, but which is the representation
lying at the foundation of all external experience. . . . Not that the propositions of geometry are only approximately true, but that
they remain absolutely true in regard to that Euclidean space which has been so long regarded as being the physical space of our
experience.” (96–96)

CARL FRIEDRICH GAUSS, Quoted from Jeremy Gray, Gauss and Non-Euclidean Geometry, in András Prékopa & Emil Molnár
(eds.), Non-Euclidean Geometries, Springer, 2006, 63.

“The assumption that the angle sum is less than 180◦ leads to a geometry quite different from Euclid’s, logically coherent, and one
that I am entirely satisfied with. . . . The theorems are paradoxical but not self-contradictory or illogical.” (1824) “The necessity
of our [Euclidean] geometry cannot be proved. . . . Geometry must stand, not with arithmetic which is pure a priori, but with
mechanics.” (1817)

NIKOLAI LOBACHEVSKY, Pangeometry, 1855, European Mathematical Society, 2010.

“Pangeometry [i.e., non-Euclidean geometry] . . . proves that the assumption that the value of the sum of the three angles of
any right rectilinear triangle is constant, an assumption which is explicitly or implicitly adopted in ordinary geometry, is not
a consequence of our notions of space. Only experience can confirm the truth of this assumption, for instance, by effectively
measuring the sum of three angles of a rectilinear triangle. . . . One must give preference to triangles whose edges are very large,
since according to Pangeometry, the difference between two right angles and the three angles of a rectilinear triangle increases
as the edges increase.” (75) “The distances between the celestial bodies provide us with a means for observing the angles of
triangles whose edges are very large.” (76)

ALBERT EINSTEIN, Geometry and Experience, 1921. Collected Papers, Volume 7.

“How can it be that mathematics, being after all a product of human thought which is independent of experience, is so admirably
appropriate to the objects of reality? Is human reason, then, without experience, merely by taking thought, able to fathom the
properties of real things? In my opinion the answer to this question is, briefly, this: as far as the propositions of mathematics
refer to reality, they are not certain; and as far as they are certain, they do not refer to reality. It seems to me that complete clarity
as to this state of things became common property only through that trend in mathematics, which is known by the name of
‘axiomatics’. . . .

Let us for a moment consider from this point of view any axiom of geometry, for instance, the following: through two points in
space there always passes one and only one straight line. How is this axiom to be interpreted in the older sense and in the more
modern sense?

The older interpretation: everyone knows what a straight line is, and what a point is. Whether this knowledge springs from
an ability of the human mind or from experience, from some cooperation of the two or from some other source, is not for the
mathematician to decide. He leaves the question to the philosopher. Being based upon this knowledge, which precedes all
mathematics, the axiom stated above is, like all other axioms, self-evident, that is, it is the expression of a part of this a priori
knowledge.

The more modern interpretation: geometry treats of objects, which are denoted by the words straight line, point, etc. No knowl-
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edge or intuition of these objects is assumed but only the validity of the axioms, such as the one stated above, which are to be
taken in a purely formal sense, i.e., as void of all content of intuition or experience. These axioms are free creations of the human
mind. All other propositions of geometry are logical inferences from the axioms (which are to be taken in the nominalistic sense
only). . . . In axiomatic geometry the words ‘point’, ‘straight line’, etc., stand only for empty conceptual schemata. That which
gives them content is not relevant to mathematics. . . .

‘Practical geometry’ [arises if we] add the proposition: solid bodies are related, with respect to their possible dispositions, as are
bodies in Euclidean geometry of three dimensions. Then the propositions of Euclid contain affirmations as to the behavior of
practically-rigid bodies. . . . All length-measurements in physics constitute practical geometry in this sense, so, too, do geodetic
and astronomical length measurements, if one utilizes the empirical law that light is propagated in a straight line, and indeed
in a straight line in the sense of practical geometry. . . . I attach special importance to the view of geometry, which I have just set
forth, because without it I should have been unable to formulate the theory of relativity. . . . From the latest results of the theory
of relativity it is probable that our three-dimensional space is . . . approximately spherical, that is, that the laws of disposition of
rigid bodies in it are not given by Euclidean geometry, but approximately by spherical geometry.”

HENRI POINCARÉ, La Science et l’Hypothèse, 1902, quoted from The Foundations of Science, translated by George Bruce
Halsted, The Science Press, 1913.

“The axioms of geometry . . . are neither synthetic a priori judgments nor experimental facts. They are conventions; our choice
among all possible conventions is guided by experimental facts; but it remains free and is limited only by the necessity of avoid-
ing all contradiction. Thus it is that the postulates can remain rigorously true even though the experimental laws which have
determined their adoption are only approximative.”

“In other words, the axioms of geometry . . . are merely disguised definitions. Then what are we to think of that question: Is the
Euclidean geometry true? It has no meaning. As well ask whether the metric system is true and the old measures false; whether
Cartesian coordinates are true and polar coordinates false. One geometry can not be more true than another; it can only be more
convenient.”

“The question has also been put in another way. If [hyperbolic] geometry is true, the parallax of a very distant star will be
finite [which is equivalent to an angle sum of less than 180◦ for an astronomical triangle]; if [spherical geometry] is true, it
will be negative. These are results which seem within the reach of experiment, and there have been hopes that astronomical
observations might enable us to decide between the three geometries. But in astronomy ‘straight line’ means simply ‘path of a
ray of light’. If therefore negative parallaxes were found, . . . two courses would be open to us; we might either renounce Euclidean
geometry, or else modify the laws of optics and suppose that light does not travel rigorously in a straight line. It is needless to add
that all the world would regard the latter solution as the more advantageous. The Euclidean geometry has, therefore, nothing to
fear from fresh experiments.” (81)

More generally, “Is the position tenable, that certain phenomena, possible in Euclidean space, would be impossible in non-
Euclidean space, so that experience, in establishing these phenomena, would directly contradict the non-Euclidean hypothesis?
For my part I think no such question can be put. To my mind it is precisely equivalent to the following, whose absurdity is patent
to all eyes: are there lengths expressible in meters and centimeters, but which can not be measured in fathoms, feet and inches,
so that experience, in ascertaining the existence of these lengths, would directly contradict the hypothesis that there are fathoms
divided into six feet?” (81–82)

ROBERT DISALLE, Understanding Space-Time: The Philosophical Development of Physics from Newton to Einstein, Cam-
bridge University Press, 2006.

“Kant [was] right in a certain limited sense; the kind of a-priori principle that goes to constitute a spatio-temporal framework
cannot be the same as an empirical principle, and cannot be justified by the usual sort of empirical or inductive argument—
since empirical arguments . . . must take such principles for granted.” (156) “In the history of modern physics, space and time
have after all played something like the role attributed to them by Kant. Not as forms of intuition: this was only incidentally
the case, in a context where the geometry of space and the intuitive means of knowing about space seemed inseparable from
one another. . . . But they have played the quasi-Kantian role of a framework that enables physics to constructively define its
fundamental concepts.” (153)
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§ 17. The universal grammar of space: what geometry is innate?

HENRI POINCARÉ, La Valeur de la Science, 1905, quoted from The Foundations of Science, translated by George Bruce Hal-
sted, The Science Press, 1913.

“The movements of our body [plays] the preponderant role . . . in the genesis of the notion of space. For a being completely
immovable there would be neither space nor geometry; in vain would exterior objects be displaced about him, the variations
which these displacements would make in his impressions would not be attributed by this being to changes of position, but
to simple changes of state; this being would have no means of distinguishing these two sorts of changes, and this distinction,
fundamental for us, would have no meaning for him.

. . . We are led to distinguish the changes produced by our own motions and we easily discriminate them for two reasons: because
they are voluntary; because they are accompanied by muscular sensations. So we naturally divide the changes that our impres-
sions may undergo into two categories . . .: the internal changes, which are voluntary and accompanied by muscular sensations;
the external changes, having the opposite characteristics.

We then observe that among the external changes are some which can be corrected, thanks to an internal change which brings
everything back to the primitive state; others can not be corrected in this way (it is thus that, when an exterior object is displaced,
we may then by changing our own position replace ourselves as regards this object in the same relative position as before, so as
to reestablish the original aggregate of impressions; if this object was not displaced, but changed its state, that is impossible).
Thence comes a new distinction among external changes: those which may be so corrected we call changes of position; and the
others, changes of state.

Think, for example, of a sphere with one hemisphere blue and the other red; it first presents to us the blue hemisphere, then
it so revolves as to present the red hemisphere. Now think of a spherical vase containing a blue liquid which becomes red in
consequence of a chemical reaction. In both cases the sensation of red has replaced that of blue; our senses have experienced
the same impressions which have succeeded each other in the same order, and yet these two changes are regarded by us as very
different; the first is a displacement, the second a change of state. Why? Because in the first case it is sufficient for me to go
around the sphere to place myself opposite the blue hemisphere and reestablish the original blue sensation. . . .

Another example: An object is displaced before my eye; its image was first formed at the center of the retina; then it is formed at
the border. . . . Why . . . am I led to decide that these two sensations, qualitatively different, represent the same image, which has
been displaced? It is because I can follow the object with the eye and by a displacement of the eye, voluntary and accompanied
by muscular sensations, bring back the image to the center of the retina and reestablish the primitive sensation.

I suppose that the image of a red object has gone from the center to the border of the retina, then that the image of a blue
object goes in its turn from the center to the border of the retina; I shall decide that these two objects have undergone the same
displacement. Why? Because in both cases I shall have been able to reestablish the primitive sensation, and that to do it I shall
have had to execute the same movement of the eye, and I shall know that my eye has executed the same movement because I
shall have felt the same muscular sensations.

If I could not move my eye, should I have any reason to suppose that the sensation of red at the center of the retina is to the
sensation of red at the border of the retina as that of blue at the center is to that of blue at the border? I should only have four
sensations qualitatively different, and if I were asked if they are connected by the proportion I have just stated, the question
would seem to me ridiculous, just as if I were asked if there is an analogous proportion between an auditory sensation, a tactile
sensation and an olfactory sensation.” (I.III.5)

WILL. CHESSELDEN, An account of some observations made by a young gentleman, who was born blind, or lost his sight
so early, that he had no remembrance of ever having seen, and was couch’d between 13 and 14 Years of age, Philosophical
Transactions, 35(402), 1728, 447–450.

“When he first saw, he was so far from making any Judgment about Distances, that he thought all Objects whatever touch’d his
Eyes, (as he express’d it) as what he felt, did his Skin. . . . He knew not the Shape of any Thing, nor any one Thing from another,
however different In Shape, or Magnitude; but upon being told what Things were, whose Form he before knew from feeling, he
would carefully observe, that he might know them again; but having too many Objects to learn at once, he forgot many of them.
. . . One Particular only (tho’ it may appear trifling) I will relate; Having often forgot which was the Cat, and which the Dog, he
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was asham’d to ask; but catching the Cat (which he knew by feeling) he was observ’d to look at her stedfastly, and then setting
her down, said, So Puss! I shall know you another Time. He was very much surpriz’d, that those Things which he had lik’d best,
did not appear most agreeable to his Eyes, expecting those Persons would appear most beautiful that he lov’d most, and such
Things to be most agreeable to his Sight that were so to his Taste. We thought he soon knew what Pictures represented, which
were shew’d to him, but we found afterwards we were mistaken; for about two Months after he was couch’d, he discovered at
once, they represented solid Bodies; when to that Time he consider’d them only as Party-colour’d Planes, or Surfaces diversified
with Variety of Paint; but even then he was no less surpriz’d, expecting the Pictures would feel like the Things they represented,
and was amaz’d when he found those Parts, which by their Light and Shadow appear’d now round and uneven, felt only flat like
the rest; and ask’d which was the lying Sense, Feeling, or Seeing? . . . Being shewn his Father’s Picture in a Locket at his Mother’s
Watch, and told what it was, he acknowledged a Likeness, but was vastly surpriz’d; asking, how it could be, that a large Face could
be express’d in so little Room, saying, It should have seem’d as impossible to him, as to put a Bushel of any thing into a Pint.”

JEAN JACQUES ROUSSEAU, Emile, or On Education, 1762. Quoted from the 2013 Dover Publications edition, p. 36.

“It is only by our own movements that we gain the idea of space. The child has not this idea, so he stretches out his hand to seize
the object within his reach or that which is a hundred paces from him. You take this as a sign of tyranny, an attempt to bid the
thing draw near, or to bid you bring it. Nothing of the kind, it is merely that the object first seen in his brain, then before his eyes,
now seems close to his arms, and he has no idea of space beyond his reach.”

HERMANN VON HELMHOLTZ, The Facts in Perception, 1878, quoted from Epistemological Writings, Reidel, 1977.

“Kant . . . developed the doctrine of forms of intuiting and thinking given prior to all experience . . . into which forms any content
we may represent must necessarily be absorbed. . . . [Similarly,] Locke had already established established a claim for the share
which our corporeal and mental makeup has in the manner in which things appear to us. In this direction, investigations into
the physiology of the senses . . . have now brought the fullest confirmation.” (118–119)

“Sensations belonging to different senses . . . exclude any transition from one to the other, any relationship of greater or lesser
similarity. One cannot at all ask whether e.g. sweet is more similar to blue or to red. On the other hand, . . . between different
sensations of the same sense . . . transition and comparison are possible. We can . . . e.g. declare yellow to be more similar to
orange than to blue. What physiological investigations now show is that [this] deeply incisive difference does not depend, in
any manner whatsoever, upon the kind of external impression whereby the sensation is excited, but is determined alone and
exclusively by the the sensory nerve upon which the impression impinges.” (119) “The same aether vibrations as are felt by the
eye as light, are felt by the skin as heat. The same air vibrations as are felt by the skin as a quivering motion, are felt by the ear as
a note.” (120)

“So physiology too acknowledges the qualities of sensation to be a mere form of intuition. But Kant went further. . . . Kant
considers spatial specifications too as belonging as little to the world of the actual—or to ‘the thing in itself’—as the colours
which we see [as] attributes of bodies in themselves, but [which are actually] introduced by our eye into them.” (123) “Kant
assumed not only that the general form of spatial intuition is transcendentally given, but that it also contains in advance, and
prior to any experience, certain narrower specifications as expressed in the axioms of geometry. . . . [Such as:] Between two points
only one shortest line is possible. . . . Through any point only one line parallel to a given straight line is possible. . . . Kant used
the alleged fact that these propositions appeared to us as necessarily correct, and that we could never at all even represent to
ourselves a deviating behaviour of space, directly as a proof that they had to be given prior to all experience.” (128)

“When Kant asserted that spatial relationships contradicting the axioms of Euclid could never in any way be represented, he was
influenced by the contemporary states of the development of mathematics and the physiology of the senses, just as he was thus
influenced in his whole conception of intuition in general as a simple psychic process, incapable of further resolution.” (129)

“The concepts of [non-Euclidean] spatial structures . . . can readily be developed only by means of calculative analytic geometry.
. . . With this the intuitability of such spaces, in the sense [of a coherent mathematical system], has been shown. . . . This is
however in disagreement with the older concept of intuition, which only acknowledges something to be given through intuition
if its representation enters consciousness at once with the sense impression, and without deliberation and effort. Our attempts
to represent [non-Euclidean] spaces indeed do not have the ease, rapidity and striking self-evidence with which we for example
perceive the form of a room which we enter for the first time, together with the arrangement and forms of the objects contained
in it, the materials of which these consist, and much else besides. Thus if this kind of self-evidence were an originally given an
necessary peculiarity of all intuition, we could not up to now assert the intuitability of such spaces.” (130–131)
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“Yet . . . assurance and rapidity for the occurrence of specific representations with specific impressions can also be acquired—
even when no such connexion is given by nature. One of the most striking examples of this kind is our understanding of our
mother tongue. Its words are arbitrarily or accidentally chosen signs—every different language has different ones. Understand-
ing of it is not inherited, since for a German child who was brought up amongst Frenchmen and has never heard German spoken,
German is a foreign language. The child becomes acquainted with the meaning of the words and sentences only through exam-
ples of their use. In this process one cannot even make understandable to the child—until it understands the language—that
the sounds it hears are supposed to be signs having a sense. Lastly, on growing up it understands these words and sentences
without deliberation and effort, without knowing when, where, and through what examples it learnt them, and it grasps the
finest variations of their sense—often ones where attempts at logical definition only limp clumsily behind.” (131)

“Thus as concerns . . . the issue of the origin of the axioms of geometry: the fact that the representation of [non-Euclidean] spatial
relationships is not easy when experience is lacking, cannot be claimed as a ground against their intuitability. . . . Kant’s proof for
the transcendental nature of the axioms of geometry is thus inadequate. On the other hand, investigation of the empirical facts
shows that the axioms of geometry, taken in the only sense in which one is allowed to apply them to the actual world, can be
empirically tested and demonstrated, or even—if the case should arise—refuted.” (132)

“The assumption that there is an acquaintance with the axioms which comes from transcendental intuition is: (1) an unproved
hypothesis; (2) an unnecessary hypothesis, since it does not pretend to explain anything in what in fact is our world of repre-
sentations which could not also be explained without its help; (3) a wholly unusable hypothesis for explaining our acquaintance
with the actual world, since the propositions laid down by it should only ever be applied to the relationships in the actual world
after their objective validity has been experimentally tested and ascertained.” (162)

NOAM CHOMSKY, Reflections on Language, Pantheon, 1975.

“Let us define ‘universal grammar’ (UG) as the system of principles, conditions and rues that are elements or properties of all
human languages not merely by accident but by [biological] necessity ... Thus UG can be taken as expressing ‘the essence of
human language.’ ... UG will specify what language learning must achieve, if it takes place successfully. Thus UG will be a
significant component of [the learning theory of human language] ... We can gain some insight into UG ... whenever we find
properties of language that can reasonably be supposed not to have been learned.” (29-30)

[One may turn declarations into questions by moving the “is” in front, e.g. “the man is tall” becomes “is the man tall”. But
consider now the statement “the man who is tall is in the room”. If language was nothing but a social construction then it would
be perfectly reasonable for children trying to form the corresponding question to say “is the man who tall is in the room” in
analogy with the above. However,] “children make many mistakes in language learning, but never mistakes such as [this]” (31).
“The child is employing a ‘structure-dependent rule’” [rather than the much simpler rule to put the first “is” in front. Why?]
“There seems to be no explanation in terms of ‘communicative efficiency’ or similar considerations. It is certainly absurd to
argue that children are trained to use the structure-dependent rule, in this case ... The only reasonable conclusion is that UG
contains the principle that all such rules must be structure-dependent. That is, the child’s mind ... contains the instruction:
Construct a structure-dependent rule, ignoring all structure-independent rules.” (32-33)

§ 18. Operational Einstein: constructivist principles of special relativity

ALBERT EINSTEIN, Relativity: The Special and General Theory, 1916, translation by Robert W. Lawson, Methuen & Co., third
ed.

VII. The Apparent Incompatibility of the Law of Propagation of Light with the Principle of Relativity.

The simple law of the constancy of the velocity of light c (in vacuum) is justifiably believed by the child at school. Who would
imagine that this simple law has plunged the conscientiously thoughtful physicist into the greatest intellectual difficulties? [But
it has, because] this result comes into conflict with the principle of relativity. [The principle of relativity is this. According to
Newtonian mechanics, uniform motion in a straight line is physically indistinguishable from rest. If we are enclosed in a box,
such as a room below deck on a ship or a closed train car, then there should be no way to determine by means of experiment
whether we are moving uniformly or standing still. But if the speed of light has a universal velocity c that is always the same,
then measurements involving light rays could be used to determine whether we are moving or not, it would seem. For instance,
place flashlights at each end of a room. Then turn them on simultaneously, and check whether the light pulses reach the middle
of the room at the same time. If the room is moving, then the midpoint of the room has moved while the rays were in the air,
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making the distance each ray needs to cover longer or shorter. An observer in the middle of the room should therefore see one
light before the other, and hence be able to detect the “forward” direction of travel.]

In view of this dilemma there appears to be nothing else for it than to abandon either the principle of relativity or the simple
law of the propagation of light in vacuo. . . . Investigations of . . . the electrodynamical and optical phenomena connected with
moving bodies show that experience in this domain leads conclusively to a theory of electromagnetic phenomena, of which the
law of the constancy of the velocity of light in vacuo is a necessary consequence. Prominent theoretical physicists were therefore
more inclined to reject the principle of relativity. . . .

At this juncture the theory of relativity entered the arena. As a result of an analysis of the physical conceptions of time and
space, it became evident that in reality there is not the least incompatibility between the principle of relativity and the law of
propagation of light, and that by systematically holding fast to both these laws a logically rigid theory could be arrived at.

VIII. On the Idea of Time in Physics.

Lightning has struck the rails on our railway embankment at two places A and B far distant from each other. I make the additional
assertion that these two lightning flashes occurred simultaneously. If I ask you whether there is sense in this statement, you will
answer my question with a decided “Yes.” But if I now approach you with the request to explain to me the sense of the statement
more precisely, you find after some consideration that the answer to this question is not so easy as it appears at first sight. . . .

We encounter the same difficulty with all physical statements in which the conception “simultaneous” plays a part. The concept
does not exist for the physicist until he has the possibility of discovering whether or not it is fulfilled in an actual case. We thus
require a definition of simultaneity such that this definition supplies us with the method by means of which, in the present case,
he can decide by experiment whether or not both the lightning strokes occurred simultaneously. As long as this requirement is
not satisfied, I allow myself to be deceived . . . , when I imagine that I am able to attach a meaning to the statement of simultaneity.
. . .

After thinking the matter over for some time you then offer the following suggestion with which to test simultaneity. By measur-
ing along the rails, the connecting line AB should be measured up and an observer placed at the mid-point M of the distance AB.
This observer should be supplied with an arrangement (e.g. two mirrors . . . ) which allows him visually to observe both places A
and B at the same time. If the observer perceives the two flashes of lightning at the same time, then they are simultaneous.

I am very pleased with this suggestion, but for all that I cannot regard the matter as quite settled, because I feel constrained to
raise the following objection:

“Your definition would certainly be right, if only I knew that the light by means of which the observer at M perceives the lightning
flashes travels along the length AM with the same velocity as along the length BM. But an examination of this supposition would
only be possible if we already had at our disposal the means of measuring time. It would thus appear as though we were moving
here in a logical circle.”

After further consideration . . . you declare:

“I maintain my previous definition nevertheless, because in reality it assumes absolutely nothing about light. There is only one
demand to be made of the definition of simultaneity, namely, that in every real case it must supply us with an empirical decision
as to whether or not the conception that has to be defined is fulfilled. That my definition satisfies this demand is indisputable.
That light requires the same time to traverse the path AM as for the path BM is in reality neither a supposition nor a hypothesis
about the physical nature of light, but a stipulation which I can make of my own free will in order to arrive at a definition of
simultaneity.” . . .

We are thus led . . . to a definition of “time” in physics. For this purpose we suppose that clocks of identical construction are
placed at the points A, B, and C of the railway line and that they are set in such a manner that the positions of their pointers
are simultaneously (in the above sense) the same. Under these conditions we understand by the “time” of an event the reading
(position of the hands) of that one of these clocks which is in the immediate vicinity (in space) of the event. In this manner a
time-value is associated with every event which is essentially capable of observation.

This stipulation contains a further physical hypothesis, the validity of which will hardly be doubted without empirical evidence
to the contrary, [namely] that all these clocks go at the same rate if they are of identical construction.

IX. The Relativity of Simultaneity.

Up to now our considerations have been referred to a particular body of reference, which we have styled a “railway embank-
ment.” We suppose a very long train travelling along the rails with the constant velocity v . People travelling in this train will with
a vantage view the train as a rigid reference-body (co-ordinate system); they regard all events in reference to the train. Then every
event which takes place along the line also takes place at a particular point of the train. Also the definition of simultaneity can be
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given relative to the train in exactly the same way as with respect to the embankment. As a natural consequence, however, the
following question arises: Are two events (e.g. the two strokes of lightning A and B) which are simultaneous with reference to the
railway embankment also simultaneous relatively to the train? We shall show directly that the answer must be in the negative.

When we say that the lightning strokes A and B are simultaneous with respect to be embankment, we mean: the rays of light
emitted at the places A and B, where the lightning occurs, meet each other at the mid-point M of the length AB of the embank-
ment. But the events A and B also correspond to positions A and B on the train. Let M’ be the mid-point of the distance AB on
the travelling train. Just when (as judged from the embankment) the flashes of lightning occur, this point M’ naturally coincides
with the point M but it moves . . . with the velocity v of the train. If an observer sitting in the position M’ in the train did not
possess this velocity, then he would remain permanently at M, and the light rays emitted by the flashes of lightning A and B
would reach him simultaneously, i.e. they would meet just where he is situated. Now in reality (considered with reference to
the railway embankment) he is hastening towards the beam of light coming from B, whilst he is riding on ahead of the beam of
light coming from A. Hence the observer will see the beam of light emitted from B earlier than he will see that emitted from A.
Observers who take the railway train as their reference-body must therefore come to the conclusion that the lightning flash B
took place earlier than the lightning flash A. We thus arrive at the important result:

Events which are simultaneous with reference to the embankment are not simultaneous with respect to the train, and vice
versa (relativity of simultaneity). Every reference-body (co-ordinate system) has its own particular time; unless we are told the
reference-body to which the statement of time refers, there is no meaning in a statement of the time of an event.

Now before the advent of the theory of relativity it had always tacitly been assumed in physics that the statement of time had
an absolute significance, i.e. that it is independent of the state of motion of the body of reference. But we have just seen that
this assumption is incompatible with the most natural definition of simultaneity; if we discard this assumption, then the conflict
between the law of the propagation of light in vacuo and the principle of relativity (developed in Section VII) disappears. We
were led to that conflict by . . . considerations . . . which are now no longer tenable. [For we made naive assumptions about
simultaneity. Our idea was to fire light pulses from opposite walls simultaneously and check whether they reach the midpoint at
the same time. But now we have discovered that simultaneity must be defined in terms of the light rays reaching the midpoint
at the same time. So “fired at the same time” and “reach the midpoint at the same time” are not two independent things whose
correlation or non-correlation can be empirically tested. Furthermore, our argument that the light pulses would not reach the
midpoint at the same time if the system was moving was based on the mistaken assumption that simultaneity in this system is
the same thing as simultaneity in a stationary reference frame.]

X. On the Relativity of the Conception of Distance.

Let us consider two particular points on the train travelling along the embankment with the velocity v , and inquire as to their
distance apart. . . . An observer in the train measures the interval by marking off his measuring-rod in a straight line (e.g. along
the floor of the carriage) as many times as is necessary to take him from the one marked point to the other. Then the number
which tells us how often the rod has to be laid down is the required distance.

It is a different matter when the distance has to be judged from the railway line. Here the following method suggests itself. If
we call A’ and B’ the two points on the train whose distance apart is required, then both of these points are moving with the
velocity v along the embankment. In the first place we require to determine the points A and B of the embankment which are
just being passed by the two points A’ and B’ at a particular time t—judged from the embankment. These points A and B of the
embankment can be determined by applying the definition of time given in Section VIII. The distance between these points A
and B is then measured by repeated application of the measuring-rod along the embankment.

A priori it is by no means certain that this last measurement will supply us with the same result as the first. Thus the length of
the train as measured from the embankment may be different from that obtained by measuring in the train itself. . . .

XI. The Lorentz Transformation.

How are we to find the place and time of an event in relation to the train, when we know the place and time of the event with
respect to the railway embankment? Is there a thinkable answer to this question of such a nature that the law of transmission
of light in vacuo does not contradict the principle of relativity? In other words: Can we conceive of a relation between place
and time of the individual events relative to both reference-bodies, such that every ray of light possesses the velocity of trans-
mission c relative to the embankment and relative to the train? This question leads to a quite definite positive answer, and to a
perfectly definite transformation law for the space-time magnitudes of an event when changing over from one body of reference
to another. . . . This system of equations is known as the “Lorentz transformation.”

XII. The Behaviour of Measuring-Rods and Clocks in Motion.

[It follows from the above principles that a] rigid rod is . . . shorter when in motion than when at rest, and the more quickly it
is moving, the shorter is the rod. . . . [Furthermore,] in the theory of relativity the velocity c plays the part of a limiting velocity,
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which can neither be reached nor exceeded by any real body.

[If,] as judged from [a reference frame taken as stationary], [a] clock is moving with the velocity v , . . . the time which elapses
between two strokes of the clock is not one second, but . . . a somewhat larger time. As a consequence of its motion the clock
goes more slowly than when at rest.

XV. General Results of the Theory.

Classical mechanics required to be modified before it could come into line with the demands of the special theory of relativity.
For the main part, however, this modification affects only the laws for rapid motions, in which the velocities of matter v are not
very small as compared with the velocity of light. We have experience of such rapid motions only in the case of electrons and
ions; for other motions the variations from the laws of classical mechanics are too small to make themselves evident in practice.

XVI. Experience and the Special Theory of Relativity.

[Hence] this question is not easily answered[:] To what extent is the special theory of relativity supported by experience? [But
some experiments confirm it.]

PART II. The General Theory of Relativity.

XVIII. Special and General Principle of Relativity.

The . . . principle, which was the pivot of all our previous considerations, was the special principle of relativity, i.e. the principle
of the physical relativity of all uniform motion. Let us once more analyse its meaning carefully.

. . . Returning to the illustration we have frequently used of the embankment and the railway carriage, we can express the fact of
the motion here taking place in the following two forms, both of which are equally justifiable:

(a) The carriage is in motion relative to the embankment,

(b) The embankment is in motion relative to the carriage.

. . . The principle we have made use of not only maintains that we may equally well choose the carriage or the embankment as
our reference-body for the description of any event. Our principle rather asserts what follows: If we formulate the general laws
of nature as they are obtained from experience, by making use of

(a) the embankment as reference-body,

(b) the railway carriage as reference-body,

then these general laws of nature (e.g. the laws of mechanics or the law of the propagation of light in vacuo) have exactly the
same form in both cases. [In particular, no physical experiment can decide which of the two is “really” moving.] . . .

In contrast to this we wish to understand by the “general principle of relativity” the following statement: All bodies of reference
. . . are equivalent for the description of natural phenomena . . . , whatever may be their state of motion. . . . This formulation
must be replaced later by a more abstract one, for reasons which will become evident at a later stage.

Since the introduction of the special principle of relativity has been justified, every intellect which strives after generalisation
must feel the temptation to venture the step towards the general principle of relativity. But a simple and apparently quite reliable
consideration seems to suggest that, for the present at any rate, there is little hope of success in such an attempt. Let us imagine
ourselves transferred to our old friend the railway carriage, which is travelling at a uniform rate. As long as it is moving uniformly,
the occupant of the carriage is not sensible of its motion. . . .

If the motion of the carriage is now changed into a non-uniform motion, as for instance by a powerful application of the brakes,
then the occupant of the carriage experiences a correspondingly powerful jerk forwards. The retarded motion is manifested in
the mechanical behaviour of bodies relative to the person in the railway carriage. The mechanical behaviour is different from
that of [uniform motion], and for this reason it would appear to be impossible that the same mechanical laws hold relatively to
the non-uniformly moving carriage, as hold with reference to the carriage when at rest or in uniform motion. [In other words,
non-uniform motion can be detected by experiments even in a closed room, and hence be objectively distinguished from rest.]
. . .

Because of this, we feel compelled at the present juncture to grant a kind of absolute physical reality to non-uniform motion, in
opposition to the general principle of relativity. But in what follows we shall soon see that this conclusion cannot be maintained.

XIX. The Gravitational Field.

The same quality of a body manifests itself according to circumstances as “inertia” or as “weight”. [The “inertial mass” of a
body has to do with how much it resists being moved, or how hard you have to push to get it moving with a certain speed.

45



The “gravitational mass” of a body has to do with with which force gravity is pulling on it, or how hard you have to push from
underneath it to prevent it from falling to the ground.]

XX. The Equality of Inertial and Gravitational Mass as an Argument for the General Postulate of Relativity.

We imagine a large portion of empty space, . . . far removed from stars and other appreciable masses. . . . Let us imagine a
spacious chest resembling a room with an observer inside who is equipped with apparatus. Gravitation naturally does not exist
for this observer. He must fasten himself with strings to the floor, otherwise the slightest impact against the floor will cause him
to rise slowly towards the ceiling of the room.

To the middle of the lid of the chest is fixed externally a hook with rope attached, and now [someone] begins pulling at this with
a constant force. The chest together with the observer then begin to move “upwards” with a uniformly accelerated motion. In
course of time their velocity will reach unheard-of values—provided that we are viewing all this from another reference-body
which is not being pulled with a rope.

But how does the man in the chest regard the Process? The acceleration of the chest will be transmitted to him by the reaction
of the floor of the chest. He must therefore take up this pressure by means of his legs if he does not wish to be laid out full length
on the floor. He is then standing in the chest in exactly the same way as anyone stands in a room of a home on our earth. If
he releases a body which he previously had in his land, the acceleration of the chest will no longer be transmitted to this body,
and for this reason the body will approach the floor of the chest with an accelerated relative motion. The observer will further
convince himself that the acceleration of the body towards the floor of the chest is always of the same magnitude, whatever kind
of body he may happen to use for the experiment.

[If he is familiar with how gravity works on earth,] the man in the chest will [find that everything he observes agrees with that
experience and] thus come to the conclusion that he and the chest are in a gravitational field. . . . Of course he will be puzzled for
a moment as to why the chest does not fall in this gravitational field. Just then, however, he discovers the hook in the middle of
the lid of the chest and the rope which is attached to it, and he consequently comes to the conclusion that the chest is suspended
at rest in the gravitational field.

Ought we to smile at the man and say that he errs in his conclusion? I do not believe we ought to if we wish to remain consistent;
we must rather admit that his mode of grasping the situation violates neither reason nor known mechanical laws. Even though
it is being accelerated with respect to the “Galileian space” first considered, we can nevertheless regard the chest as being at rest.
We have thus good grounds for extending the principle of relativity to include bodies of reference which are accelerated with
respect to each other, and as a result we have gained a powerful argument for a generalised postulate of relativity.

We must note carefully that the possibility of this mode of interpretation rests on the fundamental property of the gravitational
field of giving all bodies the same acceleration, or, what comes to the same thing, on the law of the equality of inertial and
gravitational mass. If this natural law did not exist, the man in the accelerated chest would not be able to interpret the behaviour
of the bodies around him on the supposition of a gravitational field, and he would not be justified on the grounds of experience
in supposing his reference-body to be “at rest.”

Suppose that the man in the chest fixes a rope to the inner side of the lid, and that he attaches a body to the free end of the rope.
The result of this will be to stretch the rope so that it will hang “vertically” downwards. If we ask for an opinion of the cause of
tension in the rope, the man in the chest will say: “The suspended body experiences a downward force in the gravitational field,
and this is neutralised by the tension of the rope; what determines the magnitude of the tension of the rope is the gravitational
mass of the suspended body.” On the other hand, an observer who is poised freely in space will interpret the condition of things
thus: “The rope must perforce take part in the accelerated motion of the chest, and it transmits this motion to the body attached
to it. The tension of the rope is just large enough to effect the acceleration of the body. That which determines the magnitude
of the tension of the rope is the inertial mass of the body.” Guided by this example, we see that our extension of the principle of
relativity implies the necessity of the law of the equality of inertial and gravitational mass. . . .

We can now appreciate why that argument is not convincing, which we brought forward against the general principle of relativity
at the end of Section XVIII. It is certainly true that the observer in the railway carriage experiences a jerk forwards as a result of
the application of the brake, and that he recognises in this the non-uniformity of motion (retardation) of the carriage. But he is
compelled by nobody to refer this jerk to a “real” acceleration (retardation) of the carriage. He might also interpret his experience
thus: “My body of reference (the carriage) remains permanently at rest. With reference to it, however, there exists (during the
period of application of the brakes) a gravitational field which is directed forwards and which is variable with respect to time.
Under the influence of this field, the embankment together with the earth moves non-uniformly in such a manner that their
original velocity in the backwards direction is continuously reduced.”

XXII. A Few Inferences from the General Principle of Relativity.
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The considerations of Section XX show that the general principle of relativity puts us in a position to derive properties of the
gravitational field in a purely theoretical manner. Let us suppose, for instance, that we know the space-time “course” for any
natural process whatsoever, as regards the manner in which it takes place in the Galileian domain relative to a Galileian body
of reference K. By means of purely theoretical operations (i.e. simply by calculation) we are then able to find how this known
natural process appears, as seen from a reference-body K’ which is accelerated relatively to K. But since a gravitational field exists
with respect to this new body of reference K, our consideration also teaches us how the gravitational field influences the process
studied.

. . . It [has always been] known that a gravitational field [and its equivalent motion as described in Section XX] influence the
movement of bodies in [the same] way. [Hence] our consideration supplies us with nothing essentially new [as far as mechanical
phenomena are concerned].

However, we obtain a new result of fundamental importance when we carry out the analogous consideration for a ray of light.
With respect to the Galileian reference-body K, such a ray of light is transmitted rectilinearly with the velocity c. It can easily be
shown that the path of the same ray of light is no longer a straight line when we consider it with reference to the accelerated chest
(reference-body K’). From this we conclude, that, in general, rays of light are propagated curvilinearly in gravitational fields. In
two respects this result is of great importance.

In the first place, it can be compared with the reality. . . . The curvature of light rays required by the general theory of relativity is
. . . exceedingly small for the gravitational fields at our disposal in practice, [but on an astronomical scale it should be observable.]
. . . The examination of the correctness or otherwise of this deduction is a problem of the greatest importance, the . . . solution
of which is to be expected of astronomers. [Footnote:] The existence of the deflection of light demanded by theory was first
confirmed during the solar eclipse of 29th May, 1919.

In the second place our result shows that, according to the general theory of relativity, the law of the constancy of the velocity of
light in vacuo, which constitutes one of the two fundamental assumptions in the special theory of relativity and to which we have
already frequently referred, cannot claim any unlimited validity. A curvature of rays of light can only take place when the velocity
of propagation of light varies with position. Now we might think that as a consequence of this, the special theory of relativity and
with it the whole theory of relativity would be laid in the dust. But in reality this is not the case. We can only conclude that the
special theory of relativity cannot claim an unlimited domain of validity; its results hold only so long as we are able to disregard
the influences of gravitational fields on the phenomena (e.g. of light). . . . No fairer destiny could be allotted to any physical
theory, than that it should of itself point out the way to the introduction of a more comprehensive theory, in which it lives on as
a limiting case.

XXIII. Behaviour of Clocks and Measuring-Rods on a Rotating Body of Reference.

Imagine K’ to be . . . a plane circular disc, which rotates uniformly in its own plane about its centre. An observer who is sitting
eccentrically on the disc K’ is sensible of a force which acts outwards in a radial direction, and which would be interpreted as
an effect of inertia (centrifugal force) by an observer who was at rest with respect to [an external, stationary] reference-body K.
But the observer on the disc may regard his disc as a reference-body which is “at rest”; on the basis of the general principle of
relativity he is justified in doing this. The force acting on himself, and in fact on all other bodies which are at rest relative to the
disc, he regards as the effect of a gravitational field. . . .

The observer performs experiments on his circular disc with clocks and measuring-rods . . . [but] the definition of the space
co-ordinates . . . presents insurmountable difficulties. If the observer applies his standard measuring-rod (a rod which is short
as compared with the radius of the disc) tangentially to the edge of the disc, then, as judged from [K], the length of this rod
will be less than 1, since, according to Section XII, moving bodies suffer a shortening in the direction of the motion. On the
other hand, the measuring-rod will not experience a shortening in length, as judged from K, if it is applied to the disc in the
direction of the radius. If, then, the observer first measures the circumference of the disc with his measuring-rod and then the
diameter of the disc, on dividing the one by the other, he will not obtain as quotient the familiar number π= 3.14. . ., but a larger
number, whereas of course, for a disc which is at rest with respect to K, this operation would yield π exactly. This proves that the
propositions of Euclidean geometry cannot hold exactly on the rotating disc, nor in general in a gravitational field, at least if we
attribute the length 1 to the rod in all positions and in every orientation. Hence the idea of a straight line also loses its meaning.
We are therefore not in a position to define exactly the co-ordinates (x, y, z) relative to the disc by means of the method used in
discussing the special theory, and as long as the co-ordinates and times of events have not been defined, we cannot assign an
exact meaning to the natural laws in which these occur.

Thus all our previous conclusions based on general relativity would appear to be called in question. . . .

XXIV. Euclidean and Non-Euclidean Continuum.

The surface of a marble table is spread out in front of me. . . . Let us now imagine that a large number of little rods of equal length
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have been made, their lengths being small compared with the dimensions of the marble slab. When I say they are of equal length,
I mean that one can be laid on any other without the ends overlapping. We next lay four of these little rods on the marble slab
so that they constitute a quadrilateral figure (a square), the diagonals of which are equally long. To ensure the equality of the
diagonals, we make use of a little testing-rod. To this square we add similar ones, each of which has one rod in common with
the first. We proceed in like manner with each of these squares until finally the whole marble slab is laid out with squares. The
arrangement is such, that each side of a square belongs to two squares and each corner to four squares. . . .

If everything has really gone smoothly, then I say that the points of the marble slab constitute a Euclidean continuum with
respect to the little rod, which has been used as a “distance” (line-interval). By choosing one corner of a square as “origin” I can
characterise every other corner of a square with reference to this origin by means of two numbers. I only need state how many
rods I must pass over when, starting from the origin, I proceed towards the “right” and then “upwards,” in order to arrive at the
corner of the square under consideration. These two numbers are then the “Cartesian co-ordinates” of this corner with reference
to the “Cartesian co-ordinate system” which is determined by the arrangement of little rods. . . .

It is a veritable wonder that we can carry out this business without getting into the greatest difficulties. We only need to think
of the following. If at any moment three squares meet at a corner, then two sides of the fourth square are already laid, and, as
a consequence, the arrangement of the remaining two sides of the square is already completely determined. But I am now no
longer able to adjust the quadrilateral so that its diagonals may be equal. If they are equal of their own accord, then this is an
especial favour of the marble slab and of the little rods, about which I can only be thankfully surprised. . . .

By making use of the following modification of this abstract experiment, we recognise that there must also be cases in which
the experiment would be unsuccessful. We shall suppose that the rods “expand” by in amount proportional to the increase of
temperature. We heat the central part of the marble slab, but not the periphery, in which case two of our little rods can still be
brought into coincidence at every position on the table. But our construction of squares must necessarily come into disorder
during the heating, because the little rods on the central region of the table expand, whereas those on the outer part do not.

With reference to our little rods—defined as unit lengths—the marble slab is no longer a Euclidean continuum, and we are also
no longer in the position of defining Cartesian co-ordinates directly with their aid, since the above construction can no longer
be carried out. . . .

If rods of every kind (i.e. of every material) were to behave in the same way as regards the influence of temperature when they
are on the variably heated marble slab, and if we had no other means of detecting the effect of temperature than the geometrical
behaviour of our rods in experiments analogous to the one described above, then our best plan would be to assign the distance
one to two points on the slab, provided that the ends of one of our rods could be made to coincide with these two points; for
how else should we define the distance without our proceeding being in the highest measure grossly arbitrary? The method
of Cartesian coordinates must then be discarded, and replaced by another which does not assume the validity of Euclidean
geometry for rigid bodies.

XXV. Gaussian Co-Ordinates.

. . . Sufficiently small regions of the continuum under consideration may be regarded as Euclidean continua. For example, this

. . . holds in the case of the marble slab of the table and local variation of temperature. The temperature is practically constant
for a small part of the slab, and thus the geometrical behaviour of the rods is almost as it ought to be according to the rules of
Euclidean geometry [in that small region]. Hence the imperfections of the construction of squares . . . do not show themselves
clearly until this construction is extended over a considerable portion of the surface of the table. . . .
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XXVII. The Space-Time Continuum of the General Theory of Relativity is Not a Euclidean Continuum.

In the first part of this book [i.e. in special relativity] we were able to make use of space-time co-ordinates which allowed of a
simple and direct physical interpretation, and which . . . can be regarded as . . . Cartesian co-ordinates. This was possible on the
basis of the law of the constancy of the velocity of light. But according to Section XXI the general theory of relativity cannot retain
this law. On the contrary, we arrived at the result that according to this latter theory the velocity of light must always depend on
the co-ordinates when a gravitational field is present. In connection with a specific illustration in Section XXIII, we found that
the presence of a gravitational field invalidates the definition of the coordinates and the time, which led us to our objective in
the special theory of relativity.

In view of the results of these considerations we are led to the conviction that, according to the general principle of relativity,
the space-time continuum cannot be regarded as a Euclidean one, but that here we have the general case, corresponding to the
marble slab with local variations of temperature, and with which we made acquaintance as an example of a two-dimensional
continuum. Just as it was there impossible to construct a Cartesian co-ordinate system from equal rods, so here it is impossible
to build up a system (reference-body) from rigid bodies and clocks, which shall be of such a nature that measuring-rods and
clocks, arranged rigidly with respect to one another, shall indicate position and time directly. . . .

THOMAS A. RYCKMAN, Early Philosophical Interpretations of General Relativity, The Stanford Encyclopedia of Philosophy,
Spring 2018 Edition, Edward N. Zalta (ed.), https://plato.stanford.edu/archives/spr2018/entries/genrel-early/.

In the special theory of relativity (1905), Einstein’s operational definition of the “simultaneity” of distantly separated events,
whereby distant clocks are synchronized by sending and receiving light signals, is closely modeled on the operational definition
of mass in Mach’s Mechanics. Moreover, occasional epistemological and methodological pronouncements seem to indicate
agreement with core parts of Mach’s positivist doctrine of meaningfulness, e.g., “The concept does not exist for the physicist until
he has the possibility of discovering whether or not it is fulfilled in an actual case” [Einstein 1917]. Thus the general theory of
relativity might be seen as fully compliant with Mach’s characterization of theoretical concepts as merely economical shorthand
for concrete observations or operations. . . .

Machian influences specific to the general theory of relativity appeared even more extensive. Mach’s idée fixe, that a body’s
inertial mass and motion result from the influence of all other surrounding masses (thus eliminating the “monstrous” Newtonian
concept of absolute space), was perhaps the strongest motivation guiding Einstein’s pursuit of a relativistic theory of gravity. In
papers leading up to the definitive presentation of the general theory of relativity in 1916, Einstein made no secret of the fact
that Mach was the inspiration for an epistemologically mandated attempt to generalize the principle of relativity. Holding, with
Mach, that no observable facts could be associated with the notions of absolute acceleration or absolute inertia (i.e., resistance
to acceleration), the generalization required that the laws of nature be completely independent of the state of motion of any
chosen reference system. . . .

[Einstein’s later] philosophical pronouncements increasingly took on a more realist or at least anti-positivist coloration. Lectur-
ing at the Sorbonne in April 1922, Einstein pronounced Mach “un bon mécanicien” but “un déplorable philosophe”. Increasingly,
Einstein’s retrospective portrayals of the genesis of general relativity centered almost entirely on the success of a strategy empha-
sizing mathematical aesthetics. . . .

Logical empiricism’s philosophy of science was conceived under the guiding star of Einstein’s two theories of relativity. . . . An
overriding concern in the logical empiricist treatment of relativity theory was to draw broad lessons for scientific methodology
and philosophy of science generally. . . . Several of the most characteristic doctrines of logical empiricist philosophy of science—
the interpretation of a priori elements in physical theories as conventions, the treatment of the necessary role of conventions
in linking theoretical concepts to observation, the insistence on observational language definition of theoretical terms—were
taken to have been conclusively demonstrated by Einstein in fashioning his two theories of relativity. . . . [Logical empiricists
were often keen to emphasise that] “it is universally known today that Einstein’s general theory of relativity grew immediately
out of the positivistic doctrine of space and motion.”

P. W. BRIDGMAN, The Logic of Modern Physics, New York: Macmillan, 1927. Paperback reprint 1960.

“We mean by any concept nothing more than a set of operations; the concept is synonymous with the corresponding set of
operations.” (5) “The proper definition of a concept is not in terms of its properties but in terms of actual operations.” (6)

Motivation for this: Relativity theory and quantum physics show that “when experiment is pushed into new domains, we must
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be prepared for new facts, of an entirely different character from those of our former experience” (2). Therefore “the physicist
. . . recognizes no a priori principles which determine or limit the possibilities of new experience” (3); rather we “must use in
describing and correlating nature concepts of such a character that our present experience does not exact hostages of the future”
(4). “For if experience is always described in terms of experience, . . . we need never be embarrassed” (6–7) to find that we were
talking about imagined concepts with no connection to reality.

“[A] consequence of the operational character of our concepts . . . is that it is quite possible, even disquietingly easy, to invent
expressions or to ask questions that are meaningless. It constitutes a great advance in our critical attitude toward nature to
realize that a great many of the questions that we uncritically ask are without meaning. If a specific question has meaning, it
must be possible to find operations by which an answer may be given to it.” (28)

P. W. BRIDGMAN, The nature of some of our physical concepts, New York: Philosophical Library, 1952.

“We do not know the meaning of a concept unless we can specify the operations which were used by us or our neighbour in
applying the concept in any concrete situation” (7)

“Physicists do profitably employ concepts the meaning of which is not to be found in the instrumental operations of the labora-
tory, and which cannot be reduced to such operations without residue. Nearly all the concepts of theoretical and mathematical
physics are of this character. . . . In fact, there is hardly any physical concept which does not enter to a certain extent into some
theoretical edifice and which does not therefore possess to a certain degree a non-instrumental component.” (8) “I think, how-
ever, that physicists are agreed in imposing one restriction on the freedom of such operations, namely that such operations
much be capable of eventually, although perhaps indirectly, making connection with instrumental reality. Only in this way can
the physicist keep his feet on the ground or achieve a satisfactory degree of precision. . . . Politics, philosophy and religion are full
of . . . purely verbal concepts; it is merely that such concepts are outside the field of the physicist.” (10)

RICHARD FEYNMAN, The Feynman Lectures on Physics, Addison-Wesley, 1963.

“When we look at an object, there is an obvious thing we might call the ‘apparent width’, and another we might call the ‘depth’.
But the two ideas, width and depth, are not fundamental properties of the object, because if we step aside and look at the same
thing from a different angle, we get a different width and a different depth, and we may develop some formulas for computing
the new ones from the old ones and the angles involved. . . . If it were impossible ever to move, and we always saw a given object
from the same position, then this whole business would be irrelevant—[width and depth] would appear to have quite different
qualities, because one appears as a subtended optical angle and the other involves some focusing of the eyes . . .; they would
seem to be very different things and would never get mixed up. It is because we can walk around that we realize that depth and
width are, somehow or other, just two different aspects of the same thing.

[In Einstein’s theory of special relativity] also we have a mixture—of positions and the time. . . . In the space measurements of
one man there is mixed in a little bit of the time, as seen by the other. Our analogy permits us to generate this idea: The ‘reality’
of an object that we are looking at is somehow greater (speaking crudely and intuitively) than its ‘width’ and its ‘depth’ because
they depend upon how we look at it; when we move to a new position, our brain immediately recalculates the width and the
depth. But our brain does not immediately recalculate coordinates and time when we move at high speed, because we have had
no effective experience of going nearly as fast as light to appreciate the fact that time and space are also of the same nature. It
is as though we were always stuck in the position of having to look at just the width of something, not being able to move our
heads appreciably one way or the other.” (I.17-1)
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