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§ 0. What is history?

Consider this quotation from Isaac Newton, in which I have left
out the subject of the sentence:

is to me so great an absurdity that I believe
no man who has in philosophical matters a com-
petent faculty of thinking can ever fall into it.

What do you think he is talking about? Astrology perhaps, or
some such pseudoscience? No, what goes in the blank is “that
one body may act upon another at a distance through a vac-
uum without the mediation of any thing else.” In other words,
the “great absurdity” that Newton is referring to is his own the-
ory of gravity. And isn’t he right? Isn’t it absurd that one planet
can pull at another through thousands of miles of empty space?
And that as I move my hand I move the moon? Is this any cra-
zier than alchemy, astrology, or witchcraft? Hardly.

In the history of science, things that make sense happen before
things that don’t. That is why Newton’s absurd theory didn’t
see the light of day until 1687, thousands of years after peo-
ple had started speculating about the heavens along the much
more natural lines of numerology and astrology. The question
we ask ourselves as historians is not “when did people get it

right?” but rather “why did people do it this other way, and
why did it make sense to them?”

Modern schoolteachers demand that you disregard thousands
of years of common sense and swallow Newton as a dogma,
and, more generally, that you embrace anything you are told
regardless of whether it serves any credible purpose for you at
that time. If you were ever dissatisfied with this state of affairs
then history is on your side. What Alfred North Whitehead said
of education is in effect a description of history:

Whatever interest attaches to your subject-matter
must be evoked here and now; whatever powers
you are strengthening in the pupil, must be exer-
cised here and now; whatever possibilities of men-
tal life your teaching should impart, must be ex-
hibited here and now. That is the golden rule of
education, and a very difficult rule to follow.

History works this way because it cannot “look ahead” and see
what will become useful later, as the curriculum planner does.
Historically, ideas occur when they serve a purpose, and not
a day sooner. Thus we see what Ernst Mach meant when he
wrote:

The historical investigation of the development of
a science is most needful, lest the principles trea-
sured up in it become a system of half-understood
prescripts, or worse, a system of prejudices.

Or as Descartes put it:

To converse with those of other centuries is almost
the same thing as to travel. It is good to know
something of the customs of different peoples in
order to judge more sanely of our own, and not to
think that everything of a fashion not ours is ab-
surd and contrary to reason, as do those who have
seen nothing.

Or Poincaré:

By going very far away in space or very far away
in time, we may find our usual rules entirely over-
turned, and these grand overturnings aid us the
better to see or the better to understand the little
changes which may happen nearer to us, in the
little corner of the world where we are called to
live and act. We shall better know this corner for
having traveled in distant countries with which we
have nothing to do.

§ 1. Astrology

Where does mathematical and scientific inquiry begin? Imag-
ine a primitive man standing in the middle of a field. Looking
at the world around him, what will spark his interest and give
him reason for reflection? Will he look at a falling apple and
ask himself what equations describe its velocity and acceler-
ation? No, why would he? He cannot fail to notice, however,
that half the time the sky goes black and a beautiful spectacle
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of sparkling lights is displayed as if only for him. Surely it would
be an insult to the creator of the universe not to observe this
play written in the sky.

The idea soon suggests itself that the heavens control earthly
affairs. They obviously determine day and night, and the sea-
sons, and the connection between the moon and tidal waters
will be unmistakable to anyone living in a costal area. Likewise
the female menstrual cycle follows the moon’s periods. The
stars too play their role: in the days before calendars people
used them to tell the time of the year. Thus one finds in an-
cient texts such sound advice as “when strong Orion begins to
set, then remember to plough” and “fifty days after the solstice
is the right time for men to go sailing.”

Once you start thinking like this you will soon begin to see the
periodicity of the heavens mirrored in the cycle of life, the rise
and fall of empires, and so on. Heavens are also the paradigm
of self-motion. Most motion is derived from them: we already
mentioned the tides, and likewise wind, rain, and rivers are all
caused by differential heating from the sun. In fact, the only
things that move out of their own power are heavenly bodies
and things that have a soul. Is it not a straightforward conclu-
sion, then, that the soul is a piece of “stardust” inhabiting an
earthly form? The fundamental tenet of personal astrology is a
most natural corollary: the soul, on its way down through the
planetary spheres at the moment of birth, acquires its particu-
lar character depending on the positions of the planets at that
moment.

1.1. Criticise the arguments against astrology put forth by
Carl Sagan in the readings.

Sagan’s remarks embody a common attitude toward historical
thought: closed-minded judgement in light of modern views.
This is precisely the kind of attitude that we must leave behind
if we hope to ever understand anything of history. I chose to
start my lectures with the subject of astrology since it is a great
subject for bringing this issue to the fore in an emphatic way.

Astrology made a lot of sense once upon a time and was still
practiced in earnest by some of the best scientists of the early
17th century. Kepler did lots of astrology, of which we shall see
a few indications later. “The belief in the effect of the constel-
lations derives in the first place from experience, which is so
convincing that it can be denied only by people who have not
examined it,” he said. Galileo also did astrology, and evidently
not only to make money judging by the fact that he cast horo-
scopes for his own children. Soon thereafter astrology fell out
of favour, probably largely due to the rise of the mechanical
philosophy that we shall hear more about later.

1.2. Explain how the ancient conceptions of the “personali-
ties” of the heavenly bodies (quoted in the Beck reading)
all have a certain amount of rationale in terms of the as-
tronomical properties of these bodies.

Much sophisticated mathematics originated in a context such
as this. For example, van der Waerden suggested in his book
Geometry and Algebra in Ancient Civilizations, p. 32, that the

original motivation for the discovery of the Pythagorean Theo-
rem might have been the following problem.

1.3. Find the duration of a lunar eclipse as a function of the
moon’s deviation from its mean path. You need to use the
facts that the moon’s speed is known and that the earth’s
shadow as cast on the moon has about twice the radius
of the moon.

Earth’s
shadow

mean path
Moon

Today we teach the Pythagorean Theorem as if it had applica-
tions to measuring lengths of various kinds. But why would
anyone use this theorem to measure the distances between be-
tween various locations or the sizes of fields, etc.? In most such
cases you can just measure the sought length directly, so no
one would ever have any need for the theorem even if he knew
it, let alone have reason to discover it in the first place.

1.4. Discuss some other standard applications of Pythagoras’
Theorem and whether they serve any practical purpose
that cannot equally well be accomplished by direct mea-
surement and simple trial-and-error methods.

The eclipse problem is very different. Here there is no possi-
bility of a direct measurement. In fact, in this context there is
no possibility of discovering Pythagoras’ Theorem by trial and
error (e.g., based on noticing regularities in measurements of
lots of triangles). So in fact it suggests a reason to discover not
only the theorem but also its proof. Perhaps something along
those lines is how deductive mathematics began.

1.5. The ancient Babylonians didn’t have telescopes or calcu-
lators or Wikipedia or anything beyond middle school
mathematics, and yet they were able to determine the
lunar period (the average time between one new moon
and the next) to an accuracy of within one second. How
did they do this? One trick would be to measure the time
between full moons many years apart and divide by the
number of full moons that have passed in between. It is
difficult, however, to pinpoint the precise moment when
the moon is exactly full.

(a) Suppose you can pinpoint the moment of full moon
with an error of at most 12 hours. Then how many
years of observation are needed to ensure a final ac-
curacy of one second?

Instead of counting the time from full moon to full moon
you might count from lunar eclipse to lunar eclipse.

(b) Would there still be an integer number of months
between two lunar eclipses?

A lunar eclipse is easier to pinpoint in time since it is
a very distinctive occurrence that only lasts for a short
while.
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(c) Suppose you can pinpoint the moment of full moon
with an error of at most half an hour. Then how
many years of observation are needed to ensure the
final accuracy of one second?

§ 2. Numerology

Another thing you notice when studying the sky is that there
are precisely seven heavenly bodies moving with respect to the
stars: the sun, the moon, Mercury, Venus, Mars, Jupiter, Sat-
urn. (Figure 1.) So Nature has chosen the number seven. This
made a great impression on early man, so much so that he put
sevens in all kinds of places, such as the seven days of creation
(and hence in a week) and the seven notes in a musical scale.

Figure 1: Astronomers studying the seven heavenly bodies.

“All is number,” said the Pythagoreans, and they had good rea-
son to. For they discovered that musical harmony is deter-
mined by simple integer ratios such as 2:1, 3:2, 4:3, etc. See
figure 2. If you put a

p
2 bell in there it sounds like crap.

Figure 2: Pythagorean discovery that musical harmony is de-
termined by integer relationships.

Later Newton put seven colours in the rainbow because he
imagined a parallel with music in which pleasant colour com-
binations are harmonious “visual chords,” so to speak.

Another special number is five, because there are precisely five
regular polyhedra (figure 3).

Cube Icosahedron Octahedron Tetrahedron Dodecahedron

Figure 3: The five regular polyhedra.

Figure 4: Regular polyhedra as corresponding to the elements:
earth, water, air, fire, and “the universe.”

2.1. Prove this by enumeration of cases (as Euclid does in the
last book of the Elements).

Plato proposed that the regular polyhedra correspond to the el-
ements, as we see in the readings. Many centuries later Kepler
was enticed by this theory and drew the illustration in figure 4.

The two special numbers five and seven are built into man, for
we have five fingers, five senses (sight, touch, taste, smell, hear-
ing), and seven “windows of the head” (eye, eye, ear, ear, nose,
nose, mouth). The Creator must truly consider us the crown of
his achievement.
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The Greeks often thought of the factors of a number as its
“parts.” Thus for example the number 4 represented justice
since it is the smallest number made up of two equals, 4 = 2×2.
The number 7 is special from this point of view also, as Aristotle
explains (fragment 203):

Since the number 7 neither generates [in the sense
of multiplication] nor is generated by any of the
numbers in the decad [i.e., the first ten numbers],
they identified it with Athene. For the number 2
generates 4, 3 generates 9, and 6, 4 generates 8, and
5 generates 10, and 4, 6, 8, 9, and 10 are also them-
selves generated, but 7 neither generates any num-
ber nor is generated from any; and so too Athene
was motherless and ever-virgin.

When the factors of a number are considered its parts it be-
comes natural to ask whether all numbers are the sum of its
parts. In fact this is not so; very few numbers are “perfect”
enough to have this pleasant property, as Nicomachus (c. 100)
explains:

When a number, comparing with itself the sum
and combination of all the factors whose presence
it will admit, it neither exceeds them in multitude
nor is exceeded by them, then such a number is
properly said to be perfect, as one which is equal to
its own parts. Such numbers are 6 and 28; for 6 has
the factors 3, 2, and 1, and these added together
make 6 and are equal to the original number, and
neither more nor less. 28 has the factors 14, 7, 4, 2,
and 1; these added together make 28, and so nei-
ther are the parts greater than the whole nor the
whole greater than the parts, but their comparison
is in equality, which is the peculiar quality of the
perfect number.

It comes about that even as fair and excellent
things are few and easily enumerated, while ugly
and evil ones are widespread, so also are the super-
abundant and deficient numbers found in great
multitude and irregularly placed, but the perfect
numbers are easily enumerated and arranged with
suitable order; for only one is found among the
units, 6, only one among the tens, 28, and a third
in the ranks of the hundreds, , and a fourth
within the limits of the thousands, 8128.

Euclid proved that if p is a prime and 2p −1 is also prime then
2p−1(2p −1) is perfect. This is the grand finale of Euclid’s num-
ber theory (Elements IX.36). The theorem amounts to a recipe
for finding perfect numbers: in a column list the prime num-
bers; in a second column the values 2p − 1; cross out all rows
in which the second column is not a prime number; for the re-
maining rows, place 2p−1(2p −1) in the third column. Then the
numbers in the third column are perfect numbers.

2.2. Find the perfect number omitted in the Nicomachus
quote above using Euclid’s recipe. What prime p did you
need to use?

The following is essentially Euclid’s proof of the theorem. If 2p−
1 is prime, it is clear that the proper divisors of 2p−1(2p −1) are
1,2,22, . . . ,2p−1 and (2p −1),2(2p −1),22(2p −1), . . . ,2p−2(2p −1).
So these are the numbers we need to add up to see if their sum
equals the number itself.

2.3. (a) Show that 1+2+22+. . .+2p−1 = 2p−1 by adding 1 at
the very left and gradually simplify the series from
that end.

(b) Use a similar trick for the remaining sum, and thus
conclude the proof.

§ 3. Origins of geometry

Figure 5: Egyptian geometers, or “rope-stretchers” as they were
called, delineating a field by means of a stretched rope.

“Geometry” means “earth-measurement,” and indeed the sub-
ject began as such, according to ancient sources such as Pro-
clus and Herodotus, as we see in the readings. This was neces-
sitated by the yearly overflowing of the Nile in Egypt: the flood-
ing made the banks of the river fertile in an otherwise desert
land, but it also wiped away boundaries between plots, so a ge-
ometer, or “earth-measurer,” had to be called upon to redraw
a fair division of the precious farmable land. In fact the divi-
sion was perhaps not always so fair, as Proclus also suggests,
for one can fool those not knowledgable in mathematics into
accepting a smaller plot by letting them believe that the value
of a plot is determined by the number of paces around it.

3.1. Prove that a square has greater area than any rectangle of
the same perimeter.

3.2. Discuss what general point about history we can learn
from the following paraphrase of Proclus’s remark in
Heath’s History of Greek Mathematics (1921): “[Proclus]
mentions also certain members of communistic soci-
eties in his own time who cheated their fellow-members
by giving them land of greater perimeter but less area
than the plots which they took themselves, so that, while
they got a reputation for greater honesty, they in fact took
more than their share of the produce.” (206–207)

Among the first things one would discover in such a practical
context would be how to draw straight lines and circles. In fact
you need nothing but a piece of string to do this.

3.3. Explain how.
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3.4. Problem 3.1 shows that it is important to be able to con-
struct squares. How would do this with your piece of
string?

3.5. In the Rhind Papyrys (c. −1650) the area of a circular field
is calculated as follows: “Example of a round field of a di-
ameter 9 khet. What is its area? Take away 1

9 of the diam-
eter, namely 1; the remainder is 8. Multiply 8 times 8; it
makes 64. Therefore it contains 64 setat of land.” What is
the value of π according to the Rhind Papyrys?

People soon recognised the austere beauty of geometrical con-
structions and began using it for decorative and especially reli-
gious purposes. Indeed, Egyptian temples are very geometrical
in their design; the famous pyramids are but the most notable
cases. One of the first decorative shapes one discovers how to
draw when playing around with a piece of string is the regular
hexagon.

3.6. Show how this is done.

The hexagon has great decorative potential since it can be
used to tile the plane. Hexagonal tiling patterns occur in
Mesopotamian mosaics from as early as about -700.

3.7. Show that the hexagon contains even more area than a
square of the same perimeter. As Pappus explains in the
readings, bees seem to know this.

The step from this kind of decorative and ritualistic pattern-
making to deductive geometry need not be very great. In fact,
two of the most ancient theorems of geometry could quite
plausibly have been discovered is such a context. Take for in-
stance the Pythagorean Theorem. Its algebraic form “a2 +b2 =
c2” seems to be the only thing some people remember from
school mathematics, but classically speaking the theorem is
not about some letters in a formula but actual squares:

2 1 The Theorem of Pythagoras

1.1 Arithmetic and Geometry

If there is one theorem that is known to all mathematically educated people,
it is surely the theorem of Pythagoras. It will be recalled as a property of
right-angled triangles: the square of the hypotenuse equals the sum of the
squares of the other two sides (Figure 1.1). The “sum” is of course the sum
of areas and the area of a square of side l is l2, which is why we call it “l
squared.” Thus the Pythagorean theorem can also be expressed by

a2 + b2 = c2, (1)

where a, b, c are the lengths shown in Figure 1.1.

a

b

c

Figure 1.1: The Pythagorean theorem

Conversely, a solution of (1) by positive numbers a, b, c can be re-
alized by a right-angled triangle with sides a, b and hypotenuse c. It is
clear that we can draw perpendicular sides a, b for any given positive num-
bers a, b, and then the hypotenuse c must be a solution of (1) to satisfy
the Pythagorean theorem. This converse view of the theorem becomes
interesting when we notice that (1) has some very simple solutions. For
example,

(a, b, c) = (3, 4, 5), (32 + 42 = 9 + 16 = 25 = 52),
(a, b, c) = (5, 12, 13), (52 + 122 = 25 + 144 = 169 = 132).

It is thought that in ancient times such solutions may have been used for
the construction of right angles. For example, by stretching a closed rope
with 12 equally spaced knots one can obtain a (3, 4, 5) triangle with right
angle between the sides 3, 4, as seen in Figure 1.2.

The simplest case of the theorem, when the two legs are equal
(a = b), is very easy to see when looking at a tiled floor, as we
see in the reading from Plato’s Meno. Inspired by this striking
result, ancient man might have gone on to consider the case
of a slanted square, and then discovered that with some easy
puzzling the theorem is easily generalised to this case as well:

10 1 The Theorem of Pythagoras

on certain geometric assumptions. It is in fact possible to transcend geo-
metric assumptions by using numbers as the foundation for geometry, and
the Pythagorean theorem then becomes true almost by definition, as an
immediate consequence of the definition of distance (see Section 1.6).

Figure 1.7: Proof of the Pythagorean theorem

To the Greeks, however, it did not seem possible to build geometry on
the basis of numbers, due to a conflict between their notions of number and
length. In the next section we shall see how this conflict arose.

Exercises

A way to see the Pythagorean theorem in a tiled floor was suggested by Mag-
nus (1974), p. 159, and it is shown in Figure 1.8. (The dotted squares are not tiles;
they are a hint.)

Figure 1.8: Pythagorean theorem in a tiled floor

1.4.1 What has this figure to do with the Pythagorean theorem?
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To the Greeks, however, it did not seem possible to build geometry on
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nus (1974), p. 159, and it is shown in Figure 1.8. (The dotted squares are not tiles;
they are a hint.)

Figure 1.8: Pythagorean theorem in a tiled floor

1.4.1 What has this figure to do with the Pythagorean theorem?

3.8. Explain how this proves the theorem.

The Greek tradition has it that Thales (c. −600) was the first to
introduce deductive reasoning in geometry. One of the theo-
rems he supposedly dealt with was “Thales’ Theorem” that the
triangles raised on the diameter of a circle all have a right angle:

3.9. Explain how Thales’ Theorem can very easily be discov-
ered when playing around with making rectangles and
circles. Hint: Construct a rectangle; draw its diagonals;
draw the circumscribed circle.

Thus we see a fairly plausible train of thought leading from the
birth of geometry in practical necessity, to an appreciation for
its artistic potential, to the discovery of the notions of theorem
and proof.

Another indication of the use of constructions is the engineer-
ing problem of digging a tunnel through a mountain. Digging
through a mountain with manual labour is of course very time-
consuming. It is therefore desirable to dig from both ends si-
multaneously. But how can we make sure that the diggers start-
ing at either end meet in the middle instead of digging past
each other and making two tunnels?

3.10. Solve this problem using a rope. (You may assume that
the land is flat except for the mountain.)

Such methods were used in ancient times. On the Greek island
of Samos, for example, a tunnel over one kilometer in length
was dug around year −530, for the purpose of transporting
fresh water to the capital. It was indeed dug from both ends.

§ 4. Babylonia
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Figure 6: Early mathematical activity coincides with favourable
agricultural conditions.

Mathematics arose in the Nile area since the river made the soil
fertile and allowed sufficiently rich harvests for some people
to concern themselves with intellectual pursuits going beyond
daily needs. The same conditions produced mathematics in
ancient Babylonia, and indeed their mathematics too can be
seen as arising quite naturally from land-surveying. This is il-
lustrated in the following two examples, taken from clay tablets
written around −1800, give or take a century or two.

The tablet in figure 7 has to do with the diagonal of a square.
The numbers are given in sexagesimal (base 60) form, a Baby-
lonian invention that still lives in our systems for measuring
time and angles. Why did they use base 60?

4.1. Argue that 60 has favourable divisibility properties. In
which context might this have been important? Hint: in
which contexts do people count in “dozens”?

4.2. Explain how you can count to 60 on your fingers in a nat-
ural way. Hint: curl your fingers.

4.3. Argue that in the reader there are passages that can be
seen as supporting each of these factors as explanations
for the origin of the base-60 system.

Base 60 means that, for example, 42,25,35 = 42+ 25
60 + 35
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rectangles having areas of 60 square cubits and diagonals of 13 and 15 cubits. One is
required to find the lengths of their sides. Writing, say, the first of the problems in modern
notation, we have the system of equations

x2 + y2 = 169, xy = 60.

The scribe’s method of solution amounts to adding and subtracting 2xy = 120 from the
equation x2 + y2 = 169, to get

(x + y)2 = 289, (x − y)2 = 49;

or equivalently,

x + y = 17, x − y = 7.

From this it is found that 2y = 10, or y = 5, and as a result x = 17 − 5 = 12.
The second problem,

x2 + y2 = 225, xy = 60,

is similar, except that the square roots of 345 and 105 are to be found. There were several
methods for approximating the square root of a number that was not a perfect square. In this
case, the scribe used a formula generally attributed to Archimedes (287–212 B.C.), which is

Figure 7: Clay tablet YBC 7289 from the Yale Babylonian Col-
lection.

4.4. (a) Explain the meaning of the numbers on the tablet
above. Hint: there are three numbers and one of
them is ≈p

2.

(b) Convert the tablet’s value for
p

2 into decimal form.

(c) If you use this value to compute the diagonal of a
square of side 100 meters (i.e., roughly the size of
a football field), how big is the error? Draw this
length.

The Babylonians were very good at solving problems that in
our terms correspond to quadratic equations. Such problems
are related to areas of fields, though the problems solved on
the tablets ask contrived questions that go beyond any practi-
cal need and seem to serve no other purpose than posing chal-
lenges or showing off one’s skills. So one can easily imagine
that this mathematical tradition stemmed from practical land-
measurements which eventually produced a specialised class
of experts who started taking an interest in mathematics for its
own sake.

The following is an example of such a problem. I give here the
translation of Høyrup; in the reading from his book you will
find some further discussion of its context and significance.

“The surface and my confrontation I have accumulated: 45’ it
is.” It is to be understood that “the surface” means the area of
a square, and the “confrontation” its side. So the problem is
x2 + x=45’. Again the numbers are sexagesimal, so 45’ means
45/60=3/4.

“1, the projection, you posit.” This step gives a concrete ge-
ometrical interpretation of the expression x2 + x. We draw a
square and suppose its side to be x. Then we make a rectangle
of base 1 protrude from one of its sides. This rectangle has the
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area 1 · x, so the whole figure has the area x2 + x, which is the
quantity known.

“The moiety of 1 you break, 30’ and 30’ you make hold.” We
break the rectangle in half and attach the half we cut off to an
adjacent side of the square. We have now turned our area of 45’
into an L-shaped figure.

“15’ to 45’ you append: 1.” We fill in the hole in the L. This hole
is a square of side 30’, so its area is 15’. So when we fill in the
hole the total area is 45’+15’=1.

“1 is equalside.” The side of the big square is 1.

“30’ which you have made hold in the inside of 1 you tear out:
30’ is the confrontation.” The side of the big square is x+30’ by
construction, and we have just seen that it is also 1. Therefore
x must be 1-30’=30’, and we have solved the problem.

4.5. Illustrate the steps of the solution with figures.

4.6. Give a modern algebraic solution to x2 + x = 3/4 which
corresponds to the above step by step.

§ 5. Euclid

Whatever the beginnings of Greek geometry, the written record
available to us only begins with Euclid’s Elements (c. −300). As
mathematicians we adore it as a truly masterful synthesis of
the mathematical canon, but as historians we also regret that
its polished refinement no doubt erases many intricacies of the
three centuries of development following Thales.

Euclid’s Elements was the paradigm of mathematics for mil-
lennia. It embodies the “axiomatic-deductive” method, i.e.,
the method of starting with a small number of explicitly stated
(and preferably obvious) assumptions and definitions and then
deducing everything from there in a logical fashion, thereby
compelling anyone who believed in the original assumptions
to also believe in all subsequent theorems. Some selections
from the definitions of Euclid’s Elements are the following:

Definition 1. A point is that which has no part.

Definition 2. A line is breadthless length.

Definition 4. A straight line is a line which lies
evenly with the points on itself.

Definition 10. When a straight line standing on
a straight line makes the adjacent angles equal to
one another, each of the equal angles is right.

Definition 15. A circle is a plane figure contained
by one line such that all the straight lines falling
upon it from one point among those lying within
the figure equal one another.

Definition 23. Parallel straight lines are straight
lines which, being in the same plane and being
produced indefinitely in both directions, do not
meet one another in either direction.

The following are all the geometrical assumptions admitted by
Euclid:

Postulate 1. To draw a straight line from any point
to any point.

Postulate 2. To produce a finite straight line con-
tinuously in a straight line.

Postulate 3. To describe a circle with any center
and radius.

Postulate 4. That all right angles equal one an-
other.

Postulate 5. That, if a straight line falling on
two straight lines makes the interior angles on
the same side less than two right angles, the two
straight lines, if produced indefinitely, meet on
that side on which are the angles less than the two
right angles.

The first two postulates can be seen as saying roughly that one
has a ruler (or rather an unmarked ruler, or “straightedge”).
Similarly the third postulate basically grants the existence of
compasses. In this sense we are still not so far from the banks
of the Nile, as it were. And in fact this is true also geographi-
cally, for Euclid’s Elements was written in Alexandria.

The fifth postulate is the most profound one, and was the
source of much puzzlement for thousands of years follow-
ing Euclid. We shall now look at some of Euclid’s theorems
in which this postulate is crucial in the hopes of better un-
derstanding both this postulate and the axiomatic-deductive
method generally.

Euclid’s very first proposition is the construction of an equilat-
eral triangle from a given line segment.

5.1. (a) Explain how to do this with ruler and compasses.

(b) Find a hidden assumption in this argument that is
not supported by the postulates and definitions.

Suppose you wanted to construct a line parallel to a given line
through a given point. It may seem that this would be very easy
by essentially just constructing two equilateral triangles next to
each other.

5.2. Explain how you might do this.

So you might say: since this is such a simple extension of Eu-
clid’s first proposition, he might as well have placed it as his
second proposition. But the matter is not so simple. You need
to prove that the line you constructed is parallel to the given
line using nothing but Euclid’s definitions and postulates. Per-
haps you found it “obvious” the line you constructed was par-
allel to the first, but the whole point of the Euclidean way of
doing things is to never take anything for granted except what
you can strictly infer from the axioms.

5.3. When we feel that the above construction “obviously”
gives a parallel, we may, strictly speaking, be thinking of
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a different notion of parallel than the one of Euclid’s def-
inition, namely what alternative definition of parallels?
Of course in a stringent logical treatise you have to pick
a definition and stick with it; ambiguity has no place in
such a work.

It is clear, then, that any proof about parallels must ultimately
trace back to the parallel postulate. But this postulate says: To
check if two lines are parallel, draw a third line across and add
up the two “interior” angles it makes with these lines on, say,
its right hand side. If those angles are less than two right an-
gles (180◦) then the lines will meet at that side. It follows that
if the angles are greater than two right angles then the lines
will meet on the other side. Note that the postulate doesn’t say
when lines are parallel, only when they are not. The postulate
rules out any situation when the sum of the angles is not two
right angles, so for parallels to exist at all this must happen in
the case when the sum of the angles is precisely two right an-
gles. Indeed this is precisely what happens, of course, but Eu-
clid hasn’t put this in the postulate because he can prove it as a
theorem (proposition 27). We shall not follow Euclid’s specific
approach in detail, but the following line of reasoning captures
his spirit and will help us appreciate the fundamental impor-
tance of the parallel postulate.

5.4. Consider the two right angles case and suppose the two
lines meet on one side. Argue that they should then meet
on the other side also, and that this is a contradiction.

5.5. Explain how to construct a parallel to a given line
through a given point based on this knowledge.

The following is an important application of the theory of par-
allels.

5.6. Consider an arbitrary triangle and draw the parallel to
one of the sides through the third vertex. Use the result-
ing figure to prove that the angle sum of a triangle is two
right angles.

Note that the story we have told about parallels could also have
been traced backwards: starting with the angle sum theorem of
a triangle, and trying to reduce it to simpler and simpler facts,
we could have asked ourselves what the ultimate assumptions
are that one needs to make in order to prove this theorem.
This is indeed one of the great strengths of Euclid: he not only
demonstrates his theorems in the sense that he convinces the
reader that they are true; he also shows what, precisely, are the
fundamental assumptions on which the entire logical edifice
of geometry rests. The latter is no easy task; as we saw in prob-
lem 5.2 it is easy to fool yourself about what logical assump-
tions you are really making when you are reasoning about “ob-
vious” things (though admittedly problem 5.1b shows that Eu-
clid himself was not perfect in this regard either).

This kind of logical reduction of geometry to its ultimate build-
ing blocks serves no practical purpose; it is of concern only to
those who take a philosophical interest in the nature and foun-
dations of mathematical knowledge. But there were good rea-
sons for people to see a philosophical puzzle here. What in-
deed is the nature of mathematics and its relation to the world?

It seems that I can sit in a dark cave and prove mathematical
theorems, for example that the angle sum of a triangle is two
right angles, which then turn out to be true when tested on ac-
tual triangles in the real world. How can this be? In addition
to this epistemological puzzle, there were paradoxes such as
Zeno’s rather geometrical proofs that motion is impossible and
the discovery, discussed in §2, that

p
2 is in a sense “not a num-

ber.”

Against this backdrop we can perhaps understand why the
time was ripe for someone like Euclid to write a rigorous trea-
tise systematising all of geometry. Euclid’s Elements was not of
interest for the store of theorems it proved; most of those had
been known for a long time, often centuries. No, its real contri-
bution lay in the stringent logical organisation of this material
which revealed its ultimate foundations and building blocks,
and thereby provided a vision of the very nature of mathemat-
ical knowledge.

The fourth postulate is the only one we have not discussed so
far. It is not so central, though it is more insightful that it looks.

5.7. Argue that the fourth postulate is false on the surface of
a cone. Thus it is basically a “flatness” postulate.

5.8. In the Declaration of Independence of the United States,
the first part of the second sentence has a very Euclidean
ring to it. It is reminiscent of one of Euclid’s postulates in
particular—which one? There are in fact several further
allusions to Euclidean rhetoric in this document.

Figure 8: Artist’s impression of Euclid with his iconic compass.
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Figure 9: 13th-century illustration of God designing the world
using a compass.

§ 6. Ruler and compass

As seen above, Euclid’s geometry is essentially the geometry of
ruler and compasses. There are many reasons why these tools
form a beautiful foundation for geometry:

• Theoretical purity: line and circle, straightness and
length.

• Practical simplicity: both can be generated by e.g. a piece
of string.

• Practical exactness.

• Inclusive: +, −, ×, ÷, p, and the regular polyhedra are all
subsumed by ruler and compasses.

• Natural motion. In Aristotelian physics, earth and water
want to go straight down, fire and air want to go straight
up, and heavenly bodies are made of a fifth element that
wants to go in circles.

6.1. In this problem we shall show that the operations
+,−,÷,×,p can be carried out with ruler and compasses.

(a) Explain how to add and subtract, i.e., given line seg-
ments of lengths a and b, how to construct line seg-
ments of length a +b and a −b.

Note that it is the compasses and not the ruler that en-
able us to treat length. Only the compass can “store” a
length and transfer it to a different place.

(b) It may seem that this construction is based on noth-
ing but some of Euclid’s postulates—which ones?

Actually these axioms themselves are not enough, be-
cause Euclid’s compasses “collapse” when lifted. Thus
we could draw a circle with radius b centered at either
of the endpoints of the line segment b, but we cannot
set the compasses to this length, then lift it up and put it
down at the end of a. Or rather, the axioms do not tell us
that we can do this, so Euclid has to prove as a proposi-
tion that this can be done.

(c) Which of Euclid’s propositions enables us to “trans-
fer” the length b to the end of segment a? Hint: start
reading Euclid’s propositions from the beginning;
this construction occurs very early.

Now multiplication. Given line segments 1, a,b, to pro-
duce a line segment ab, we proceed as follows. Make 1
and a the legs of a right triangle.

(d) Explain how this is done with ruler and compasses.

Then extend the side of length 1 to a side a length b

(e) Explain how this is done with ruler and compasses.

Complete a right triangle similar to the first with this new
segment as one of its legs.

(f) What is its remaining leg?

(g) Explain how to construct a/b. Hint: division is the
inverse of multiplication.

To construct
p

a (cf. Elements, II.14), draw a circle with
diameter a +1 and draw the perpendicular at the divid-
ing point between the a and 1 segments.

(h) Explain how
p

a can be obtained from the result-
ing figure. Hint: recall Thales’ Theorem of problem
3.9.

6.2. In this problem we shall show that the regular pentagon
is constructible by ruler and compasses. Equilateral tri-
angles, squares, and regular hexagons are easily con-
structed, as are any regular polygons with twice as many
sides as a previously constructed polygon. Some regular
polygons, such as the heptagon (7-gon), cannot be con-
structed with ruler and compasses.

The pentagon is an interesting case since it is needed
for one of the regular polyhedra, the dodecahedron, and
since its construction is non-trivial. Euclid’s construc-
tion of the regular pentagon (IV.11) is much too com-
plicated for us to go into here, but using the correspon-
dence between algebra and geometric constructions de-
veloped above we can see that it must be possible to con-
struct the regular pentagon.

1

τ

(a) Use the symmetry of the regular pentagon to find
similar triangles implying τ= 1

τ−1 .

(b) Solve this equation for τ. Note that τ is con-
structible by problem 1.

(c) Give step-by-step instructions for how to construct
a regular pentagon given line segments of length 1
and τ.
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Figure 10: A typical window design in Gothic architecture.

6.3. Figure 10 shows a common design of Gothic windows.

(a) How can you construct such a design using ruler
and compasses?

(b) Name one proposition from the Elements that may
have suggested the basic idea of such a design.
Hint: start looking at the beginning.

The Gothic style of architecture arose in the early 12th
century, within a decade or two of the first Latin trans-
lation of Euclid’s Elements. It is not known whether, or
to what extent, this was a case of cause and effect. But
we do know that architects of this era showed the utmost
reverence for geometry in general, as seen in the reading
from Simson.

§ 7. Conic sections

2.4 Conic Sections 29

More generally, any second-degree equation represents a conic section or
a pair of straight lines, a result that was proved by Descartes (1637).

Figure 2.7: The conic sections

The invention of conic sections is attributed to Menaechmus (fourth
century bce), a contemporary of Alexander the Great. Alexander is said
to have asked Menaechmus for a crash course in geometry, but Menaech-
mus refused, saying, “There is no royal road to geometry.” Menaechmus
used conic sections to give a very simple solution to the problem of dupli-
cating the cube. In analytic notation, this can be described as finding the
intersection of the parabola y = 1

2 x2 with the hyperbola xy = 1. This yields

x
1
2

x2 = 1 or x3 = 2.

Although the Greeks accepted this as a “construction” for duplicating
the cube, they apparently never discussed instruments for actually drawing
conic sections. This is very puzzling since a natural generalization of the
compass immediately suggests itself (Figure 2.8). The arm A is set at a
fixed position relative to a plane P, while the other arm rotates about it at a
fixed angle θ, generating a cone with A as its axis of symmetry. The pencil,
which is free to slide in a sleeve on this second arm, traces the section of
the cone lying in the plane P. According to Coolidge (1945), p. 149, this
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ellipse parabola hyperbola

Figure 11: The conic sections.

The next step beyond lines and circles are the conic sections,
i.e., the curves that arise when a cone is cut by a plane. There
are three fundamentally different kinds of conic sections: el-
lipse, parabola, and hyperbola. (Figure 11.) These terms mean
roughly “too little,” “just right,” and “too much,” respectively,
which makes sense as characterisations of the inclination of
the cutting plane, as we see in the figure.

7.1. Discuss how this relates to the meaning of the words
ellipsis (the omission from speech or writing of words

that are superfluous; also the the typographical char-
acter “. . .”), parable (a simple story used to illustrate a
moral or spiritual lesson), hyperbole (exaggerated state-
ments or claims not meant to be taken literally).

Many of the important reasons we used to justify ruler and
compasses generalise directly to conic sections, e.g., construc-
tion by strings:

Even the compass can be generalised to draw conics, as shown
in figure 12.

30 2 Greek Geometry

instrument for drawing conic sections was first described as late as 1000 ce
by the Arab mathematician al-Kuji. Yet nearly all the theoretical facts one
could wish to know about conic sections had already been worked out by
Apollonius (around 250–200 bce)!

A
θ

P

Figure 2.8: Generalized compass

The theory and practice of conic sections finally met when Kepler
(1609) discovered the orbits of the planets to be ellipses, and Newton
(1687) explained this fact by his law of gravitation. This wonderful vin-
dication of the theory of conic sections has often been described in terms
of basic research receiving its long overdue reward, but perhaps one can
also see it as a rebuke to Greek disdain for applications. Kepler would not
have been sure which it was. To the end of his days he was proudest of
his theory explaining the distances of the planets in terms of the five reg-
ular polyhedra (Section 2.2). The fascinating and paradoxical character of
Kepler has been warmly described in two excellent books, Koestler (1959)
and Banville (1981).

Exercises

A key feature of the ellipse for both geometry and astronomy is a point called
the focus. The term is the Latin word for fireplace, and it was introduced by
Kepler. The ellipse actually has two foci, and they have the geometric property
that the sum of the distances from the foci F1, F2 to any point P on the ellipse is
constant.

2.4.1 This property gives a way to draw an ellipse using two pins and piece of
string. Explain how.

Figure 12: Generalised compass for drawing conic sections, as
described by al-Kuji, c. 980, and a schematic illustration from
Stillwell, Mathematics and Its History.

7.2. Explain how this instrument works.

7.3. This instrument is not mentioned until al-Kuji around
980, but argue that this construction is implicit already
in the Greek tradition. Hint: what is the definition of a
cone?

Although not known to the Greeks, the natural motion argu-
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ment also generalises to conic sections, for projective motion
is parabolic and planetary orbits are elliptical, as discovered by
Galileo and Kepler respectively in the 17th century. Another
17th -century discovery that reveals the conics as the natu-
ral successors of lines and circles is the algebraic geometry of
Descartes.

7.4. (a) In three-dimensional space, the equation x2 + y2 =
z2 represents a cone. Why?

(b) This implies that “conic sections” are curves of de-
gree two. Consider for example the plane y = 1.
Why is y = 1 a plane? What will be its intersection
with the cone? What type of conic section is it?

(c) The Greeks had no algebra or coordinate systems,
and yet they too knew that conics were of “degree
two.” Explain how by giving a purely geometrical
definition of this concept.

7.5. “Gnomon” is a fancy word for a stick standing in the
ground. The tip of its shadow traces a curve as the sun
moves, as indicated in figure 13.

(a) What type of curve is it?

(b) How can you find north by using the stick and the
curve?

(c) At the spring and autumn equinoxes the shadow
cast by the gnomon is a straight line. Explain why.

Figure 13: From Evans, History and Practice of Ancient Astron-
omy.

§ 8. Three classical construction problems

Three classical construction problems dominated in large part
the development of Greek geometry: the duplication of the
cube (finding a cube with twice the volume of a given cube),
the quadrature of the circle (finding a square with area equal to
a given circle), and the trisection of an angle (dividing an angle
into three equal pieces). And it is with good reason that these
problems were seen as fundamental. They are very pure, pro-
totypical problems—not to say picturesque embodiments—of
key concepts of geometry: proportion, area, angle. The dou-
bling of a plane figure, the area of a rectilinear figure, and the
bisection of an angle are all fundamental results that the ge-
ometer constantly relies upon, and the three classical prob-
lems are arguably nothing but the most natural way of pushing

the boundaries of these core elements of geometrical knowl-
edge. The great majority of higher curves and constructions
studied by the Greeks were pursued solely or largely because
one or more of the classical construction problems can be
solved with their aid.

A strong case can be made that even conic sections were in-
troduced for this reason, even though other motivations may
appear more natural to us, such as astronomical gnomonics or
perspective optics.

8.1. Making a cube twice as voluminous as a unit cube is ob-
viously equivalent to constructing 3p2. Show that this
can easily be accomplished assuming that the hyperbola
x y = 2 and the parabola y = x2 can be drawn.

For trisecting an angle, one of the Greek methods went as fol-
lows.

= =

=

O A

B

C
D

E

Consider a horizontal line segment O A. Raise the perpendic-
ular above A and let B be any point on this line. We wish to
trisect ∠AOB . Draw the horizontal through B and find (some-
how!) a point E on this line such that when it is connected to
O the part EC of it to the right of AB is twice the length of OB .
I say that ∠AOC = 1

3∠AOB , so we have trisected the angle, as
desired.

8.2. Prove that ∠AOC = 1
3∠AOB . Hint: Consider the mid-

point of D of EC . It may help to draw the horizontal
through D and see what you can infer from this.

But how exactly are we supposed to find the point E? This can
in fact not be done by ruler and compass only.

8.3. Argue, however, that it can be done if we are allowed to
make marks on our ruler, and then fit the marked length
into the figure by a kind of trial-and-error process. (This
is called a neusis construction.)

8.4. Explain how E could also be found if we could construct
curves like this:

This is called a conchoid. It was invented by Nicomedes, who
also showed how it could be constructed by an instrument.

8.5. Explain how to build such an instrument. Hint:
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8.6. Build such an instrument for yourself and use it to trisect
an angle.

Hint: Hardware stores sometimes have tools consist-
ing of linked rulers—sometimes called a “templater”—
which are very suited for this purpose. Also, as a plane
of construction it is useful to use a large sheet of very
thick paper. To mark points one may use flat-headed
nails piercing through the paper from below.

§ 9. Trigonometry

The history of trigonometry is the history of measuring heaven
and earth. Regiomontanus called his book De triangulis omni-
modis (1464) “the foot of the ladder to the stars.”

9.1. Synopsis of Aristarchus’ work On the distances and sizes
of the sun and moon (c. -270).

Notation: E, M, S are the centers of the earth, moon and
sun respectively, and E’, M’, S’ are points on their appar-
ent perimeters.

(a) The ratio of the distances from the earth to the
moon and from the earth to the sun can be deter-
mined by measuring the angle MES at half moon.
For at half moon the angle EMS=90◦ and the angle
MES is measurable, so we know all angles of this tri-
angle and thus the ratios of its sides.

(b) The ratio of the sizes of the moon and the sun can
then be inferred at a solar eclipse. For at a solar
eclipse, the moon precisely covers the sun. Thus
EMM’ is similar to ESS’, with the scaling factor dis-
covered above, i.e. SS’:MM’::ES:EM.

(c) The ratio of the distance of the moon to its size
can be inferred from its angular size. For the an-
gle EMM’=90◦ and the angle MEM’ is measurable,
so we know all angles of this triangle and thus the
ratios of its sides.

(d) These distances can be related to the radius of
the earth at a lunar eclipse. For the shadow that
the earth casts on the moon is about two moon-
diameters wide. To incorporate this information
into a similar triangles setup, let O be the point be-
yond the moon from which the earth has the same
angular size as the sun (i.e. precisely blocks out the
sun). Then SS’:EE’::OS:OE. Now the algebra gets a
little bit involved. We want to know the LHS so we
have to reduce the RHS to a number, which we will
do by expressing both OS and OE in terms of OM.
From above we know SS’:MM’, and now we have

OS:OM::SS’:2MM’, which enables us to express OS
in terms of OM. To express OE in terms of OM we
first note that OE=OM+EM. From above we know
how to express EM in terms of ES, or, if we pre-
fer, MS. But again from OS:OM::SS’:2MM’ we know
OS=OM+MS in terms of OM, so we know MS in
terms of OM, so we are done. OS:OE is now some
multiple of OM over some multiple of OM, i.e. a
number, so we have found SS’:EE’, i.e. we have ex-
pressed the size of the sun (and thereby the size
of the moon, of course) in terms of the size of the
earth.

Aristarchus thus used the earth to measure the heavens. It re-
mained only to determine the size of the earth itself. This was
done soon thereafter by Eratosthenes.

9.2. Explain his method on the basis of the figure.

(Figure from Encyclopaedia Britannica.)

The contrast between the arguments of Aristarchus and Eratos-
thenes, though a mere generation apart, can be seen as reflect-
ing a cultural shift in Greek antiquity. In the age of Socrates,
Plato, and Aristotle, Athens was the cultural center. This was
an era of abstract philosophising, of figuring things out from
your armchair. We see a taste of this in the readings from
Plato. Aristarchus was born on the island of Samos in classi-
cal Greece, and his measurements of the heavens embody well
the power and spirit of abstract philosophising.

A new era of Hellenistic culture, however, was initiated by the
conquests of Alexander the Great. His wars spread Greek cul-
ture around the Mediterranean; to Egypt among other places,
where one of the cities named after him, Alexandria, was to be-
come the new intellectual capital. Aristotle went to Macedonia
to teach the young Alexander in year −343, thus marking the
boundary of the two eras. Euclid wrote his Elements in Alexan-
dria around year −300, synthesising great amounts of “pure”
mathematics in the classical Athenian style. Later Hellenis-
tic mathematics tends to be more “applied,” broadly speak-
ing, perhaps in part triggered by the logistic requirements of
a rapidly expanding empire. Eratostenes was born in Cyrene in
northern Africa—he was a “new Greek.” And indeed his mea-
surement of the size of the earth reflects the culture into which
he was born. The armchair philosophers of Athens cared little
about such practicalities, but when you start conquering vast
lands the question soon arises: how much is there to conquer?
Or: how big is the earth anyway?
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9.3. China is a big country, and it has bamboos in it. This is
reflected in their methods for measuring the heavens. As
Chen Zi says, “16,000 li to the south at the summer sol-
stice, and 135,000 li to the south at the winter solstice, if
one sets up a post at noon it casts no shadow. This single
[fact is the basis of] the numbers of the Way of Heaven.”
(From The book of Chen Zi, in the Mathematical Classics
of the Zhou Gnomon, compiled around the first century
BCE.)

Chen Zi is referring to the point S’ on the earth’s sur-
face perpendicularly beneath the sun S. Now, standing
somewhere else, we erect a bamboo tube BB’ so that its
shadow falls at our feet O.

(a) Draw a picture of this and use it to find a formula for
the distance to the sun from the earth, SS’, in terms
of measurable quantities. (Assume that the earth is
flat.)

Now, Chen Zi continues, pick up the bamboo tube you
used as the post and point it towards the sun. Suppose its
diameter is just big enough for you to see the whole sun
through the tube (otherwise go get a longer or shorter
tube).

(b) Draw a picture of this and use it to find a formula
for the diameter of the sun in terms of measurable
and known quantities.

(c) The value for SS’ reported by Chen Zi is 80,000 li.
Does this seem accurate? (Rather than trying to
look up how long a li is you can answer this on the
basis of the information in the quotation above.)

9.4. While the Chinese thus utilised their benefit of having
vast land and bamboo sticks at their disposal, the Mus-
lims faced other circumstances in response to which
they devised other methods. Al-Biruni (Book of the De-
termination of Coordinates of Localities, c. 1025, chapter
5) discusses a method for measuring the circumference
of the earth akin to that of Eratostenes, but does not find
it feasible:

“Who is prepared to help me in this [project]? It re-
quires strong command over a vast tract of land and ex-
treme caution is needed from the dangerous treacheries
of those spread over it. I once chose for this project
the localities between Dahistan, in the vicinity of Jurjan
and the land of the Chuzz (Turks), but the findings were
not encouraging, and then the patrons who financed the
project lost interest in it.”

Instead: “Here is another method for the determination
of the circumference of the earth. It does not require
walking in deserts.”

The method is this. Climb a mountain. Let M be the
mountain top, E its base, and C the centre of the earth.
Now look towards the horizon and let H be the point fur-
thest away from you that you can see.

(a) Draw a picture of this and use it to find a formula
for the radius of the earth in terms of measurable
quantities.

Al-Biruni did indeed carry this out:

“When I happened to be living in the fort of Nandana
in the land of India, I observed from an adjacent high
mountain standing west from the fort, a large plain ly-
ing south of the mountain. It occurred to me that I
should examine this method there. So, from the top of
the mountain, I made an empirical measurement of the
contact between the earth and the blue sky. I found that
the line of sight had dropped below the reference line
by the amount 0;34◦. Then I measured the perpendic-
ular of the mountain and found it to be 652;3,18 cubits,
where the cubit is a standard of length used in that re-
gion for measuring cloth.” Al-Biruni goes on to calculate
the radius of the earth from this data, which comes out
as 12,803,337;2,9 cubits.

These numbers are given in a mixed notation. The inte-
ger part (before the semicolon) is given in ordinary dec-
imal notation, while the fractional part (after the semi-
colon) is given in sexagesimal (base 60) form. Thus, for
example, 12,803,337;2,9 = 12803337;2,9 = 12803337 +
2

60 + 9
602 .

(b) Check al-Biruni’s calculation. Note that some dis-
crepancy results from imperfections in the trigono-
metric tables available to him.

“Cubit” means “forearm,” which makes sense as a unit
for “measuring cloth.” Although the exact value of a cu-
bit intended by an author is often unclear, one may gen-
erally assume it to be about 44 cm.

(c) In terms of metric units, with what accuracy does
al-Biruni specify the height of the mountain?

The downside of this method is of course that it requires
“a high mountain close to the seashore, or close to a large
level desert.” Thus, coming across such a mountain is an
opportunity too good to pass up even if you are in the
middle of a war:

“Abu al-Tayyib Sanad bin ’Ali has narrated that he was in
the company of al-Ma’mun when he made his campaign
against the Byzantines, and that on his way he passed by
a high mountain close to the sea. Then al-Ma’mun sum-
moned him to his presence and ordered him to climb
that mountain, and to measure at its summit the dip of
the sun.”

(d) However, a mountain next to a vast, completely
flat land is better than a mountain next to the sea.
Why? (Hint: how do you determine the height of
the mountain?)

(e) Argue on the basis of figure 14 that geographical
circumstances were ideal for al-Biruni’s measure-
ments.
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Figure 14: Location of al-Biruni’s earth measurement on alti-
tude map.

Why did the Chinese measure the heavens and the Muslims the
earth? Shang Gao expresses the Chinese attitude: “one who
knows Earth is wise, but one who knows Heaven is a sage.”
But in the Muslim world, different cultural circumstances con-
ferred a higher status on earth-measurements:

If the investigation of distances between towns,
and the mapping of the habitable world, ... serve
none of our needs except the need for correcting
the direction of the qibla we should find it our duty
to pay all our attention and energy for that inves-
tigation. The faith of Islam has spread over most
parts of the earth, and its kingdom has extended
to the farthest west; and every Muslim has to per-
form his prayers and to propagate the call of Islam
for prayer in the direction of the qibla.” (al-Biruni,
ibid.)

In the early modern west, trigonometry was used for large-
scale land surveying, which can be done by measuring one sin-
gle distance between two points and then propagating this dis-
tance by triangulation by measuring nothing but angles. Snel-
lius measured the Netherlands by this method in 1617, calling
himself the “Dutch Eratosthenes” as you can see here on the
title page on his book (left):

On the right is a typical figure from the book. The problem is
to determine the distance from the Hague to Leiden given all

the angles and one single length. Snellius measured the an-
gles by sighting from one tall building to another, for example
the Jacobstoren in the Hague, the Town Hall in Leiden, and the
Nieuwe Kerk in Delft.

9.5. (a) Explain how the entire country can be measured
given only angles and a single length. (Assume that
the earth is flat.)

(b) This is yet another example of a trigonometric tech-
nique arising in a geographically appropriate con-
text. How so?

The same method was employed by the French Academy in
1735 to decide between the Newtonian and Cartesian hypothe-
ses regarding the curvature of the earth. Descartes viewed the
solar system as a vortex, which led him to believe that the earth
would be elongated along its axis, like a lemon. Newton ar-
gued, on the basis of his theory of gravity, that the earth was
rather flattened at the poles, like an orange.

9.6. The French Academy sent expeditions to Peru and Lap-
land. Can you imagine why? Hint: There are at least two
scientific reasons.

9.7. Carry out a triangulation project yourself. Start with a
small triangle, for instance one drawn on an ordinary
piece of paper. Measure only one of its sides. Then use
a triangulation network to infer from this a much larger
distance, such as the size of a classroom.

§ 10. Islam

During the middle ages the intellectual epicenter of the world
shifted east. The Islamic world experienced a golden age
around say 800–1200, while virtual barbarism reigned in main-
land Europe. A number of mathematical advances in the Is-
lamic world reflect their cultural context in an interesting way.
For example, the design of mosques involved very substantial
amounts of geometry for two reasons. Firstly, Muslims must
pray in the direction of Mecca and mosques are aligned ac-
cordingly. Determining the direction of prayer correctly even at
the outskirts of the Muslim world requires sophisticated astro-
nomical and geographical calculations. Also, Islam prohibits
the depiction of prophet Muhammed, which led to mosques
being decorated with very exquisite geometrical patterns in-
stead of figurative art.

The Islamic world also played a crucial role in terms of the
transmission of knowledge. A number of Greek works have
come down to us only via Arabic translations and preserva-
tions. On the other side of the empire, India also provided valu-
able influences, such as the prototype of the “Hindu-Arabic”
numeral system that we still use in the West today. Al-Biruni
lived in the eastern regions of the Islamic world and knew India
well. Perhaps you have heard a story involving putting grains
of rice on a chessboard: one on the first square, two on the
next, four on the next, and so on, doubling in each step. Al-
Biruni used this example to show the superior ease with which
one can calculate with the Indian numeral system as opposed
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to the Abjad numeral system in use at that time. Like Roman
numerals, the Abjad system is not a place value system, which
makes it less efficient for calculations involving large numbers.
By the way, chess is originally an Indian game and rice is of
course especially prominent in Indian agriculture and cuisine,
so it is quite appropriate that these ingredients should figure in
the promotion of Indian numerals.

10.1. Arabic is read “backwards,” but numbers are written as
we write them.

(a) Argue that reading a big number written in Hindu-
Arabic numerals from right to left, or reading it in
Roman numerals from left to right, is in a sense
more natural than reading it in Hindu-Arabic nu-
merals from left to right. Hint: what is the meaning
of the first digit you encounter?

(b) Argue against this interpretation.

In 1424 al-Kashi computed π with 16-decimal accuracy using
different methods. Here is al-Kashi’s result in his own notation:

That’s 3.1415926535897932. Note the interesting way in which
our symbols for 2 and 3 are derived from their Arabic counter-
parts. The Arabic symbols are perhaps a more natural way of
denoting “one and then some.”

10.2. Thus our symbols for 2 and 3 are 90◦ rotations of their
Arabic counterparts. This rule also works (more or less)
for two other digits—which ones?

9th-century Baghdad was the centre for a massive and pur-
poseful translation movement, aimed at translating all impor-
tant works from Greece and India into Arabic. Al-Kindi was
right in the thick of it, and it is surely no coincidence that he
wrote a great work on cryptography in this context. For what is
translation from a difficult language but a form of decryption?
The Kama Sutra is an Indian manual for lovers. It also contains
a section on encryption to facilitate secret communication be-
tween perhaps illicit lovers. The encryption is based on pairing
each letter of the alphabet with another randomly selected let-
ter. This pairing table is then used to scramble and unscramble
the secret text. A similar method was used by Julius Caesar; it is
easy to imagine that sensitive military and political correspon-
dence must be kept encrypted when one is trying to run an
empire by mail from some battlefront or while frolicking with
Cleopatra in Egypt.

If he had anything confidential to say, he wrote it in
cipher, that is, by so changing the order of the let-
ters of the alphabet, that not a word could be made
out. If anyone wishes to decipher these, and get at
their meaning, he must substitute the fourth letter
of the alphabet, namely D, for A, and so with the
others. (Suetonius, Life of Julius Caesar, 56.)

But these ciphers are not very secure at all. Al-Kindi, stimulated
to think abstractly about languages and ciphers by the transla-
tion movement, described the way to crack encryptions of this

kind, namely by letter-frequency analysis, and proposed better
ciphers.

10.3. (a) Explain how letter-frequency analysis can be used
to crack these ciphers.

(b) Consider how one might design a cipher that can-
not be cracked in this way.

Linguistic influence also goes the other way. For example,
the word “algebra” comes from the Arabic “al-jabr,” meaning
“restoration (of anything which is missing, lost, out of place, or
lacking), reunion of broken parts, (hence specifically) surgical
treatment of fractures” (OED).

10.4. Argue that solving quadratic equations by completing
the square is indeed “al-jabr” in this sense of the word.

§ 11. Numbers in early modern Europe

We saw above that al-Biruni used a computational example in-
volving larger and larger numbers to highlight the benefit of the
Indian numeral system when he brought it to an Islamic audi-
ence. It was much the same when this system was introduced
in Europe from the Arabic world. This was done by Fibonacci in
his Liber Abaci of 1202, who introduced his famous Fibonacci
numbers

1,1,2,3,5,8,13,21, . . .

to showcase the superior computational facility of the Hindu-
Arabic numeral system.

11.1. Each Fibonacci number is the sum of the previous two.
Explain how the sequence can be seen as describing
a growing rabbit population, which is the example Fi-
bonacci used.

The Hindu-Arabic numerals of course replaced the Roman nu-
merals. In the Roman as in many other old numeral traditions,
numerical values are indicated by ordinary letters. Thus 1, 2, 3,
4 was denoted by alpha (A), beta (B), gamma (Γ), delta (∆) in
classical Greek, and by alif ( @ ), ba (H. ), jim (h. ), dal (X) in the ab-

jad system used in the Arabic world. You can still see the rem-
nants of this in any geometry book today, for when we draw
geometrical diagrams we still label our points A, B , C , etc., fol-
lowing the Greek tradition. But when Euclid labelled his points
A, B , Γ, etc., he really meant first point, second point, third
point, etc. Indeed, in the early Latin West one finds sometimes
geometrical diagrams with the points labelled 1, 2, 3, etc., since
they considered this the right translation of the Greek.

In any case, using the ordinary alphabet to denote numbers
also has the consequence that any word is automatically as-
sociated with a number. The following example is indicative of
this very widespread numerological tradition.

At the time of the Reformation in the early 16th century, Stifel
proved that the reigning pope, Leo X, or Leo the tenth, was
the antichrist, based on a Latin numeral interpretation of his
name. “Leo X (the tenth)” in Latin capitals is LEO X DECIMVS.
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11.2. Discard the letters which do not have a numerical value
as Latin numerals, and write the remaining ones in de-
scending order. What is the resulting number?

11.3. This evokes a number occurring in the New Testament,
Book of Revelations, chapter 13, verse , where it is
called the number of the .

This may strike you as a crackpot argument against the pope,
and “yet this is the man who, in the next few years, produced
some of the most original and vigorous mathematical works
to be found in the 16th century,” as noted by Smith, History of
Mathematics, vol. 1, Dover, 1958, p. 328.

Note also how this story reflects two of the main tenets of the
Reformation: distrust of the pope and the primacy of the words
of the Bible. The Bible was then just recently made available to
people at large due to the first translations into common lan-
guages and the invention of printing. Thus it very much fit the
Zeitgeist to use the very words of the Bible itself to stick it to the
authorities who used to have a monopoly on interpreting this
work.

§ 12. Logarithms

Logarithms were first developed in the early 17th century as a
means of simplifying long calculations. Long calculations were
involved for example in navigation which was of increasing im-
portance in this era. Indeed, the first ship of slaves from Africa
to America set sail only four years after the publication of the
first book on logarithms.

Logarithms simplify calculations by turning multiplication
into addition: log(ab) = log(a)+log(b). This saves an incredible
amount of time if you have to do calculations by hand, since it
is so much easier to add than to multiply. Not long ago, be-
fore the advent of pocket calculators, people still learned log-
arithms for this purpose in school. Indeed, whenever you go
to a used bookstore and look at the mathematics section you
almost always find many tables of logarithms published some
fifty or sixty years ago.

The inventor of logarithms introduced them as follows:

There is nothing (right well beloved Students in the
Mathematickes) that is so troublesome to Mathe-
maticall practice, not that doth more molest and
hinder Calculators, then the Multiplications, Divi-
sions, square and cubical Extraction of great num-
bers, which besides the tedious expence of time,
are for the most part subject to many slippery er-
rors. I began therefore to consider in my mind
by what certain and ready art I might remove
those hindrances. And having thought upon many
things to this purpose, I found at length some ex-
cellent brief rules to be treated of (perhaps) here-
after. But amongst all, none more profitable than
this which together with the hard and tedious mul-
tiplications, divisions, and extractions of roots,
doth also cast away from the work itself even the

very numbers themselves that are to be multiplied,
divided and resolved into roots, and putteth other
numbers in their place which perform as much as
they can do, only by addition and subtraction, di-
vision by two or division by three. (John Napier, A
Description of the Admirable Table of Logarithms,
1616.)

This passage expresses the original purpose of the “laws of log-
arithms” that you have probably been taught from a very dif-
ferent point of view:

log(x y) = log(x)+ log(y)

log(x/y) = log(x)− log(y)

log(x y ) = y log(x)

12.1. Suppose you have a table of all numbers x and their cor-
responding logarithms log(x). Explain how to compute
x y without multiplying, x/y without dividing, and

p
x

without using a root extraction algorithm.

Indeed logarithms “doubled the lifetime of the astronomer,” as
Laplace put it. A similar endorsement is this:

The Mathematics formerly received considerable
Advantages . . . by the Introduction of the Indian
Characters . . . yet hat it since reaped at least as
much from the Invention of Logarithms. . . . By
their Means it is that Numbers almost infinite, and
such as are otherwise impracticable, are managed
with Ease and Expedition. By their assistance the
Mariner steers his Vessel, the Geometrician inves-
tigates the Nature of the higher Curves, the As-
tronomer determines the Places of the Stars, the
Philosopher accounts for the Phenomena of Na-
ture; and lastly, the Usurer computes the Interest
of his Money. (John Keil, A Short Treatise of the Na-
ture and Arithmetick of Logarithms, 1733.)

§ 13. Renaissance

Greek treatises on geometry are often hopelessly convoluted.
See for example figure 15. “Intricacy and surprise govern the
arrangement of the text,” as the editor of the modern edition of
Archimedes’ works says. 17th -century mathematicians were
convinced that these treatises were deliberately opaque and
that the Greeks had a secret method of discovery which they
did not reveal. In the reader I quote many expressions of this
idea.
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Figure 15: Dependency diagram for the very complex chain of
propositions involved in Archimedes’ derivation of the volume
of a sphere. From Netz (ed.), The Works of Archimedes, Volume
1.

The suspicions of these mathematicians were dramatically vin-
dicated when a long-lost treatise by Archimedes was discov-
ered in 1906. In this treatise Archimedes does indeed reveal a
“secret” method of discovery that has quite a bit in common
with the calculus of the 17th century. We shall now have a look
at his proof in slightly modernised terms.

13.1. Archimedes’ long lost treatise uses the “law of the lever”
to arrive at geometrical results. This law states, in effect,
that the lever multiplies the effect of a force by the length
of the lever arm from the fulcrum to the point where the
force is applied. Thus we can lift a stone with, say, a three
times smaller force than that required to lift it directly by
using a lever with a three times longer arm on our side
than on the stone’s side.

As Archimedes writes in the preface to his treatise: “Cer-
tain things first became clear to me by a mechanical
method, although they had to be demonstrated by ge-
ometry afterwards because their investigation by the said
method did not furnish an actual demonstration. But it
is of course easier, when we have previously acquired, by
the method, some knowledge of the questions, to supply
the proof than it is to find it without any previous knowl-
edge.”

In proposition 2 of his treatise, Archimedes reduced the
complicated volume of a sphere to the easy volumes of
a cylinder and a cone by proving that the lever arrange-
ment below is in equilibrium: a cylinder with base radius
2r and height 2r placed with its center of mass r to the
left of the center balances a cone of base radius 2r and
height 2r and a sphere of radius r placed with their cen-

ters of mass 2r to the right of center.

(a) Express the fact that these bodies are in equilib-
rium as an equation. The volumes of the cylinder
and cone (one third of the circumscribing cylinder)
are considered known, but the volume of the sphere
should be left as an unknown. (Assume, of course,
that all bodies have the same uniform density.)

(b) Solve for the volume of the sphere. (This should of
course give you the famous formula for the volume
of a sphere.)

We shall now prove that these bodies are indeed in equi-
librium. First arrange the bodies as follows: sphere with
midpoint (r,0,0); cylinder with same midpoint and its lid
and bottom parallel to y z-plane; cone with bottom par-
allel to y z-plane and vertex at origin.

2r

2r

rx

We shall cut the bodies into infinitely thin vertical slices
and prove the equilibrium slicewise. Since a slice is in-
finitely thin, its weight is completely determined by the
area of the cut, and not by the large scale shape of the
object it came from.

(c) Fill in the blanks: For a given x-coordinate the cross
sections (parallel to y z-plane) have the areas

for the cylinder,

for the cone,

for the sphere.

(d) Now let the x-axis be a lever with the fulcrum at
the origin. Prove that a slice of the cylinder, kept in
its position, will balance the corresponding slices of
the cone and the sphere put at (−2r,0).

(e) Conclude the proof of the volume of the sphere.

13.2. Test Archimedes’s result empirically using a balance and
some clay.

13.3. Archimedes would never have expressed the volume of
the sphere as a “formula,” but rather as a geometrical re-
lation. Indeed, Plutarch writes of Archimedes that “al-
though he made many excellent discoveries, he is said
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to have asked his kinsmen and friends to place over the
grave where he should be buried a cylinder enclosing
a sphere, with an inscription giving the proportion by
which the containing solid exceeds the contained.” What
is the proportion in question?

13.4. In 1635 Cavalieri solved this kind of problem with a dif-
ferent method, namely the principle that if two bodies
have the same cross-sectional areas at any height then
they have the same volume. Using this method to find
the volume of a sphere makes the above proportion es-
pecially vivid. Consider a sphere and its circumscribing
cylinder. Cut two cones out of the cylinder: both with
vertex at the midpoint of the cylinder, and one sharing
a base with the cylinder, the other being upside-down,
having the cylinder’s “lid” as its base.

(a) Prove that the cross-sectional areas of these figures
(at any given height) are equal.

(b) Explain how the proportion referred to by Plutarch
follows from this.

13.5. Fermat’s theory of maxima and minima, developed in
the 1630’s, is based on the idea of extrema being dou-
ble roots. Say for example that we want to maximise
f (x) = x − x2. Fermat’s method goes like this. Pick some
Y smaller than the maximum. Then Y = f (x) will have
two solutions (one for each branch of the parabola), call
them X and X +D . Thus f (X ) = Y = f (X +D).

(a) Find a simple equation relating X and D from this
equality.

(b) For the maximal Y the two roots coincide (at the
vertex of the parabola), i.e., the maximum corre-
sponds to the condition D = 0. Use this to solve for
X in your equation.

13.6. Fermat’s theory of tangents was a byproduct of this
method. Say for example that we want to find the tan-
gent to y = x2 at the point (2,4).

(a) Draw a picture of this.

The tangent line is below the curve everywhere except at
the point of tangency. In other words, among all points
(x, y) on the tangent, the point of tangency minimises
the quantity x2 − y . Using the theory of optimisation
above, we suppose, counterfactually, that there is an-
other x-value, say x = 2+D , for which the quantity x2− y
is the same as for x = 2.

(b) If the tangent line has y-intercept −Y , what is its
slope?

(c) Therefore, what is its y-value when x is 2+D?

(d) Equate the two different expressions for x2− y (one
for x = 2 and one for x = 2+D), and simplify.

(e) Since the minimum is actually unique, D = 0 after
all. Plug this into your equation and solve for Y .

13.7. In 1637 Descartes published a similar method for find-
ing normals (and thereby tangents). Suppose we seek the
normal to the parabola y = x2 at the point (1,1). This nor-
mal is determined by its intersection with the y-axis, call
it (0,Y ). Consider the circle centred at this point passing
through (1,1).

(a) Draw a picture.

(b) Write down the equation for the circle.

(c) Take its intersection with the parabola y = x2 by re-
placing x2 by y .

(d) Since there is only one y-value for which the circle
intersects the parabola, this equation must have a
double root, and thus be of the form (y − a)2 = 0,
i.e., y2 −2ay +a2 = 0. What is a and a2 in our case?
Express them in terms of Y .

(e) Set (a)2 = a2 and solve for Y .

(f) Verify your answer using calculus.

13.8. When Leibniz introduced the calculus in 1684 he used it
to find the tangents of curves defined as the loci of points
whose distance to a fixed set of points is constant. Such
curves are a kind of generalised ellipses, as indicated in
figure 16. Leibniz used this example as an illustration of
a problem that the calculus can handle easily but which
would be almost impossible to solve by the methods of
Descartes and Fermat. Explain why.

Figure 16: String constructions of circle, ellipse, and generali-
sations.

§ 14. Astronomy

As we have seen in the reader, classical cosmology is based
on the mathematical-metaphysical principle that the circle is
the perfect shape. The evident roundness of the sun and the
moon, and the circular motions of the heavenly bodies, was
seen as an expression of their divine perfection. Classical as-
tronomy always operated within these metaphysical parame-
ters. Though the technical task of astronomy was always to pre-
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dict the position of the heavenly bodies, the theories posited
for doing so had to agree with this basic cosmological frame-
work. Ptolemy’s Almagest (c. 150) was the definitive standard
work in astronomy from Greek times to the renaissance. While
Plato and Aristotle were merely philosophising conceptually,
Ptolemy does the actual technical work of providing numeri-
cally explicit models for the planetary motions capable of mak-
ing very accurate predictions. But nevertheless Ptolemy sub-
scribes to the exact same metaphysical commitment, as we see
in the reader.

The motions of the planets are quite complicated, however,
and can by no means be seen as simple circular motions.
Ptolemy therefore had to use variants on circular motion that
could nevertheless be construed as being in agreement with
the metaphysical principle of circular motion. Most notably
he used epicycles (i.e., circles upon circles):

and equants (i.e., circular motion whose speed is uniform not
as seen from the centre but as seen from some other point):

But is the use of equants not a betrayal of the principle of per-
fect circular motion? Copernicus thought so, and made his dis-
like of the equant known immediately at the very beginning of
the Commentariolus (c. 1510):

Ptolemy . . . envisioned certain equant circles, on
account of which the planet never moves with uni-
form velocity . . .. A theory of this kind seemed nei-
ther perfect enough nor sufficiently in accordance
with reason. Therefore I often pondered whether
perhaps a more reasonable model composed of
circles could be found from which every apparent
irregularity would follow while everything in itself
moved uniformly, just as the principle of perfect
motion requires.

Copernicus is of course more famous for putting the sun at
the center of the solar system. In Ptolemy’s system the earth
is the centre of the universe and the heavenly bodies all re-
volve around it. This agrees well with appearances, common-
sense physics, the conception of the cosmos outlined above,
and even the Bible. So it is no wonder that this was the standard
view for a thousand years and more. But Copernicus turned

the universe inside out. Our first instinct is perhaps to praise
him for his bold and forward-thinking insight, and indeed he
deserves praise. But his own motivations were for arriving at
his system were quite different than we might imagine. In par-
ticular, his philosophical aversion to the equant seems to have
been crucial to him. So one could make a strong case that
Copernicus was not at all a revolutionary but rather an arch-
conservative: he wanted nothing more than to go back to the
original vision of circular motion by Plato. Thus one of the
greatest scientific advances of the era was based on a reac-
tionary philosophical principle that was universally recognised
as complete nonsense just a century or so later.

Whatever the motivations for its original discovery, the sun-
centered model of the solar system has a number of advantages
over the earth-centered one.

14.1. Explain why the sun-centered model gives more natural
explanations of the retrograde motions of especially the
outer planets.

14.2. Explain why the sun-centered model explains why the
inner planets (Mercury and Venus) never deviate too far
from the sun while the other planets can be found in any
position relative to the sun.

14.3. Explain why the relative distances to the planets are not
determined in an earth-centered model of the solar sys-
tem, but are so in a sun-centred model.

Hint: Are the following configurations observationally
equivalent?

And the following two?
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As Copernicus puts it, the heliocentric system “binds together
so closely the order and the magnitudes of all the planets and of
their spheres or orbital circles and the heavens themselves that
nothing can be shifted around in any part of them without dis-
rupting the remaining parts and the universe as a whole.” For
this reason he can claim triumphantly that earlier astronomers
“have not been able to discover or to infer the chief point of all,
i.e., the form of the world and the certain commensurability of
its parts. But they are in exactly the same fix as someone taking
from different places hands, feet, head, and the other limbs—
shaped very beautifully but not with reference to one body and
without correspondence to one another—so that such parts
made up a monster rather than a man.”

The Copernican system conflicts with the ancient vision of the
cosmos and the polyhedral theory of the elements in a number
of ways.

14.4. Outline how.

But Kepler, as we saw in §2, was fascinated by the mathemat-
ical beauty of those theories and was not about to give them
up so easily. In his Mysterium Cosmographicum (1596), gave
a very imaginative interpretation of the Copernican universe
in terms of the regular polyhedra, using them to explain “the
nature of the universe, God’s plan for creating it, God’s source
for the numbers, the reason why there are six orbits, and the
spaces which fall between all the spheres.” See figure 17. The
spheres of the planets are nested in such a way that the regular
polyhedra fit precisely between them. Kepler’s theory fits the
facts remarkably well, and is a striking unification of the two
special numbers from §2.

Figure 17: Kepler’s theory of planetary distances.

14.5. Explain why the sun-centred model of Copernicus was
crucial in two ways for Kepler to be able to posit this the-
ory.

You might think that the “p-value” of Kepler’s theory does not
pass a significance test since there are so many possible per-
mutations of the polyhedra—shouldn’t one of them fit just by
chance? Kepler had some dubious arguments for his particular
ordering, a sample of which you will find in the readings. But
even if you are not impressed by these arguments, Kepler’s the-
ory is not as arbitrary as you might think, because many per-
mutations do not change the sizes. For example:

14.6. Show that the cube and the octahedron are interchange-
able (i.e., have the same ratio of circumradius to inra-
dius).

§ 15. Galileo

Galileo was a prominent advocate of Copernicus’s heliocentric
system; this even got him into hot water with the church au-
thorities, as we learn more about in the readings. Galileo pre-
sented his case in Dialogue Concerning the Two Chief World
Systems (1632). At the end of the work one reads:

In the conversations of these four days we have,
then, strong evidences in favor of the Copernican
system, among which three have been shown to be
very convincing—those taken from the stoppings
and retrograde motions of the planets, and their
approaches toward and recessions from the earth;
second, from the revolution of the sun upon itself,
and from what is to be observed in the sunspots;
and third, from the ebbing and flowing of the
ocean tides.

The first argument is that of problem 14.1. The third argument
is that the tides can only be due to the earth’s motion:

There is nothing we can do to replicate artificially
the motions of the tides, apart from moving the
vessel containing the water. Surely this is enough
to convince anyone that any other cause that is put
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forward to explain this effect is a vain fantasy that
has nothing whatever to do with the truth?

This argument agrees very well with the mechanical philoso-
phy and experimental spirit that we see more of in the read-
ings. But of course it is completely wrong: the tides are caused
by the gravitational attraction of the moon, and thus could just
as well occur on the stationary earth of Ptolemy.

The third argument comes from telescopic observations,
which Galileo was among the first to perform. One discovery
was that Venus shows phases like the moon, i.e., only the half
of it facing the sun is lit up.

15.1. How is this evidence for Copernicus’s system? How does
it fall short of a conclusive demonstration?

Thus Galileo’s third argument is based on another telescopic
observation, namely the sun has spots on it. As the sun rotates
on its axis (with a period of less than a month), sunspots trace
out latitude lines on its surface. In the course of a year, these
curves are seen as alternately happy mouths, straight diagonal,
sad mouths, straight diagonal, etc. This is what one would ex-
pect from a Copernican point of view if the sun’s axis is inclined
relative to ecliptic (i.e., the plane of the earth’s orbit).

15.2. Explain.

To explain this from a geostatic point of view is more compli-
cated since it requires the sun’s axis to change inclination in a
conical motion with a period of one year.

15.3. Explain.

Galileo rejects this motion of the axis as physically implausi-
ble. However, when doing so he conveniently forgets that the
earth has precisely such a motion (with the same orientation;
albeit a much slower one), which is the reason for the preces-
sion of the equinoxes, as Copernicus explained. Thus Galileo
cannot reject as unreasonable the geostatic account of sunspot
paths without simultaneously rejecting the precession of the
equinoxes. Galileo was surely aware of this but suppressed it;
he was an opportunist through and through.

In fact, Galileo published his sunspots argument knowing full
well not only that it refutes Copernicus as well as Ptolemy but
also that it was resolutely falsified by the data he himself had
collected and published when he was still unaware of what his
theory said he was supposed to see. Scheiner did not like the
idea that the sun had blemishes on its surface, so he hypothe-
sised that the sunspots were planets. Galileo disagreed and un-
dertook careful observations to establish that the sunspots ex-
hibited foreshortening effects and differences in velocity at the
center as compared to the perimeter just as one would expect if
the sunspots were on the surface (or atmosphere) of the spher-
ical sun. He could then triumphantly refute Scheiner with what
he called “observations and diagrams of the sunspots . . . drawn
without a hairsbreadth of error.”

Unfortunately for Galileo, he did not yet know that he was sup-
posed to observe the sunspot paths as inclined to the eclip-
tic. Instead, in his resulting Letters on Sunspots, he asserted

on the contrary that the paths of sunspots were in fact paral-
lel to the ecliptic. When Galileo finally realised that inclined
sunspot paths spoke in favour of heliocentrism, he immedi-
ately threw all his old observations “without a hairsbreadth of
error” out the window and rushed the pro-Copernican argu-
ment into print. This whole business goes to show that scien-
tific data can be a rather pliable thing, at least to an opportunist
like Galileo.

Galileo also worked on mechanics. For example, have you ever
considered why Newton’s law F = ma has acceleration in it,
and not, say, velocity? In fact this has to be so because to stand
still and to move with constant velocity is physically equiva-
lent. That is, no physical experiment can tell one state from the
other. This was known to Galileo, who explained it as follows in
his Dialogue:

Shut yourself up with some friend in the main
cabin below decks on some large ship, and have
with you there some flies, butterflies, and other
small flying animals. Have a large bowl of water
with some fish in it; hang up a bottle that empties
drop by drop into a wide vessel beneath it. With
the ship standing still, observe carefully how the
little animals fly with equal speed to all sides of
the cabin. The fish swim indifferently in all direc-
tions; the drops fall into the vessel beneath; and,
in throwing something to your friend, you need
throw it no more strongly in one direction than
another, the distances being equal; jumping with
your feet together, you pass equal spaces in every
direction. When you have observed all these things
carefully (though doubtless when the ship is stand-
ing still everything must happen in this way), have
the ship proceed with any speed you like, so long as
the motion is uniform and not fluctuating this way
and that. You will discover not the least change in
all the effects named, nor could you tell from any
of them whether the ship was moving or standing
still. In jumping, you will pass on the floor the
same spaces as before, nor will you make larger
jumps toward the stern than toward the prow even
though the ship is moving quite rapidly, despite
the fact that during the time that you are in the
air the floor under you will be going in a direction
opposite to your jump. In throwing something to
your companion, you will need no more force to
get it to him whether he is in the direction of the
bow or the stern, with yourself situated opposite.
The droplets will fall as before into the vessel be-
neath without dropping toward the stern, although
while the drops are in the air the ship runs many
spans. The fish in their water will swim toward the
front of their bowl with no more effort than toward
the back, and will go with equal ease to bait placed
anywhere around the edges of the bowl. Finally the
butterflies and flies will continue their flights in-
differently toward every side, nor will it ever hap-
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pen that they are concentrated toward the stern,
as if tired out from keeping up with the course of
the ship, from which they will have been separated
during long intervals by keeping themselves in the
air. And if smoke is made by burning some in-
cense, it will be seen going up in the form of a little
cloud, remaining still and moving no more toward
one side than the other.

This means that physical laws cannot speak directly about ve-
locity. An observer on the shore thinks the guy in the ship is
moving; but the guy in the ship could claim that he is in fact
standing still and that it is the guy on the shore that is mov-
ing. As we just saw, no physical experiment can settle their dis-
pute, so they must both be considered to be equally right so far
as physics is concerned. Nature does not distinguish between
them, so her laws must be equally true for both of them.

To illustrate this more formally, let the person on the shore be
the origin of a coordinate system, and let the ship be travel-
ing in the positive x-direction with constant velocity v . Now
imagine releasing a butterfly inside the ship, in the manner
described by Galileo. Suppose the butterfly moves in the x-
direction only, and let X (t ) be its position in the coordinate
system of an observer on the ship (i.e., taking a point inside
the ship as the origin).

15.4. (a) Find the general formula for the position of the but-
terfly in the coordinate system of the observer on
the shore.

(b) Express the position, velocity, and acceleration of
the butterfly in terms of both coordinate systems.

(c) What is the conclusion?

It makes sense then, as you were told in physics class,
that everything falls with the same gravitational acceleration,
g Å9.8m/s2, at least insofar as one ignores the resistance of the
air. This too is often considered a discovery of Galileo’s. In-
deed, in Aristotelean physics, heavier objects fall faster than
light ones:

A given weight moves a given distance in a given
time; a weight which is as great and more moves
the same distance in a less time, the times being in
inverse proportion to the weights. For instance, if
one weight is twice another, it will take half as long
over a given movement. (Aristotle, De Caelo, I.6.)

Galileo argued against this view as follows:

If then we take two bodies whose natural speeds
are different, it is clear that on uniting the two,
the more rapid one will be partly retarded by the
slower, and the slower will be somewhat hastened
by the swifter. . . . But if this is true, and if a large
stone moves with a speed of, say, eight while a
smaller moves with a speed of four, then when
they are united, the system will move with a speed
less than eight; but the two stones when tied to-
gether make a stone larger than that which before

moved with a speed of eight. Hence the heavier
body moves with less speed than the lighter; an ef-
fect which is contrary to your supposition. Thus
you see how, from your assumption that the heav-
ier body moves more rapidly than the lighter one,
I infer that the heavier body moves more slowly.
. . . [Since this is a contradiction] we infer therefore
that large and small bodies move with the same
speed provided they are of the same specific grav-
ity [i.e., density]. (Galileo, Dialogues Concerning
Two New Sciences, first day.)

15.5. Does Galileo’s argument prove that Aristotle’s theory is
inconsistent?

§ 16. Descartes

Descartes’s Géométrie of 1637 taught the world coordinate ge-
ometry and the identification of curves with equations. How-
ever, Descartes’s take on these topics is radically different
from the modern view in numerous respects. In particular,
Descartes did not argue that algebraic geometry was a replace-
ment for classical geometry, or a radically new approach to ge-
ometry. On the contrary, he argued at great length that it was in
fact subsumed by classical geometry, and he would never have
accepted it if it wasn’t. Such an attitude made perfect sense
considering the unique epistemological status of classical ge-
ometry outlined in the readings.

Descartes, accordingly, began by generalising the curve-
tracing procedures of Euclid and then went on to show that
the curves that could be generated in this way were precisely
the algebraic curves, thereby establishing a pleasing harmony
between classical construction-based geometry and the new
methods of analytic geometry. And with the lines, circles and
conic sections of classical geometry being of degree one and
two, Descartes’s reconceptualisation of geometry to include
algebraic equations of any degree was a natural way of sub-
suming and extending virtually all previous knowledge of ge-
ometry, and, at that, a way which had a definite air of seem-
ing finality. Descartes could therefore claim with considerable
credibility that only curves that could be expressed by polyno-
mial equations were susceptible to geometrical rigour. In this
way Descartes’s vision of geometry masterfully combined Eu-
clidean foundations with a bold new scope, and supplied its
converts with compelling arguments as to why true geometry
goes this far and no further.

Years before making his breakthroughs in analytical geome-
try, Descartes speculated about “new compasses, which I con-
sider to be no less certain and geometrical than the usual
compasses by which circles are traced.” The key criterion for
these “new compasses,” according to Descartes, was that they
should trace curves “from one single motion,” contrary to the
“imaginary” curves traced by “separate motions not subordi-
nate to one another,” such as the quadratrix and exponential
curves. The quadratrix is a curve that had been considered by
the Greeks; its definition uses two independently moving lines,
which makes it inadmissible to Descartes:
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Indeed, the ratio of the two velocities involve π, which is not
known exactly, so the construction is impossible to perform in
practice. The same goes for the spiral r = θ.

r

θ

16.1. Explain why these constructions require π to be known.

Descartes developed his single-motion criterion before he had
the idea of a correspondence between a curve and an equation.
This shows that he was very much working in the tradition of
classical geometry, and that the mathematical techniques he
developed were tailored to fit his philosophy of mathematics,
not the other way around.

An example of his curve-tracing procedure is shown in figure
18. To find the equation of the curve traced, we can take A as
the origin of a coordinate system with AB = y and BC = x. In-
troduce the notation AK = t , LK = c, AG = a, and m = K L/N L.
Thus t is variable while c, a, and m are constants. In terms of
these quantities we can express the equations of the lines C N K
and GC L, and then combine these so as to eliminate t , which
gives the equation for the traced curve in terms of x, y , and
constants.

Figure 18: Descartes’s method for tracing a hyperbola. The tri-
angle K N L moves vertically along the axis ABLK . Attached to
it at L is a ruler, which is also constrained by the peg fixed at G .
Therefore the ruler makes a mostly rotational motion as the tri-
angle moves upwards. The intersection C of the ruler and the
extension of K N defines the traced curve, in this case a hyper-
bola.

16.2. Show how to generate the standard hyperbola x y = 1 us-
ing Descartes’s method. That is, find a suitable choice
of constants that will yield the desired curve (perhaps
translated with respect to the origin, which is insignifi-
cant). Illustrate with a sketch.

16.3. Build a “new compass” for yourself and make your own
x y = 1 hyperbola. Include the coordinate axes in your
figure.

Hint: The construction tips in problem 8.6 are applicable
here as well.

16.4. What curve is obtained if in Descartes’s curve tracing
method the line K NC is replaced by a circle with center
L and radius K L = c?

L A

G

C

And so it continues: once a curve has been generated this way
it in turn can be taken in place of the starting curve K NC , and
so on. In this way one can generate algebraic curves of higher
and higher degree. Altogether, says Descartes, all algebraic
curves, and nothing but algebraic curves, can be obtained in
this way. This, therefore, is the domain of exact geometry ac-
cording to Descartes: Euclid was right to exclude some curves
(such as the spiral and the quadratrix) but wrong to limit him-
self to just lines and circles—geometrical rigour, according to
Descartes, extends as far as all algebraic curves but no further.

§ 17. Newton’s calculus

Like Descartes and Leibniz, Newton was rather ambivalent
about the increasing use of algebraic methods in mathematics.
As Pemberton, a contemporary of Newton, reports:

Newton used to censure himself for not following
the ancients more closely than he did; and spoke
with regret of his mistake, at the beginning of his
mathematical studies, in applying himself to the
works of Descartes, and other algebraical writers,
before he had considered the Elements of Euclid
with that attention so excellent a writer deserves.

Indeed, in his great work Philosophiae Naturalis Principia
Mathematica (1687), Newton shunned the calculus of formu-
las, even though he mastered it to perfection, and favoured in-
stead a more geometrical style. As he says:

To the mathematicians of the present century,
however, versed almost wholly in algebra as they
are, this synthetic style of writing is less pleasing,
whether because it may seem too prolix and too
akin to the method of the ancients, or because it is
less revealing of the manner of discovery. And cer-
tainly I could have written analytically what I had
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found out analytically with less effort than it took
me to compose it.

To get a flavour of this style we may consider the very first proof
in the Principia, namely Newton’s proof of Kepler’s law of equal
areas. The law says that planets sweep out equal areas in equal
times:

∆t
∆t

Newton’s proof uses nothing but very simple infinitesimal ge-
ometry:

S A

b B

C c

In an infinitely small period of time the planet has moved from
A to B . If we let an equal amount of time pass again then the
planet would continue to c if it was not for the gravity of the
sun, which intervenes and deflects the planet to C . Since the
time it takes for the planet to move from B to C is infinitely
small, the gravitational pull has no time to change direction
from its initial direction BS, thus causing cC to be parallel to
BS.

17.1. Conclude the proof of the theorem.

Let us consider a second example from the Principia. It is the
most important scientific work ever written after all. And one
of its key results is the law of gravitation. The moon is kept in
its orbit by the earth’s gravitational pull, or so your high school
textbook told you. How do you know that it is really so? How do
you know that the moon is not towed about by a bunch of an-
gels? This question doesn’t seem to arise in today’s authoritar-
ian classrooms, but Newton gave an excellent answer if anyone
is interested.

“That force by which the moon is held back in its orbit is that
very force which we usually call ‘gravity’,” says Newton (Book
III, Prop. IV). And his proof goes like this. Consider the hypo-
thetical scenario that “the moon be supposed to be deprived of
all motion and dropped, so as to descend towards the earth.” If
we knew how far the moon would fall in, say, one second, then
we could compare its fall to that of an ordinary object such as
an apple. Ignoring air resistance, the two should fall equally far
if dropped from the same height.

Of course we cannot actually drop the moon, but with the
power of infinitesimals we can deduce what would happen if
we did. Here is a picture of the moon’s orbit, with the earth in
the center:

D
S C A

EB

Suppose the moon moves from A to B along a circle with center
S in an infinitely small interval of time. If there were no gravity
the moon would have moved along the tangent to the circle to
some point E instead of to B (BE is parallel to ASD because the
time interval is infinitely small so gravity has no time to change
direction).

17.2. Assuming AB being straight, use similar triangles to
show that AC /AB = AB/AD , i.e., (diameter of the or-
bit)/(arc)=(arc)/(distance fallen).

Prove that ABC is similar to ABD .

17.3. Use this relation to calculate how far the moon falls in
one second.

17.4. Compute how far the moon would fall if dropped at the
surface of the earth, where gravity is 602 times stronger
since the moon is 60 earth radii away.

17.5. Is the result the same as for a falling apple?

The Principia introduced the law of gravitation and established
it as an undeniable fact. But this law is in some ways very dis-
turbing; even Newton himself thought so (§0). This is because
it seems to fly in the face of the mechanical philosophy that
had gone hand in hand with all recent scientific advances. Re-
cent science had prided itself on banishing all forms of “occult”
forces in favour of concrete explanations of natural phenom-
ena based on nothing but push-pull mechanics. But how to
explain gravity in such terms? Metaphysically, it seemed as oc-
cult a force as there ever was. Newton himself and many others
speculated at the time that gravity might be due to some kind
of imperceptible “rain” of fine particles that drags bodies with
it on their way to the center of the earth or the sun. But no
coherent theory along these lines was found. In fact, an ob-
vious aspect of the law of gravity seems to show that it is not
caused by any kind of pushing on the surfaces of things; rather
it somehow seems to “reach inside” objects effortlessly.

17.6. What well-known aspect of the law of gravity am I refer-
ring to?

17.7. Newton imagined that this reflected the omnipresence of
God, a well-known tenet of Christianity expressed in the
Bible, for instance in Jeremiah, chapter 23, verse .

§ 18. Leibniz’s calculus

Leibniz was every bit as committed to the classical geomet-
rical paradigm as Descartes was, as we see in the readings.
Consequently the early calculus is permeated by geometrical
constructions. As a simple illustration, consider for example
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how Johann Bernoulli expressed the solution to the differential
equation y ′ = y .

18.1. Explain how solving y ′ = y by separation of variables cor-
responds to figure 19. Areas in the same shade are equal.
The point generalises to any separable differential equa-
tion.

Figure 19: Geometrical interpretation of separation of vari-
ables.

So rather than looking for a “formula” for the solution,
Bernoulli read the equation literally as a construction recipe.
And in a sense it is not hard to understand why: what kind of
“solution” is ex anyway? It’s just some arbitrary symbols. The
geometrical interpretation, on the other hand, fits well with the
long tradition of constructions as the bedrock of mathematics
that goes back to Euclid. Leibniz too was very sensitive to this
tradition, as the following example shows.

In 1691 Leibniz published a construction of the catenary (the
shape of a hanging chain) corresponding to the modern for-
mula y = (ex + e−x )/2. His interpretation of this result differs
drastically from a modern view, especially in two crucial re-
spects:

• He never writes this formula, or indeed any formula, for
the catenary. That is not what he considers a solution
to a differential equation to be. Instead he “constructs”
it, i.e., shows how it can be built up step by step. In this
respect he is very much in line with Euclidean and Carte-
sian traditions, and indeed he justified his construction
in such terms as we shall see.

• He sees this relationship as saying that the catenary and
logarithms are essentially interchangeable. In modern
terms, the function ex is one of the most basic ingredi-
ents in the mathematician’s toolbox whereas the cate-
nary is a rather esoteric application. To Leibniz there is
no such hierarchy. To him the two functions are equals.
For this reason he proposes, in all seriousness, that the
catenary may be used to compute logarithms: “This may
be helpful since during a long journey one may lose one’s
table of logarithms; in case of an emergency the catenary
can then serve in its place.”

Leibniz’s recipe for finding logarithms is shown in figure 20.
Finding logarithms from a catenary may seem like an oddball
application of mathematics today, but to Leibniz it was a very

serious matter. Not because he thought this method so use-
ful in practice, but because it pertained to the very question
of what it means to solve a mathematical problem. Today we
are so used to thinking of a formula such as y = (ex + e−x )/2 as
“the answer” to the question of the shape of the catenary, but
this would have been considered a very naive view in the 17th
century. The 17th-century philosopher Hobbes once quipped
that the pages of the increasingly algebraical mathematics of
the day looked “as if a hen had been scraping there,” and what
indeed is an expression such as y = (ex + e−x )/2 but some
chicken-scratches on a piece of paper? It accomplishes noth-
ing unless ex is known already, i.e., if ex is more basic than the
catenary itself. But is it? The fact that it is a simple “formula”
of course proves nothing; we could just as well make up a sym-
bolic notation for the catenary and then express the exponen-
tial function in terms of it. And however one thinks of the graph
of ex it can hardly be easier to draw than hanging a chain from
two nails. So why not reverse the matter and let the catenary
be the basic function and ex the “application”? Modern tastes
may have it that “pure” mathematics is primary, and its appli-
cations to physics secondary, but what is the justification for
this dogma? Certainly none that would be very convincing to a
17th-century mind.

Thus it was with good reason that 17th-century mathemati-
cians summarily rejected the chicken-scratch mathematics
that we take for granted today. They published not formulas
but the concrete, constructional meaning that underlies them.
If you want mathematics to be about something then this is the
only way that makes any sense. It is prima facie absurd to de-
fine mathematics as a game of formulas and at the same time
naively assume a direct correspondence between its abstract
gibberish and the real world, such as y = (ex + e−x )/2 with the
catenary. It makes a lot more sense to turn the tables: to define
the abstract in terms of the concrete, the construct in terms
of the construction, the exponential function in terms of the
catenary. It was against this philosophical backdrop that Leib-
niz published his recipe for determining logarithms using the
catenary. We see, therefore, that it was by no means a one-off
quirk, but rather a natural part of a concerted effort to safe-
guard meaning in mathematics.

18.2. Find the value of for example log(2) by Leibniz’s method
using for example a neckless, a piece of cardboard, and
some sewing needles.

18.3. The veracity of Leibniz’s construction may be confirmed
as follows. Figure 21 shows the forces acting on a seg-
ment of a catenary: the tension forces at the endpoints,
which act tangentially, and the gravitational force, which
is proportional to the arc s measured from the lowest
point of the catenary.
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Figure 20: Leibniz’s recipe for determining logarithms from the catenary. (a) Suspend a chain from two nails. (b) Draw the hor-
izontal through the endpoints, and the vertical axis through the lowest point. (c) Pin a third nail through the lowest point and
extend one half of the catenary horizontally. (d) Connect the endpoint to the midpoint of the horizontal, and bisect the line seg-
ment. (e) Drop the perpendicular through this point, and draw the horizontal axis through the point where the perpendicular
intersects the vertical axis, and take the distance from the origin of the coordinate system to the lowest point of the catenary to
be the unit length. The catenary now has the equation y = (ex + e−x )/2 in the coordinate system so defined. (f) To find log(Y ),
find (Y +1/Y )/2 on the y-axis and measure the corresponding x-value.
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Figure 21: The forces acting on a segment of a catenary.

(a) Deduce by an equilibrium of forces argument that
the differential equation for the catenary is

dy

dx
= s,

for some appropriate choice of units.

(b) Use dx2 +dy2 = ds2 to eliminate dx from this equa-
tion; then separate the variables and integrate. Take
the constant of integration to be zero (this corre-
sponds to a convenient choice of coordinate sys-
tem).

(c) Interpret the result in terms of figure 20(e).

(d) Explain why Leibniz’s construction works.

From here it is a simple matter of algebra to check the
final step of figure 20, insofar as the equation y = (ex +
e−x )/2 for the catenary is known. We shall now derive
this equation.

(e) In the equation you obtained in problem 18.3b,
solve for s. Then substitute this expression for s into
the original differential equation for the catenary.

(f) Check that y = (ex + e−x )/2 is a solution of the re-
sulting differential equation.

(g) Verify the final step of figure 20.

Perhaps we are too complacent today in accepting expressions
like ex or

∫
dx/x as primitive notions just because they have

a simple symbolic representation. It was different in Leibniz’s
day. Before long these kinds of expressions were to become ac-
cepted as legal tender but Leibniz and his contemporaries still
felt obligated to fork up their actual “cash value.”

18.4. Another curve related to logarithms is the tractrix, i.e.,
the curve traced by a weight dragged along a horizon-
tal surface by a string whose other end moves along a
straight line:

In the physique de salon of 17th -century Paris, a pocket
watch on a chain was a popular way for gentlemen to
trace this curve, as shown in figure 23.

(a) Let’s say that the length of the string is 1. Consider it
as the hypothenuse of a triangle with its other sides
parallel to the axes. Draw a figure of this triangle
and write in the lengths of its sides (1 for the hy-
pothenuse, y for the height, and the last side by the
Pythagorean Theorem).

(b) Find a differential equation for the tractrix by
equating two different expressions for its slope: first
the usual dy/dx and then the slope expressed in
terms of the triangle you just drew.

(c) Have a computer solve the differential equation for
x as a function of y (using wolframalpha.com or
Mathematica or similar; it is possible to solve this
differential equation by hand but the calculations
will be intricate). Choose the constant of integra-
tion so that the asymptote (along which the free
end of the string is pulled) is the x-axis and the
point (0,1) corresponds to the vertical position.

The solution formula shows that the tractrix is related to
logarithms. It does not reveal an easy way of finding the
logarithm of some given number, but Huygens managed
to turn it into such a recipe. Or rather what he did is
equivalent to this. What he actually says is a bit differ-
ent. He considers first this triangle, where the length of
the leg a is chosen so that the hypothenuse equals this
leg plus Y :

a

a+Y 1

(d) Find a in terms of Y .

Next Huygens cuts off a portion of length 1 of the hy-
pothenuse:
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Figure 22: Leibniz’s figure for his catenary construction.

b

1
y

(e) Find b in terms of y , and y in terms of Y .

(f) Rewrite the equation from 18.4c to obtain an ex-
pression for log(1/Y ) in terms of measurable quan-
tities (a,b, x, y).

Huygens explored the practical aspect of this construc-
tion quite thoroughly, as figure 24 shows.

§ 19. Foundations of the calculus

The early calculus was rather freewheeling in its use of in-
finitesimals. The foundations for such methods eventually de-
veloped into a hot-button issue, which we shall follow in some
detail in the readings. To see what all the fuss is about, we shall
now have a look at the infinitesimal way of doing calculus that
was the norm in the 17th century.

Infinitesimally speaking, to find the derivative of y(x) we
should:

• let x increase by an infinitesimal amount, which we shall
denote dx (“d” for “difference”);

• calculate the corresponding change in y , which we shall
denote dy;

• divide the two to obtain the rate of change dy
dx .

In the case of y = x2 this goes as follows. Suppose x increases
by dx. What is the corresponding dy? It is dy = (x +dx)2 − x2 =
2x dx+ (dx)2 so dy

dx = 2x dx+(dx)2

dx = 2x +dx. Since dx is so small

we can throw it away. Thus the derivative is dy
dx = 2x. Note that

the calculations correspond to this picture:

dx

dxx

x

19.1. Find the derivative of x3 and draw the corresponding
picture. Note that the derivative comes from three ac-
tual squares, a point lost on most students who learn to
parrot “three x squared.”

19.2. Prove the product rule ( f g )′ = f ′g + g ′ f in a similar way
and draw the corresponding picture.

As Leibniz puts it: “It is useful to consider quantities in-
finitely small such that when their ratio is sought, they
may not be considered zero but which are rejected as of-
ten as they occur with quantities incomparably greater.
Thus if we have x +dx, dx is rejected. But it is different if
we seek the difference between x+dx and x. Similarly we
cannot have xdx and dxdx standing together. Hence, if
we are to differentiate x y we write (x +dx)(y +dy)−x y =
xdy + ydx+dxdy. But here dxdy is to be rejected as in-
comparably less than xdy+ ydx.”

The integral
∫ b

a y dx means the sum (hence the
∫

, which is a
kind of “s”) of infinitesimal rectangles with height y and base
dx:
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Figure 23: Tracing the tractrix by means of a pocket watch. (From Giovanni Poleni, Epistolarum mathematicarum fasciculus,
1729.)

dx

y

a b

19.3. Why don’t the little “gaps” between the rectangles and
the curve discredit the method?

19.4. If the area under the curve is the area of the rectangles, is
the length of the curve the length of the top sides of the
rectangles?

The fundamental theorem of calculus says that derivatives and
integrals are each other’s inverses in the following ways:

d

dt

∫ t

a
y(x)dx = y(t ) (FTC1)

∫ b

a
y ′(x)dx = y(b)− y(a) (FTC2)

To prove FTC1 we proceed as with any derivative. In this case
the variable is t and the function is

∫ t
a y(x)dx.

∫ t
a y(x)dx = area under y(x) from a to t =

a t

so if t increases by dt then
∫ t

a y(x)dx increases by

area under y(x) from t to t +dt =

  dtt

= y(t )dt,

so
d

∫ t
a y(x)dx

dt
= y(t )dt

dt
= y(t ),

which proves FTC1.

FTC2 is even easier to prove:∫ b

a
y ′ dx =

∫ b

a

dy

dx
dx =

∫ b

a
dy

= sum of little changes in y from a to b

= net change in y from a to b

= y(b)− y(a)

Another way of saying this is that in order to integrate some
function f (x) one has only to find an antiderivative F (x), i.e., a
function such that F ′ = f , because then∫ b

a
f (x)d x = F (b)−F (a).

To Leibniz this hardly rose to the status of a theorem, let alone a
“fundamental” one. He certainly never published a proof of it;
in fact he barely even stated it. He was satisfied with the casual
statement that “as powers and roots in ordinary arithmetic, so
for us sums and differences, or

∫
and d , are reciprocal.” As far

as Leibniz is concerned, the comparison is an apt one not only
procedurally but also foundationally: in neither case can there
be a question of proof of the reciprocal relationship; rather it is
built into the very meaning of the notions involved.
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Figure 24: Detail of a 1692 manuscript by Christiaan Huygens on the tractrix. The sentence in the top left corner reads: “Une
charette, ou un batteau servira a quarrer l’hyperbole” (“a little cart or boat will serve to square the hyperbola”). “Squaring a hy-
perbola” means finding the area under a hyperbola such as y = 1/x, so it is equivalent to computing logarithms, as Huygens was
well aware. The bottom line reads: “sirop au lieu d’eau” (“syrup instead of water”). Syrup offers the necessary resistance and a
boat leaves a clear trace in it. Using a liquid instead of a solid surface such as a table top ensures that the surface is everywhere
horizontal.

19.5. (a) Explain why investigating the derivatives of sine
and cosine leads to the figure below, and why the
things marked as equal really are equal. Explain
also why it is important that the angle is measured
in radians.

cos θ
θ

dθ

dθ

1
1

sin
 θ

-d cos θ

d s
in

 θ

(b) Find the derivatives of sine and cosine using similar
triangles in this figure.

The argument in the above problem is very Leibnizian in
spirit. However, explicit use and differentiation of trigono-
metric functions did not occur in print until a 1739 paper by
Euler. These results were in effect perfectly well understood
by Newton and Leibniz and others some 70 years before Eu-
ler’s paper. But they did not see the need to introduce ex-

pressions like sin(x) and cos(x) into the standard arsenal of
functions and study their derivatives etc. in a systematic man-
ner. They could do pretty much everything we can do with
sines and cosines, but instead of canonised notation and stan-
dard derivatives they simply expressed themselves geometri-
cally, in terms of such-and-such an ordinate of a circle and
so on. This served all their purposes perfectly well, so there
was simply no need to standardise these functions. Geometri-
cal language conveys the meaning of the results more directly;
writing “sin(x)” etc. would have been little more than preten-
tious obfuscation.

Sines and cosines solve differential equations such as the har-
monic oscillator equation s̈ − s = 0 which is so fundamental in
physical theory. But this situation is simple enough that it can
be described perfectly adequately in purely geometrical terms,
so there was no need to write the solution as an explicit “for-
mula.” It was different for Euler. In his 1739 paper he consid-
ered a periodically forced harmonic oscillator, which we would
express by the equation s̈ − s = sin(t ). At this point geometrical
language is no longer suited for expressing the complicated so-
lutions that arise. Euler says precisely this in a letter to Johann
Bernoulli: “there appear . . . motions so diverse and astonishing
that one is unable altogether to foresee until the calculation
is finished.” Only in this context did it become necessary to
introduce sin(x) and cos(x) formally as functions with explicit
differentiation rules and so on.
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The shift from the geometrical to the analytical way of treat-
ing these kinds of situations was, then, anything but a revolu-
tion. The old, geometrical point of view held its own for a long
time and was abandoned on pragmatic rather than principled
grounds. It was not abandoned because it was conceptually
limiting, or incompatible in principle with new directions of
research, or because the new paradigm enabled some radical
change of course. It was abandoned, instead, for having grown
a bit too cumbersome, much like the geometrical paradigm of
the Greeks eventually grew too cumbersome in practice and
had to be replaced by analytic geometry.

§ 20. Power series

In modern textbooks, the theory of power series begins with a
derivation of the general Taylor series, and then the series for
the various standard functions are derived as special cases of
this general theorem. History brings another perspective. Tay-
lor did not publish the general Taylor series until 1715, almost
half a century after Newton knew how to find the series of vir-
tually any function. Newton and Leibniz and their followers
simply had no use for the general Taylor series; they had more
concrete methods which were just as powerful. In this section
we shall see some of them. Furthermore we shall see Taylor’s
own derivation of his series, which is certainly very different
from anything found in modern textbooks.

20.1. The binomial series

(1+x)q = 1+qx + q(q −1)

2!
x2 + q(q −1)(q −2)

3!
x3 +·· ·

was one of Newton’s earliest discoveries. But to Newton
the binomial series and its little brother the geometric se-
ries

1

1−x
= 1+x +x2 +x3 +·· ·

are not theorems to be proved but rather nothing but
shorthand summaries of algebraic operations. Here are
Newton’s own words:

Fractions are reduced to infinite series by di-
vision; and radical quantities by extraction of
the roots, by carrying out those operations in
the symbols just as they are commonly carried
out in decimal numbers. These are the foun-
dations of these reductions: but extractions of
roots are shortened by this theorem [the bino-
mial theorem].

Indeed, Mercator famously found a power series for the
logarithm by precisely such a route, namely as follows.
First note that

log(1+x) =
∫ x+1

1

1

t
dt =

∫ x

0

1

1+u
du.

(a) Find a series for 1
1−x using long division, i.e., the

kind of algorithm indicated here for 2675/25=107:

1 0 7
2 5 2 6 7 5

2 5
1 7 5
1 7 5

0

Assume that 0 < x < 1.

(b) Plug in x = −u and integrate term by term to find
the series for log(1+x) in this way.

20.2. Let us use this result to illustrate another of Newton’s for-
gotten power series techniques, namely his method of
series inversion. Given a power series for y as a function
of x,

y = ax +bx2 + cx3 + . . . ,

we compute the power series for x as a function of y , i.e.,
the inverse function, as follows.

• First we find the linear term. Set x = Ay . Substitute
this into the series for y and throw away all non-
linear terms. This leaves y = a(Ay). Solve for A.

• Next we find the quadratic term. Set x = Ay +B y2

(A now being known). Substitute this into the se-
ries for y and throw away all non-quadratic terms.
Solve for B .

• And so on.

(a) Find the series for ex −1 by inverting the series for
log(1+x).

The series for sin, cos, and tan can all be found in the
same way since their inverse functions are expressible as
integrals of functions that are easily expanded as a bino-
mial or geometric series.

20.3. Here is a way of convincing you that any function can be
expressed as a power series

f (x) = A+B x +C x2 +Dx3 +·· ·

(a) Argue visually that by choosing the coefficients you
can make a parabola of the form y = ax2 +bx + c =
A(x−B)2+C go through essentially any three points
but not any four.

This is because the parabola has three “degrees of free-
dom,” i.e., you have three choices to make when picking
the coefficients. Thus you can make it do three things.

(b) Adapt this argument for functions of the form y = c
and y = bx + c.

(c) Conclude that it makes sense that any function can
be represented by an “infinite polynomial.”

20.4. Indeed, Newton constructed such a polynomial, namely
a polynomial p(x) which takes the same values as a given
function y(x) at the x-values 0,b,2b,3b, . . .. Here is the
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construction. First, our polynomial p(x) is supposed to
have the same value as the given function y(x) when
x = 0. Therefore we should start by setting p(x) = y(0).
Next, we want p(x) to take the same value as y(x) when
x = b. This is easily done by setting

p(x) = y(0)+ x

b

(
y(b)− y(0)

)
.

This polynomial obviously agrees with y(x) when x is 0
or b. Now we need to add a quadratic term to make it
agree when x is 2b as well. We want the new term to con-
tain the factor (x)(x−b) because then it will vanish when
x is 0 or b, so our previous work will be preserved. If we
set x = 2b in the piece of p(x) that we have so far we get

p(2b) = y(0)+2y(b)−2y(0) = 2y(b)− y(0).

So we want the quadratic term to have the value y(2b)−
2y(b)+ y(0) at x = 2b.

(a) Use this reasoning to write down a second-degree
polynomial p(x) that agrees with y(x) when x is
0, b or 2b. (Keep the factor (x)(x − b) as it is, i.e.,
do not reduce the expression to the form p(x) =
A+B x +C x2.)

In the same manner we could add a cubic term to make
p(x) agree with y(x) at x = 3b, and so on.

The formula becomes more transparent if we introduce
the notation∆y(x) for the “forward difference” y(x+b)−
y(x), and ∆2 y(x) for the forward difference of forward
differences ∆y(x +b)−∆y(x), etc., so that

∆y(0) = y(b)− y(0)

∆2 y(0) =∆y(b)−∆y(0) = y(2b)−2y(b)+ y(0)

∆3 y(0) =∆2 y(b)−∆2 y(0) = y(3b)−3y(2b)+3y(b)− y(0)

...

(b) Rewrite your formula for p(x) using this notation,
and then extend it to the third power and beyond
“at pleasure by observing the analogy of the series,”
as Newton puts it.

(c) Show that Taylor’s series

y(x) = y(0)+ y ′(0)x + y ′′(x)

2!
x2 + y ′′′(x)

3!
x3 +·· ·

is the limiting case of Newton’s forward-difference
formula as b goes to 0.

lim

This is indeed how Taylor himself proved his theorem
in 1715. The nowadays more common method of find-
ing the series by repeated differentiation was used by
Maclaurin in 1742.

20.5. On the left here is the geometrical definition of the tan-
gent function (hence its name):

θ

ta
n θ x

y
 =

 arctan
 x

dx

dy

In this problem we shall investigate the inverse of the
tangent function, i.e., the arctangent. For the inverse of
the tangent, tanθ is the input and θ is the output; to em-
phasise this we call them x and y respectively, as shown
on the right. Note that since we are using radian angle
measure the angle is the same thing as the correspond-
ing arc (of course the circle is a unit circle).

Let us find the derivative of the arctangent. In other
words we are looking for dy/dx. In the figure I made x
increase by an infinitesimal amount dx and marked the
corresponding change in y . We need to find how the two
are related. To do this I drew a second circle, concentric
with the first but larger, which cuts off an infinitesimal
triangle with dx as its hypothenuse.

(a) Show that this infinitesimal triangle is similar to the
large one that has x as one of its sides.

(b) By what factor is the second circle larger than the
first? (Hint: Find the hypothenuse of the triangle
with x in it. Remember that the first circle was a
unit circle.)

(c) Use this to express the short leg of the infinitesimal
triangle as a multiple of dy.

(d) Find dy/dx by similar triangles. (Check that you ob-
tain the known derivative of the arctangent.)

(e) By the fundamental theorem of calculus, the arct-
angent is the integral of its derivative. Use this to
find a power series for the arctangent. (To make
sure that you take the constant of integration into
account, check that your constant term is correct
using the geometrical definition of the arctangent.)

(f) Find the value of arctan(1) in two ways: by the geo-
metrical definition, and from the power series.

(g) Equate these two expressions for arctan(1) to find
an infinite series representation for π.

When Leibniz found this series he concluded that “God
loves the odd integers,” as you can see in the figure below
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(taken from his 1682 paper).

(h) What does Leibniz’s series have to do with a square
of area 1, which is what Leibniz has drawn on the
left?

Leibniz’s series is beautiful but it is not really very effi-
cient for computingπ. Already in 1424 al-Kashi had com-
puted π with 16-decimal accuracy using different meth-
ods.

(i) Estimate how many terms of Leibniz’s series must
be added together to achieve the accuracy al-Kashi
had obtained already in 1424 (see §10).

§ 21. Complex numbers

Figure 25: A page from Bombelli’s Algebra (1572).

With complex numbers we can solve any quadratic equation,
or so the textbooks tell us. But what kind of “solutions” are
these weird things with i ’s in them anyway? Indeed, the first
person to publish on complex numbers, Cardano in his 1545
treatise Ars magna, called them “as subtle as they are useless.”
This was indeed in the context of a quadratic equation. Since
some students may share Cardano’s lack of enthusiasm about
complex numbers it may be interesting to see what compelled

mathematicians to recognise the value of complex numbers
despite this natural reluctance.

Bombelli was more positive towards complex numbers in 1572.
But what convinced him was not the quadratic equations
found in textbooks today but rather cubic ones, i.e., equations
of degree 3. For cubic equations there is a formula analo-
gous to the common quadratic formula, namely the solution
of y3 = py +q is

y = 3

√√√√ q

2
+

√( q

2

)2
−

( p

3

)3
+ 3

√√√√ q

2
−

√( q

2

)2
−

( p

3

)3
.

21.1. (a) Apply the formula to x3 = 15x + 4. Before sim-
plifying, locate (the equivalent of) the expression
you obtain in Bombelli’s own notation in figure
25. Hint: Bombelli denotes certain algebraic op-
erations by the initial letters of the corresponding
words.

(b) The two cube roots that arise are in fact equal to 2+i
and 2− i . Check this.

(c) So what solution does the formula give? Is it cor-
rect?

The conclusion is that even if you think answers with i ’s in
them are hocus-pocus you still have to admit that complex
numbers are useful for answering questions about ordinary
real numbers as well.

More generally, complex numbers broke down the resistance
towards them by being unreasonably effective for solving real
problems. In case after case, doing algebra with complex num-
bers as if they were real simply works, and gives incredibly sim-
ple solutions to otherwise intractable problems. Here is an ex-
ample.

21.2. Fermat claimed without proof that y3 = x2 + 2 has only
one solution in positive integers.

(a) Find it.

To prove that there are no other solutions, Euler (1770)
factored x2 + 2 into the complex factors (x +p−2)(x −p−2). Next he simply assumed—without worrying too
much about it—that numbers of the form n +p−2m are
analogous to ordinary integers. In particular, since the
left hand side is a cube, so must (x +p−2)(x −p−2) be.
And since no common factor of of these terms leaps to
the eye it seems reasonable to assume that these fac-
tors are relatively prime, which means that both of them
must be cubes in turn. Thus for example x +p−2 =
(a +p−2b)3.

(b) Expand the cube and determine the possible inte-
ger values of a and b.

(c) Conclude Euler’s proof of Fermat’s claim.

(d) Similarly, show that y2 = x5 +5 has a positive solu-
tion but that Euler’s method fails to find it.
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Another “blind faith” use of complex numbers was the follow-
ing.

21.3. (a) Integrate arctan(x) = ∫ x
0

dx
1+x2 using (complex) par-

tial fractions to obtain i
2 log x+i

x−i .

Johann Bernoulli did this in 1702. Basically he had no
idea what a complex function was or what the logarithm
of a complex number is even supposed to mean. He
simply trusted the algebra and assumed that everything
works the same way as for real numbers.

No one would have been very exited if this was noth-
ing but algebraic gymnastics leading to formulas that
no one knew what they meant. But Bernoulli soon fig-
ured out how to put his imaginary formula to “real” use,
namely for finding multiple-angle formulas for tanθ. Let
y = tannθ and x = tanθ. Then arctan y = nθ = n arctan x.

(b) Use this to find an algebraic relationship between y
and x.

Bernoulli admits that this formula contains “quanti-
tates imaginarias . . . quae per se sunt impossibilia”—
imaginary quantities which are by themselves impossi-
ble. But this, he says, is not a problem since they “in casu
quolibet particulari evanescunt”—vanish in any particu-
lar case.

(c) Let n = 3 and find a formula for tan3θ in terms of
tanθ involving no imaginary quantities.

Bernoulli is quite proud to have carried out the deriva-
tion “sine serierum auxilio”—without the help of series.
One benefit of this approach, he notes, is that it shows
that the relationship is “semper algebraicum”—always
algebraic—which is not clear from a series approach. Ap-
parently, he considered working with “impossible quan-
tities” a small price to pay for this added insight and sim-
plicity.

Laplace (1810) also used complex substitutions to evaluate real
integrals and called it “un moyen fécond de découvertes”—a
fruitful method of discovery. But by way of justifying these
methods he offered little but a vague appeal to “la général-
ité d’analyse”—the generality of analysis. Although his re-
sults were all correct, Poisson still found it worthwhile to red-
erive them by other methods, since, as he said, Laplace’s rea-
soning was “une sort d’induction fondée sur le passage des
quantités réelles aux imaginaires”—a sort of induction based
on the passage from real to imaginary quantities. In a reply,
Laplace agreed that the use of complex variables constituted
“une analogie singulière”—a singular analogy—which “laissent
toujours à désirer des démonstrations directes”—still left a
desire for direct demonstrations—and he proceeded to offer
some such demonstrations himself. As a result of this debate,
Laplace assigned his young and ambitious protégé, Cauchy,
the task of investigating the foundations of complex meth-
ods in integration. The day after his 25th birthday, Cauchy
presented his “Mémoire sur les intégrales définies,” aiming to
“établir le passage du réel à l’imaginaire sur une analyse directe

et rigoureuse”—base the passage from the real to the imaginary
on a direct and rigorous analysis.

Cauchy went on to create the field of complex analysis, which
blossomed into a key area of mathematics in the 19th century.
In retrospect it is hard to imagine that such a wonderful field of
mathematics was initially developed for such an esoteric pur-
pose as to address some nagging little technical matters con-
cerning a particular technique for dealing with certain obscure
integrals which could already be dealt with by other means. But
in fact it is not unusual for mathematical theories to enter the
world in this backward manner, in response to some minuscule
technical problem.

§ 22. Analysis in place of geometry

Blind faith in the manipulation of formulas was a successful
research strategy in the 18th century. We already saw this with
respect to complex numbers, but the point generalises. In the
17th -century analytical methods were primarily conceived of
as a way of shortening and automatising already existing geo-
metrical reasoning. An analytical proof was seen as different in
form but not in principle from a geometrical one; in principle
the two were intertranslatable. Descartes’s attitude is typical:

This does not make [my solution of the Pappus
problem] at all different from those of the ancients,
except for the fact that in this way I can often fit in
one line that of which they filled several pages.

But quite soon analytical methods were found to take on a life
of their own. Analytical methods began generating reasonings
that had no geometrical counterpart. And, somewhat miracu-
lously, these reasonings proved to be very reliable. Analytical
methods had originally relied on their intertranslatability with
geometry as the source of their credibility, and there seemed to
be no reason to believe that they would not always need this
crutch. But it soon became undeniable that they could stand
on their own legs and even cover vast areas with ease that ge-
ometry could hardly wade through with the greatest effort.

As an illustration of the analytical magic so characteristic of
the 18th century, consider the following early triumph of Euler
(1735), which set the tone for a life’s work based on bold faith
in analytical methods.

22.1. (a) By considering the roots of sin(x)/x, argue that its
power series

sin(x)/x = 1− x2

3!
+ x4

5!
− x6

7!
+·· ·

can be factored as(
1− x2

π2

)(
1− x2

4π2

)(
1− x2

9π2

)
· · ·

by analogy with the way one factors ordinary poly-
nomials, such as x2 −x −2 = (x +1)(x −2).

(b) What is the coefficient of x2 when the product is ex-
panded?
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(c) Equate this with the coefficient of x2 in the ordinary
power series and use the result to find a formula for
the sum of the reciprocals of the squares,

∑
1/n2.

These kinds of examples cannot be seen as codified and
streamlined geometry; they are simply inherently analytical in
their very essence. The striking triumphs of these methods,
therefore, force upon us the conclusion that there is something
more to mathematics than the geometrical paradigm can en-
compass. Two possible attitudes toward this new state of affairs
suggest themselves. Either we fall into an identity crisis since
mathematical meaning and rigour had always been firmly an-
chored in the Euclidean tradition, and now these new meth-
ods are proving of undeniable effectiveness despite their du-
bious meaning and ontological status by any traditional stan-
dard. This reaction would certainly make sense for a philoso-
pher concerned with the epistemology of mathematics. Alter-
natively, one can take a more pragmatic attitude and say that
the Euclidean paradigm was justified through its triumphs in
the first place, and now analytical methods have won that same
warrant, so we simply admit them as equals without worrying
any more about it. In other words, our attempts to mimic the
Euclidean paradigm in modern times was not due to any deep-
seated philosophical conviction, but was just an opportunistic
attempt at mining more truths from a fruitful vein; whence it
stands to reason that, at the moment it proved depleted, we
did not hesitate to abandon it unceremoniously. The prag-
matic attitude could not have been stomached by Descartes
or Leibniz, but the new generation of mathematicians counted
no philosophers among them and no qualms about taking the
pragmatic route.

Lagrange was the most brazen propagandist for a wholesale
break with geometry and unquestioning acceptance of analyt-
ical formulae as the new de facto subject matter of mathemat-
ics. In his Mécanique Analytique (1788), he put it succinctly:

No figures will be found in this work. The meth-
ods I present require neither constructions nor ge-
ometrical or mechanical arguments, but solely al-
gebraic operations subject to a regular and uni-
form procedure.

This is the direct antithesis of the view of Leibniz, you will re-
call. Lagrange lamented that “those who rightly admire the ev-
idence and rigour of ancient demonstrations regret that these
advantages are not found in the principles of these new meth-
ods [of infinitesimals],” and this has been the mainstream view
ever since. But advocates of this view often fail to realise that it
is based on a radical reconception of what “the evidence and
rigour of ancient demonstrations” really consist in. Leibniz
et al. were passionately dedicated to preserving “the evidence
and rigour of ancient demonstrations” and stubbornly refused
to budge an inch on the matter. But to them this evidence and
rigour consisted first and foremost in the constructive element
of the method. This is what they fought tooth and nail to pre-
serve, and this is what Lagrange fervently purged from math-
ematics like so much superstition and dead weight. Indeed,
if Leibniz had lived for a hundred years more one could eas-

ily imagine him criticising Lagrange’s approach to the calculus
in the exact same words that we saw Lagrange direct against
Leibniz above. To Leibniz, it is Lagrange who has sold the soul
of geometry by giving up constructions. What is at stake here
is not who is rigorous, but what rigour means.

On the very same page as the above quotation Lagrange goes
on to give his own supposedly more rigorous account of the
application of calculus to geometry, which starts: “To consider
the question in a general manner, let y = f (x) be the equation
of any given curve . . .” In other words, the identity of curves
with analytic expressions is taken for granted at the outset. This
entire way of framing the question is profoundly incompatible
with the 17th -century interpretation of geometrical evidence
and rigour. Gone is the notion that geometry constructs its ob-
jects. Instead of points and lines drawn in the sand, analytic
expressions—i.e., symbolic scribbles on a piece of paper—are
the new primitive objects of mathematics.

In his Théorie des fonctions analytiques (1797), Lagrange gives
a complete treatment of the calculus from this point of view.
Thus he states upfront:

It will be seen in this work that the analysis that is
commonly called transcendental or infinitesimal is
at bottom nothing but the analysis of primitive and
derived functions, and that the differential and in-
tegral calculus is nothing, properly speaking, but
the calculus of these same functions.

In other words, the ontology of mathematics simply is ana-
lytic expressions and nothing more. The entire framework of
mathematical meaning and rigour stemming from construc-
tions has simply been ripped away like a band-aid. The math-
ematical appeal of such a move is not hard to appreciate, but
it comes at a cost. The framework of constructions had given
mathematical concepts a clear meaning, existential status, and
bond to reality. Analytical formulae have none of these things.
They are scribbles on a piece of paper. Mathematics is osten-
sibly an empty game of symbols. One can see from its fruits
that it is not empty after all, but with Lagrange mathematics
has given up its attempts at explaining why.

Lagrange, thus, was determined to sever the geometrical leg
of mathematics completely and mercilessly, and installing
the analytical aspect—once a mere deputy in the service of
geometry—in its place as the absolute ruling force of math-
ematics. In retrospect it is easy to see that this was a coup
d’état a hundred years in the making. The classical geometrical
paradigm could only live off past glory for so long; though once
thought destined for great conquests, its attempts to stay rele-
vant at the battlefronts of current research were becoming in-
creasingly strained. Meanwhile, its analytical deputy was grow-
ing up fast, proving itself remarkably powerful in ways that no
one could have anticipated. Soon enough it had accumulated a
track record rivalling that of the geometrical paradigm in days
of old. The conclusion was plain for all to see: the geometrical
paradigm was not the one and only divine force in the empire
of knowledge after all, but merely a passing dynasty whose cy-
cle of power had come and gone.
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§ 23. Non-Euclidean geometry

In the early 19th century a dramatic discovery was made that
profoundly changed our conception of what mathematical
knowledge is and how it relates to the physical world. This
discovery was that of non-Euclidean geometry: a geometry in
which some but not all of Euclid’s postulates hold (§5). This
shook the assumption, which had been taken for granted for
millennia, that Euclid’s geometry is the geometry of the space
in which we live.

We recall Euclid’s postulates from §5. We also note a variant of
Postulate 1 which Euclid and others seem to have had in mind
sometimes:

Postulate 1’. There is a unique straight line from
any point to any point.

The question of whether this and the other postulates hold
clearly depends on the meaning of “straight line.” What is
straightness? Euclid’s definition is notoriously vague (§5). Al-
ready in Greek times Archimedes gave a better definition: A
straight line is the shortest distance between two points. A
more physical way of putting it would be: A straight line is the
path of a stretched string. To get to the bottom of the notion of
straightness it is useful to consider not only the usual plane but
also other surfaces.
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A 3 Póor-23.1. Consider a sphere. Answer the following questions based
on the stretched-string definition of straightness.

(a) Argue that the “straight lines” on a sphere are parts
of “great circles,” i.e., circles whose midpoint is the
center of the sphere. The equator is an example of
a great circle on the sphere of the earth.

(b) What are some real-world applications of this fact?

(c) Are latitude and longitude lines “straight”?

23.2. What are the straight lines on a cylinder?

23.3. Would anything change if we used Archimedes’s defi-
nition instead? What does stretching a string mean in
terms of distances?

To appreciate the geometry of a surface—its intrinsic geome-
try, as we say—we should forget for a moment that it is located
in three-dimensional space. We should look at it through the
eyes of a little bug who crawls around on it and thinks about
its geometry but who cannot leave and is unaware of any other
space beyond this surface. Think of for example those little wa-
ter striders that you see running across the surfaces of ponds.
They know the surface of the pond ever so well. They can feel
any little movement on it. But they are quite oblivious to the
existence of a third dimension outside of their surface world.
This makes the water strider an easy prey for a bird or a fish
that strikes it without first upsetting the surface of the water.

Thinking about the intrinsic geometry of surfaces in this way
forces us to realise that what we often take for granted as “obvi-
ous” objective truths in geometry are really a lot more specific
to our mental constitution and unconscious assumptions than
we realise. In some ways we are as ignorant of our own limita-
tions as the water strider.

23.4. Which of Euclid’s postulates 1–5 and 1’ hold on a cylin-
der? (Hint: you may find it useful to consider the analogy
with the plane that comes from “unrolling” the cylinder
into a flat plane.)

23.5. Which of Euclid’s postulates 1–5 and 1’ hold on a sphere?

Figure 26: The conformal disc model of hyperbolic geometry.

Figure 26 is a representation of the so-called hyperbolic plane.
Intrinsically, all the triangular tiles are of equal size. Thus the
space represented in this picture is actually infinite since the
tiles become smaller and smaller as you approach the bound-
ary. A bug living in this world could never walk to the bound-
ary; there would always be more tiles to go. The lines in this
world are arcs of circles perpendicular to the boundary (includ-
ing the diameters of the disc, which are part of circles with infi-
nite radius, so to speak). Hyperbolic angles are the same as the
Euclidean angles in the picture.

23.6. Argue that lines in this sense do indeed seem to repre-
sent the shortest (hyperbolic) distances between any two
points.

23.7. Which of Euclid’s postulates 1–5 and 1’ are true in the hy-
perbolic plane?

23.8. What does this mean for the feasibility of proving the
parallel postulate from the other axioms?

23.9. In what sense do the sphere, cylinder, and hyperbolic
plane “prove Euclid wrong”? Why were the sphere and
cylinder not considered “counterexamples” to Euclid’s
geometry, while the hyperbolic plane was?
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23.10. Argue that the geometry of the hyperbolic plane is “lo-
cally Euclidean,” i.e., practically indistinguishable from
Euclidean geometry when one zooms in far enough.

23.11. Show that there are multiple parallels to a given line
through a given point in the hyperbolic plane.

23.12. Argue that the angle sum of a hyperbolic triangle is less
than 180◦.

23.13. Do we live in a Euclidean or hyperbolic world? How can
you tell?

23.14. Legendre tried to prove that the angle sum of a triangle
cannot be less than 180◦ using only the first four postu-
lates of Euclid. His proof goes as follows:

Let ABC be a triangle with angles α,β,γ such
that α+β+γ< 180◦. Call 180◦−(α+β+γ) = δ

the defect of the triangle. Locate A’ symmetri-
cally situated to A with respect to BC (this can
be done by rotating ABC through 180◦ around
the midpoint of BC) and extend AB and AC.
Draw through A’ a line meeting AB at B’ and
AC at C’—not necessarily a line ’parallel’ to

BC which would beg the question. Join up
A’B and A’C. By symmetry the defect of trian-
gle A’BC is also δ. Since the defect of the an-
gle sum of the large triangle AB’C’ is the sum
of the defects in the angle sum of the four tri-
angles separately, we have in AB’C’ a triangle
with defect ≥ 2δ. Continuing in this manner
we obtain triangles with defects δ,2δ,4δ,8δ
and so on. Eventually, then, we will have a tri-
angle whose defect is greater than 180◦, which
is absurd since this would mean that α+β+γ
is a negative number.

We have thus showed that if there is a trian-
gle with angle sum < 180◦, then there are also
triangles with angle sum less than any given
number, including even 0◦. Therefore there
can be no triangle with angle sum < 180◦.

Why does Legandre’s proof not work in the hyperbolic
plane?

23.15. Lagrange tried to prove the uniqueness of parallels from
the principle that if there are two parallels to a given
line through a given point, then the reflection of one of
these parallels in the other should also be a parallel of
the given line (since there is no reason why one side of a
line should be “privileged” over the other).

(a) Argue that Lagrange’s principle implies the unique-
ness of parallels.

(b) Explain why Lagrange’s proof does not work in the
hyperbolic plane.
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