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§ E0. General

E0.1. Argue that geometry, as conceived in Euclid’s Elements, is
distinct from the physical world; that it is purely logical,
abstract, Platonic.

E0.2. Argue that geometry, as conceived in Euclid’s Elements,
concerns physical space and in anchored in concrete
and hands-on operations with real-world tools like ruler
and compass.

E0.3. What are some examples of “assumption minimalism”
in Euclid? That is, situations where it would have been
natural to assume a bit more but Euclid would rather
start from only the least possible assumption even if this
means more work.

§ E1. Defs.–Prop. 3: foundations; ruler and compass

E1.1. Each of Euclid’s definitions may be considered a char-
acterisation of a certain class of entities X. But in what
sense? Match each of the following types of definitions
with the best example from Euclid.

□ “Test-condition” definition that enable us to an-
swer, for any given object(s), the question “is this an
instance of X?” in an unambiguous way that guar-
antees us to reach a yes or no answer by following a
practically executable set of steps.

□ “Exclusion” definition that specifies X negatively, in
terms of what it is not.

□ “Fiat property” definition that characterise X in
terms of its properties without being straightfor-
wardly testable. In other words, it allows us to infer
that if something is an X then it has such-and-such
properties.

□ “Maker’s” definition that implies a way of produc-
ing an X.

□ “Shorthand” definition that give a convenient label
to an entire set of properties or conditions.

□ “Psychological” definition that give you a hunch
what it is about without being mathematically ex-
act.

□ Definitions 1, 4, 10, 15, 22, 23

E1.2. Match the concepts with how it would most naturally be
defined.

□ Test-condition, Fiat property, Maker’s, Shorthand,
Psychological, Exclusion

□ prime number, magnetic, cousin, stack [of pan-
cakes, for example], intuitive, unicorn

E1.3. Euclid’s definition of a straight line is vague. Can we in-
terpret it to say: a straight line is a line such that any piece
of it fits anywhere else on the line?

□ Yes

□ No

E1.4. Euclid’s Proposition 1 has a logical gap or hidden as-
sumption in it, namely that:

□ C exists

□ AC, BC are straight

□ the two circles have the same radius

□ the triangle produced is unique when in fact there
are two

E1.5. The gap in Euclid’s Proposition 1 could be resolved or ad-
dressed at least in part by an argument based on:

□ Carrying out the constructions with ruler and com-
pass.

□ Allowing conclusions based on what is visually
clear in the diagram, as long as it concerns not exact
properties but only properties that would still hold
even if the diagram was imperfectly drawn.

□ The notions of “inside” and boundary in Defini-
tions 13-15.

E1.6. Propositions 2 and 3 suggest that:

□ Postulate 3 is more restricted than one might think.

□ Euclid’s compass is “collapsible”: when lifted from
the paper, it collapses and forgets the radius it was
set to.

□ Euclid’s compass is “rusty”: once set, it’s stuck at a
particular opening.

□ Euclid’s ruler is unmarked, just a “straightedge,”
that can be used to draw lines but not to measure
lengths.

□ Euclid’s ruler can be used to produce equal line seg-
ments (as if you can put a single mark on it corre-
sponding to the segment you have), but not to pro-
duce segments of other sizes (as if you had a full nu-
merical scale on it).

E1.7. In the Declaration of Independence of the United States,
the first part of the second sentence has a very Euclidean
ring to it. It is reminiscent of one of Euclid’s postulates
in particular—which one? Postulate □. There are in
fact several further allusions to Euclidean rhetoric in this
document.

E1.8. This is a typical window design in Gothic architecture:
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This design is reminiscent of Euclid’s Proposition□. The
Gothic style of architecture arose in the early 12th cen-
tury, within a decade or two of the first Latin translation
of Euclid’s Elements.

§ E2. Props. 4–8: triangle congruence

E2.1. The proof of Proposition 4 arguably assumes that:

□ Triangles are “motion invariant”: they don’t change
whether you put them in one place or another.

□ The straight line of Postulate 1 is unique.

□ Propositions 2 and 3 enable us to reconstruct a
given triangle in a new position.

E2.2. Propositions 1-3 were “problems” (showing how to do
or make something) while Proposition 4 is a “theorem”
(showing that a property or relation holds for certain ob-
jects). The difference is signalled by fixed stock phrases,
notably in the paragraph(s).

□ First

□ Second

□ Third

□ Last

E2.3. Proposition 5 consists of two claims: (a) that regarding
the angles of the triangle, and (b) that regarding the an-
gles under the base. What is the relation between the two
claims as they are proved?

□ (a) is used to prove (b).

□ (b) is used to prove (a).

□ None of the above.

E2.4. Proposition 5 (cont.). Can I infer (a) directly by applying
Proposition 4 to the “two” triangles ABC and ACB? (Cor-
responding to the intuitive idea that if I flip ABC over it
fits on top of itself, so the base angles must be equal.)

□ Yes.

□ No, because the proof of Proposition 4 only works
for distinct triangles.

□ No, because we are proving Proposition 5 generally,
without assuming anything about the magnitude of
angle BAC.

E2.5. Proposition 5 (cont.). Suppose I know (a). Can I then in-
fer (b) immediately from there on the grounds that it is
“the rest” of angles ABD and ACE?

□ Yes, using C.N. 3.

□ No, because we don’t know that “angles” ABD and
ACE are equal.

□ No, because that wouldn’t show that the two angles
are equal to one another.

E2.6. Proposition 5. There is a superfluous remark in the proof
that serves no logical function in the argument. Find it.
The points mentioned in this remark are:

□ A

□ B

□ C

□ D

□ E

□ F

□ G

E2.7. Proposition 7. The proof doesn’t work if:

□ AC=CB and AD=DB.

□ C is on AD.

□ C is inside triangle ADB.

E2.8. Proposition 8. How can we conclude that the remaining
pairs of angles are equal?

□ It follows from the proof of Proposition 8 itself.

□ It follows by applying Proposition 8 anew to the
same triangles but with a different choice of “base”.

□ It can be obtained by applying Proposition 4.

□ We can’t; they may not be equal.

§ E3. Props. 9–11: further basic constructions

E3.1. Why does Euclid bisect an angle (Proposition 9) before a
length (Proposition 10)?

□ Because the ruler-and-compass steps of the corre-
sponding constructions proceed in this order.

□ Because the only previous proposition that has
equalities of sides in its conclusion is SAS.

□ Because we have a postulate about equal angles
(Postulate 4) but none about equal lengths.

□ The order is an arbitrary choice since the two
propositions are independent.
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E3.2. Proposition 9. Suppose I follow Euclid’s construction up
to the point when DE has been drawn. If I divided DE
into three equal parts (assuming for the moment that I
can do this somehow), and then connected the dividing
points up to A, will I have cut the angle into three equal
parts?

□ Yes

□ No

E3.3. Consider the figure below. The point in the middle is de-
fined as the intersection of the bisector of the top angle
and the perpendicular bisector of the base. By construc-
tion, the top two triangles are congruent, and the two
base triangles are congruent. It follows that the remain-
ing two triangles are congruent. Which triangle congru-
ence principles were needed to establish these three con-
gruences?

□ AAS

□ ASA

□ SAS

□ SSS

□ SSRA

E3.4. (cont.) Since we started with an arbitrary triangle, it fol-
lows that all triangles are:

□ right-angled

□ isosceles

□ bisected in area by perpendicular bisector of each
side

□ decomposable into six triangles with equal area

E3.5. (cont.) Actually the figure was incorrectly drawn. Below
is the correct figure. On the basis of this example one
could argue that:

□ It can be dangerous to rely on diagrams when writ-
ing geometrical proofs.

□ Exact constructions are important to safeguard
rigour in geometrical reasoning.

§ E4. Props. 13–16: angles

E4.1. Postulate 4 is implicitly used in:

□ Proposition 11

□ Proposition 13

□ Proposition 14

□ Proposition 15

□ None of the above

E4.2. (cont.) Is one or more of those propositions false on a
450 degree cone?

□ Yes

□ No

E4.3. Proposition 13. Could Euclid have gone directly from
DBA+ABC=DBE+EBA+ABC [this is Euclid’s second five-
term equation] to DBE+CBE by using CBE=EBA+ABC
[Euclid’s first equation]?

□ Yes, and this would have shortened his proof.

□ Yes, but this would not have shortened his proof
since it needs to apply to both cases mentioned in
the statement of the proposition.

□ No, because the proof needs to apply to both cases
mentioned in the statement of the proposition.

□ No, because there is no Common Notion legitimat-
ing such a step.

E4.4. Proposition 14. What does the phrase “Similarly, we can
show that . . .” refer to?

□ The proof so far has only proved a limited state-
ment, not the full theorem. But the remaining steps
can be handled in a similar manner to what has al-
ready been explained. So Euclid omits them, ex-
pecting that the reader will be able to supply them
if desired.

□ The proof so far has ruled out one possible straight
line. Theoretically, we would need to rule out all
possible straight lines other than CBD. Since there
are infinitely many there is no way of doing this
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explicitly. But the argument given for CBE applies
equally well to any other case.

□ The proof so far has shown that CBD is a straight
line but not that there is only one unique straight-
line continuation of CB. Euclid omits a full proof of
this, but it could be supplied by appeal to the im-
plicit assumption of uniqueness in Postulate 1.

E4.5. (cont.) Isn’t it precisely Euclid’s strength that he proves
everything systematically? So isn’t it strange to see him
speaking of what “we can show” instead of actually
showing? This seems to undermine any claim that Eu-
clid is offering:

□ Structured investigation of the precise foundations
of geometry.

□ Precise logical exposition.

□ Psychologically convincing arguments.

E4.6. Proposition 16. It is assumed that F falls within angle
ABC, rather than below (the extension of) BC or above
BA. This follows from:

□ BE being an angle bisector.

□ Two lines cannot enclose a space.

□ None of the above.

E4.7. Proposition 16 does not hold generally on a sphere. Con-
sider the case where B is the south pole, F is the north
pole, and AEC is on the equator. If we try to apply Eu-
clid’s proof to this configuration, what goes wrong?

□ Nothing. The proof works and the theorem is true
for configurations of this type (though not neces-
sarily for all spherical triangles).

□ The inference based on Proposition 15 fails.

□ The inference based on Proposition 4 fails.

□ ECD is not greater than ECF.

§ E5. Props. 22–26: more triangle congruence

E5.1. Proposition 22. If the condition regarding the lengths of
the sides is not satisfied, it is always impossible to con-
struct a triangle from the given sides.

□ Yes

□ No

E5.2. Proposition 22 can be seen as a generalisation of Propo-
sition 1. In our discussion of Proposition 1, we consid-
ered some ways of addressing a gap in the reasoning.
Which of those ways are also applicable to the analogous
gap in the proof of Proposition 22?

□ Carrying out the constructions with ruler and com-
pass.

□ Allowing conclusions based on what is visually
clear in the diagram, as long as it concerns not exact
properties but only properties that would still hold
even if the diagram was imperfectly drawn.

□ The notions of “inside” and boundary in Defini-
tions 13-15.

E5.3. Proposition 23 shows how to move an angle. But didn’t
we already assume the ability to move angles in our proof
of Proposition 4? (In fact, Proposition 23 is logically
dependent on Proposition 4, so we cannot make it the
foundation for that part of the proof.)

E5.4. Proposition 26. This proof does not “apply” one triangle
to the other, as the proofs of Propositions 4 and 8 did.
Could this method have been used?

□ Yes, but Euclid’s proof is shorter.

□ Yes, and it would have shortened the proof.

□ No, it wouldn’t work here because we would have to
move an angle one of whose associated sides is not
given.

E5.5. Proposition 26. Euclid has now proved SAS, SSS, and ASA
triangle congruence. (Actually his Proposition 26 also in-
cludes SAA but I left this out in my edition.) Is there a
triangle congruence theorem for every such letter com-
bination? That is, if two triangles have “three things in
common” then they are the same?

□ Yes

□ No

E5.6. You are at point A and you want to know the distance
to point B. However, point B is inaccessible (it is on the
other side of a river, for example), so you cannot measure
AB directly. Instead you proceed as follows. From A mea-
sure along a straight line at right angles to AB a length
AC and bisect it at D. From C draw CE at right angles to
CA on the side of it remote from B, and let E be the point
on it which is in a straight line with B and D. The sought
distance AB is equal to the measurable distance:

□ DC

□ DE

□ CE

□ AC

E5.7. (cont.) The Euclidean propositions directly involved in
setting up and justifying this procedure are:

□ 1

□ 2

□ 4

□ 5

□ 7

□ 8
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□ 9

□ 10

□ 11

□ 13

□ 14

□ 15

□ 16

□ 22

□ 23

□ 26

E5.8. Simple bookshelves (such as the IKEA Ivar) consist of two
vertical and some horizontal planks. A problem is that
they could tip askew, so that when we look at the book-
shelf from the front we see, instead of a rectangle with
vertical sides, a parallelogram with its longer sides in-
clined a few degrees with respect to the floor. Two ways
of addressing this are often implemented in such book-
shelves. The X method is to nail one or two long metal
fortifiers diagonally across the back of the shelf. This
forces the distance between diagonally opposite points
to be fixed. The L method is to nail L-shaped metal forti-
fiers where the shelves meet the sides. This forces the an-
gle between them to be fixed at 90 degrees. Match each
method with a proposition from Euclid that can be used
to explain it.

□ X method

□ L method

□ Neither

□ Proposition 4 (SAS), Proposition 8 (SSS), Proposi-
tion 26 (ASA)

§ E6. Props. 27–32: parallels

E6.1. Proposition 27. Could Euclid have proved this by using
ASA triangle congruence to infer that if the lines meet on
one side they would also meet on the other and hence
enclose a space, which is a contradiction?

□ No, because the impossibility of the double-
meeting configuration does not necessarily imply
that the lines are parallel.

□ No, because this would require theorems about an-
gles not yet proved.

□ Sort of, but not really, because Proposition 26 is not
set up in the way needed for this argument.

□ Yes, but Euclid’s proof is preferable because it is
shorter and uses fewer assumptions.

eq

E6.2. Euclid’s theory of parallels (Propositions 27-31) studies
whether two given lines are parallel or not by cutting
them with a third line (which may be called the “test
line”), and then looking at the angles produced. One can
look at either the “alternate angles” (the pair of angles in-
volved in Proposition 27; also called “Z-angles” because
of their configuration) or the “internal angles” (the pair
of angles involved in Postulate 5).

□ Euclid uses alternate angles/Proposition 16 . . .

□ Euclid uses internal angles/Postulate 5 . . .

□ . . . when he wants to prove that given lines are par-
allel.

□ . . . to derive properties any parallel lines must have.

E6.3. Which of the following does Euclid establish without re-
lying on the parallel postulate in any way?

□ Parallel lines exist.

□ There is precisely one unique parallel to a given line
through a given point.

□ Alternate angles (Z-angles) are equal.

□ Vertical angles (opposite pair in an X configuration)
are equal.

□ Angle sum of triangle is two right angles.

□ Proposition 30.

□ None of the above.

E6.4. Proposition 31 uses nothing later than Proposition 27, so
Euclid could have placed it earlier. Do the intermediate
propositions add some illumination?

□ Yes, they imply that the parallel constructed in
Proposition 31 is unique.

□ Yes, they imply that the parallel constructed in
Proposition 31 is not unique.

□ Yes, they justify the implicit assumption in Proposi-
tion 31 that a parallel line exists.

□ None of the above.

E6.5. Parallel lines can also be characterised as lines that al-
ways have the same distance between them. But the
notion of not crossing is arguably more fundamental.
As Postulate 2 says, lines are fundamentally things that
can be extended indefinitely. Asking whether they will
cross seems quite natural already from this standpoint
alone, whereas talking about the distance between lines
requires us to involve a lot more secondary concepts to
specify what it even means.

The geometry of other surfaces also problematise the
equivalence of parallelism and equidistance in interest-
ing ways. For example, it can happen that the curve
equidistant to a straight line is not a straight line. In
which of the following geometries does this occur?

□ sphere
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□ 450 degree cone with stretched-string definition of
straight line

□ 450 degree cone with half-turn-symmetry defini-
tion of straight line

If we wanted to base the theory of parallels on the notion
of equidistance we would have to prove that these kinds
of situations do not occur.

E6.6. Think about how Proposition 32 is related to Proposition
16. Why didn’t Euclid prove the more powerful 32 first
and then derive 16 very easily from there?

□ Euclid’s proof of Proposition 32 is logically depen-
dent on Proposition 16, so 16 was a necessary
stepping-stone along the way; without 16 we could
not have reached 32.

□ Although Euclid’s proof of Proposition 32 is logi-
cally independent of Proposition 16, Euclid’s way
of proving Proposition 16 shows that it is indepen-
dent of the parallel postulate, which would not have
been show if it was derived as a corollary of Propo-
sition 32.

E6.7. Proposition 32. Suppose I stand on one side of a triangle
with my nose pointing in the direction of the side. I walk
once around the triangle, turning accordingly, returning
eventually to my original position. How many degrees
did I turn? Does this correspond to Proposition 32?

□ Yes, there is a simple relationship between the
amount of turning and the angle sum of the trian-
gle.

□ No, because the turning amount would be the
same if you walked around a four-sided figure, a
five-sided figure, etc., so any correspondence with
Proposition 32 is a coincidence.

□ No, because the total amount of turning depends
on weather the triangle has an obtuse angle or not,
while Proposition 32 holds for any triangle.

E6.8. Why did Euclid wait so long (until Proposition 29) to use
the parallel postulate? Does this tell us something about
the status of the postulate?

E6.9. The parallel postulate is considerably more convoluted
than the other postulates. But it transpires from the Ele-
ments itself that Euclid could have used a simpler, equiv-
alent statement in place of it, such as: given any line and
any point not on this line, there is no more than one
parallel to the line through that point. Why did Euclid
choose his formulation of the postulate?

§ E7. Props. 34–41: parallelograms; area

E7.1. The simplest sense in which two figures can have the
same area is that of superposition: one “fits” on top of the
other. But figures can also have the same area without
being capable of such alignment; that is, without having

the same shape. The first time Euclid talks about equality
of area in this sense is in Proposition:

□ 34

□ 35

□ 37

□ 41

E7.2. In Propositions 34-41, Euclid’s strategy for proving areas
equal is to:

□ Transform one area into another with an area-
preserving transformation.

□ Cut them into pieces and use triangle congruence.

□ First establish area of three-sided figures, then use
this to establish area of four-sided figures, and so
on upwards.

E7.3. Proposition 35. If AD and EF overlap:

□ Euclid’s proof can be considered to still apply, with
G being above the parallelograms.

□ A longer proof is needed.

□ A shorter proof is possible.

□ The proposition no longer holds.

E7.4. The enemy is advancing toward your capital. They have
currently set up camp not far from you. In the night, you
send a spy to estimate the size of their army. The spy re-
ports back that the enemy camp has the shape of a par-
allelogram and is 4000 paces all the way around. It is es-
timated that each soldier uses about 10 square paces of
area for their night camp. Approximately how many sol-
diers does the enemy have in the camp?

□ 4000

□ 40000

□ 400000

□ 1000

□ 10000

□ 100000

□ Cannot be determined from the information given.

E7.5. This process is called “symmetrisation”:

6



In particular, it turns parallelograms into rectangles,
which can be likened to straightening out a stack of
books that has been knocked askew. Here is the sym-
metrisation process applied repeatedly to a specific fig-
ure:

The symmetrisation process is akin to packing a snow-
ball; both these processes lead to a round shape for the
same reason.

Among all figures with the same area, the circle has the
least perimeter. I can prove this using symmetrisation if
I first assume or prove that:

□ Symmetrisation preserves area but decreases
perimeter for any non-circular figure.

□ Symmetrisation has no effect on circles.

□ Among all figures with the same area, there exists
one that has the least perimeter.

§ E8. Props. 46–48: Pythagorean Theorem

E8.1. Proposition 47. An odd phrase occurs: “either . . . or”. This
phrasing in effect amounts to an implicit application of
Proposition□.

E8.2. Match the additional, implicitly assumed Common No-
tions used by Euclid with the proof in which they are first
needed.

□ The doubles of equal things are equal to one an-
other.

□ The squares on equal straight lines are equal to one
another.

□ Proposition 47

□ Proposition 48

E8.3. Explain how the figure below proves the Pythagorean
Theorem. Why did Euclid prefer his “windmill” proof?

10 1 The Theorem of Pythagoras

on certain geometric assumptions. It is in fact possible to transcend geo-
metric assumptions by using numbers as the foundation for geometry, and
the Pythagorean theorem then becomes true almost by definition, as an
immediate consequence of the definition of distance (see Section 1.6).

Figure 1.7: Proof of the Pythagorean theorem

To the Greeks, however, it did not seem possible to build geometry on
the basis of numbers, due to a conflict between their notions of number and
length. In the next section we shall see how this conflict arose.

Exercises

A way to see the Pythagorean theorem in a tiled floor was suggested by Mag-
nus (1974), p. 159, and it is shown in Figure 1.8. (The dotted squares are not tiles;
they are a hint.)

Figure 1.8: Pythagorean theorem in a tiled floor

1.4.1 What has this figure to do with the Pythagorean theorem?
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1.4.1 What has this figure to do with the Pythagorean theorem?

E8.4. Which is a right angle? Use Proposition 48 to find out.

□ A

□ B

□ C

A

B

C

E8.5. There are some indications that the ancient Egyptians
knew that a triangle with sides 3, 4, 5 has a right angle.
Is it realistic that they used this to construct right angles
for practical purposes, such as when building the pyra-
mids?

□ Yes

□ No

E8.6. In https://youtu.be/I4tKOvDKhE8, what is pre-
sented as the most likely motivation for the discovery of
the Pythagorean Theorem?

□ Determination of the sizes of fields.

□ Determination of geographical distances.

□ Practical engineering questions such as what size
ladder is needed for a certain task.

□ Astronomical applications having to do with
eclipses.

□ No practical motivation, rather general interest in
mathematical challenges/play/curiosity.
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§ E9. Reference table

Prop. Construction Theorem

1 make equilateral△

2 move segment

3 cut off given length

4 SAS△ congruence

5 isosceles△⇒ base angles equal

7 SSS uniqueness

8 SSS△ congruence

9 bisect angle

10 bisect segment

11 draw perpendicular

13 angle on one side of straight line = 2⦜

14 angle on one side = 2⦜⇒ straight line

15 vertical angles equal

16 △ external angle > each opposite internal angle

22 make△ from three segments

23 move angle

26 ASA△ congruence

27 alternate angles equal ⇒ parallel

29 parallel ⇒ alternate angles equal, . . . internal angles = 2⦜

30 parallel to same ⇒ parallel to each other

31 draw parallel through point

32 △ angle sum = 2⦜

34 ⇒ opposite sides, angles equal; diagonal bisects

35 w same base, height ⇒ equal area

37 △w same base, height ⇒ equal area

41 area = 2× corresponding△ area

46 draw a square

47 right-angle△⇒ a2+b2
= c2

48 a2+b2
= c2

⇒ right-angle△

vertical angles alternate angles internal angles internal angles external angle
X angles Z angles U angles
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